ADL-BSDF: A Deep Learning Framework for Brain Stroke Detection from MRI Scans towards an Automated Clinical Decision Support System

Main Article Content

Anitha Patil
Suresh Kumar Govindaraj

Abstract

Deep learning has emerged to be efficient Artificial Intelligence (AI) phenomena to solve problems in healthcare industry. Particularly Convolutional Neural Network (CNN) models have attracted researchers due to their efficiency in medical image analysis. According to World Health Organization (WHO), rapidly developing cerebral malfunction, brain stroke, is the second leading cause of death across the globe. Brain MRI scans, when analysed quantitatively, play vital role in diagnosis and treatment of stroke. There are many existing methods built on deep learning for stroke diagnosis. However, an automatic, reliable and faster method that not only helps in stroke diagnosis but also demarcate affected regions as part of Clinical Decision Support System (CDSS) is much desired. Towards this objective, we proposed an Automated Deep Learning based Brain Stroke Detection Framework (ADL-BSDF). It does not rely on expertise of healthcare professional in diagnosis and know the extent of damage enabling physician to make quick decisions. The framework is realized by two algorithms proposed. The first algorithm known as CNN-based Deep Learning for Brain Stroke Detection (CNNDL-BSD) focuses on accurate detection of stroke. The second algorithm, Deep Auto encoder for Stroke Severity Detection (DA-SSD), focuses on revealing extent of damage or severity of the stroke. The framework is evaluated against state of the art deep learning models such as EfficientNet, ResNet50 and VGG16.

Article Details

How to Cite
Patil, A. ., & Govindaraj, S. K. . (2023). ADL-BSDF: A Deep Learning Framework for Brain Stroke Detection from MRI Scans towards an Automated Clinical Decision Support System. International Journal on Recent and Innovation Trends in Computing and Communication, 11(3), 11–23. https://doi.org/10.17762/ijritcc.v11i3.6195
Section
Articles

References

Zhang, S.; Xu, S.; Tan, L.; Wang, H.; Meng, J.: Stroke lesion detection and analysis in MRI images based on deep learning. Journal of Healthcare Engineering. 1-9 (2021)

Yamashita, Rikiya,"Convolutional neural networks: an overview and application in radiology", Insights into imaging, vol.9, no.4, pp.1-19, 2018.

Lundervold, A.S.; Lundervold, A.: An overview of deep learning in medical imaging focusing on MRI. Mohn Medical Imaging and Visualization Centre. 1-26 (2018)

Zhou, T.; Ruan, S.; Canu, S.: A review: deep learning for medical image segmentation using multi-modality fusion. ELSEVIER. 3(4), 1-11 (2019)

Basak, H. Hussain, R.; Rana, A.: Dfenet: A novel dimension fusion edge guided network for brain MRI segmentation. Original Research. 2, 1-11 (2021)

Wu, W.; Lu, Y.; Mane, R.; Fellow, C.G: Deep learning for neuroimaging segmentation with a novel data augmentation strategy. IEEE. 1516-1519 (2020)

Farsania, S.N.; Nymanb, M.; Karjalainena, T.; Buccia, M.: automated segmentation of acute stroke lesions using a data-driven anomaly detection on diffusion weighted MRI. Journal of neuroscience. 333, 1-9 (2019)

Sathish, R.; Rajan, R.; Vupputuri, A.; Ghosh, N.; Debdo: Adversarially trained convolutional neural networks for semantic segmentation of ischaemic stroke lesion using multisequ . IEEE. 978, 1-4 (2019)

Shah, P.M.; Khan, H.; Shafi, U.; Islam, S.U.; Raza, M.: 2D-CNN Based segmentation of ischemic stroke lesions in MRI Scans. Springer nature Switzerland. 276-286 (2020)

Zhou, Y.; Dong, M.P.; Xia, Y.; Wang, S.: D-UNet: a dimension-fusion u shape network for chronic stroke lesion segmentation. IEEE/ACM Transactions on computational biology and bioinformatics. 1545, 1-11 (2019)

Raghavendra, U.; Pham, The.Hanh.; Gudigar, A.;Vidhya,V.; Nageswar,B.: Novel and accurate non linear index for the automated detection of haemorrhagic brain stroke using CT images. Springer. 7, 929-940 (2021)

Wood, D.A.; Kafiabadi, S.; Busaidi, A.A.; Emily L.; Jerem, G.: Deep learning to automate the labelling of head MRI datasets for computer vision applications. European Radiology. 1-12 (2021)

Acharya, U.R.; Meiburger, K.M.; Faust, O.; Ko, J.E.W.: Automatic detection of ischemic stroke using higher order spectra features in brain MRI images. Cognitive systems Research. 1-19 (2019)

Taloa, M.; Baloglua, U.B.; Y?ld?r?m, O.: Application of deep transfer learning for automated brain abnormality classification using MR images. Cognitive systems research. 1-27 (2018)

Li, L.; Wei, M.; Liu, B.; Atchaneeyasakul, K.; Zhou, F.; Pan, Z.: Deep learning for hemorrhagic lesion detection and segmentation on brain CT images. IEEE Journal of biomedical and health informatics. 1-13 (2020)

Chauhan, S.; Vig, L.; Filippo, M.D,; Grazia, D.; Corb, M.: A comparison of shallow and deep learning methods for predicting cognitive performance of stroke patients from MRI lesio. Original Research. 1-12 (2019)

Anupama, C.S.S.; Sivaram, E.; Gupta, L.L.D.: Synergic deep learning model–based automated detection and classification of brain intracranial haemorrhage images in w. Personal and Ubiquitous Computing. 1-10 (2020)

Choi, Y.A.; Park, S.J.; Jun, J.A.; Pyo, C.S.; Cho, K.H.: Deep Learning-Based Stroke Disease Prediction System Using Real-Time Bio Signals. Sensors. 21, 1-17 (2021)

Havaei, M.; Guizard, N.; Larochelle, H.: Deep Learning trends for focal brain pathology segmentation in MRI. Springer international publishing. 125-148 (2016)

Akkus, Z.; Galimzianova, A.; Daniel, A.H.; Rubin.: Deep learning for brain MRI segmentation: State of the art and future directions. J digit imaging. 1-11 (2017)

Tandel, G.S.; Biswas, M.; Kakde, O.G.; Tiwari, A.: A review on a deep learning perspective in brain cancer classification. Mdpi. 11, 1-32 (2019)

Stier, N.; Vincent, N.; Liebeskind, D.; Fabien Scalzo, F.: Deep learning of tissue fate features in acute ischemic stroke. IEEE International conference on bioinformatics and Biomedicine (BTBM). 1316-1321 (2015)

Karthika, R.; Menakaa, R.; Johnsonb, A.; Anand, S.; Neuroimaging and deep learning for brain stroke detection - A review of recent advancements and future prospects. Computer methods and Programs in Biomedicine. 197, 1-17 (2020)

Govindarajan, P.; Soundarapandian, R.K.; Amir H. Gandomi, A.H.: Classification of stroke disease using machine learning algorithms. Neural computing and applications. 1-12 (2019)

Suk, H.I.; Lee, S.W.; Shen, D.; Neu, A.D.; Deep ensemble learning of sparse regression models for brain disease diagnosis. Medical Image Analysis. 1-42 (2017)

ie, X.; XNiu, J.; Liu, X.; Chen, Z.; Tang, S.; Yu, S.: A survey on incorporating domain knowledge into deep learning for medical image analysis. Medical Image Analysis. 69 , 1-25 (2021)

He, K.; Gkioxari, G.; Dollar, P.; Girshick, R.: Mask R-CNN. Proceedings of the IEEE International Conference on Computer Visio. 2961-2969 (2017)

Zhao, D.J.; Li, Z.; Kassam et al.: Tripartite-GAN: Synthesizing liver contrast-enhanced MRI to improve tumor detection. Medical Image Analysis. 63, 1-16 (2020)

Raissi, M.; Karniadakis, GE.: Hidden physics models: Machine learning of nonlinear partial differential equations. J Computer Physics. 357, 125-141 (2018)

Shin, H.C.; Roth, HR.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.: Deep convolutional neural networks for computer-Aided detection: CNN architectures, dataset characteristics and transfer. IEEE Trans Med Imaging.1-14 (2016)

Poplin, R.; Chang, P.C.; Alexander, D.; Schwartz, S.; Colthurst, T.; Ku, A.: A universal SNP and small-indel variant caller using deep neural networks. Nat Biotechnol. 983-991 (2018)

Zhao, A.; Balakrishnan, G.; Durand, F.; Guttag, J.V.; Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. arXiv preprint arXv. 8543-8553 (2019)

Maier, O.; Menze, B.H.; Gablentz, J.V.D.; Hani, L.; Heinrich, M.P.; Liebra, M.: ISLES 2015 - A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 1-22 (2016)

Praveen, G.; Agrawal, A.; Sundaram, P.; Sardesai, S.: Ischemic stroke lesion segmentation using stacked sparse autoencoder. Comp. Bio. Med . 99. 1-35 (2018)

Nandamuri, S.; China, D.; Mitra, P.; Sheet, D.: “Sumnet: Fully convolutional model for fast segmentation of anatomical structures in ultrasound volumes. arXiv preprint arXiv. 987 , 1729-1732 (2019)

Badrinarayanan, V.; Kendall, A.; R. Cipolla, R.: SegNet: A deep convolutional Encoder-Decoder architecture for scene segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 39(12), 1-14 (2016)

Patel, A.; Schreuder, F.H.; Klijn, C.J.; Prokop, M.; van Ginneken, V.; Marquering, H.A.: Intracerebral haemorrhage segmentation in Non-Contrast CT. CT Sci. 9(1), 1-11 (2019)

Sharif, M.I.; Li, J.P.; Khan, M.A.; Saleem, M.A.: Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images. Pattern Recognit Lett. 129, 1-10 (2020)

Kumar, I.; Bhatt, C.; Singh, K.U.: Entropy based automatic unsupervised brain intracranial hemorrhage segmentation using CT images. J King Saud Univ Comput Inf Sci. 1-12 (2020)

Subudhi, A.; Dash, M.; Sabut, S.K.: Automated segmentation and classifcation of brain stroke using expectation maximization and random forest classifer. Biocybern Biomed Eng. 40(1), 277-289 (2020)

Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli.; Subha, H.: Automated EEG-based Screening of depression using deep convolutional neural network. Comput Methods Programs Biomed. 161, 1-23 (2018)

O’Shea, A.; Lightbody, G.; Boylan, G.; Temko, A. Neonatal seizure detection from raw multi-channel EEG using a fully convolutional architecture. Neural Netw. 123 , 1-30 (2020)

Djamal, E.C.; Ramadhan, R.I.; Mandasari, M.I.; Djajasasmita, D.: Identification of post-stroke EEG signal using wavelet and convolutional neural networks. Electr. Eng. Inform. 9, 1890-1898 (2020)

Gautam, A.; Raman, B.: Towards effective classification of brain hemorrhagic and ischemic stroke using CNN. Biomed Signal Process Control. 63, 1-13 (2021)

Saba, L.; Biswas, M.; Kuppili, V.: The present and future of deep learning in radiology. Eur J Radio. 114, 14-24 (2019)

Kocak, B.; Kus, EA.; Kilickesmez, O.: How to read and review papers on machine learning and artificial intelligence in radiology: a survival guide to key meth. Eur Radiol. 31(4), 1-12 (2020)

Shankar, V.; Roelofs, R.; Mania, H.; Fang, A.; Recht, B.; Schmidt, L.: Evaluating machine accuracy on imageNet. International Conference on Machine Learning. PMLR. 1-11 (2020)

Lee, H.: An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nature biomedical Engineering. 3(3), pp.173-182. (2019).

Sridevi, M.; Mala, C.: Self-organizing neural networks for image segmentation based on multiphase active contour. Neural Comput. 1-12 (2017)

Ng, K.H.; Faust, O.; Sudarshan, V.; Chattopadhyay, S.: Data overloading in medical imaging: emerging issues, challenges and opportunities in efficient data management. Journal of medical imaging and health informatics. 5(4), 755-764 (2015)

Ramli, D.A.; Ghazali, N.; Tay, L.: Ischemic stroke detection system with computer aided diagnostic capability. Procedia Computer Science. 126 , 393-402 (2018)

Chin, C.L.; Lin, B.J.; Wu, G.R.; Weng, T.C.; Yang, C.S.; Su, R.C.: An automated early ischemic stroke detection system using CNN deep learning algorithm. Proceedings - 2017 IEEE 8th International Conference on Awareness Science and Technology, ICAST. 368-372 (2017)

Gudigar, A.; Raghavendra, U.; San, T. R.; Ciaccio, E. J; Acharya, U. R.: Application of multiresolution analysis for automated detection of brain abnormality using MR Images: A comparative study. Future generation computer systems. 1-33 (2018)

Wang, S.; Zhang, Y.; Dong, Z.; Du, S.; Ji, G.; Yan, J.; Yang, J.; Wang, Q.: Feed-Forward Neural Network optimized by Hybridization of PSO and ABC for abnormal brain detection . International Journal of Imaging Systems and Technology. 25(2), 1-13 (2015)

Nayak, D. R.; Dash, R.; Majhi, B.: Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests. Neurocomputing. 177, 1-10 (2015)

Agravat, R. R.; Raval, M. S.: Deep learning for automated brain tumor segmentation in MRI Images. In Soft computing based medical image analysis. 183-201 (2018)

Erickson, B. J.; Korfiatis, P.; Kline, T. L.; Akkus, Z.; Philbrick, K.; Weston.: Deep learning in Radiology: Does One Size Fit All?. Journal of the American College of Radiology. 15(3), 1-6 (2018)

Y?ld?r?m, O.; Plawiak, P.; Tan, R. S.; Acharya, U. R.: Arrhythmaia detection using deep convolutional neural network with long duration ECG signa. Computers in biology and medicine. 102, 1-25 (2018)

Plawiak, P.: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals. Swarm and Evolutionary Computation. 39, 1-17 (2018)

Rzecki, T.K.; Sosnicki, M.; Baran, M.; Niedzwiecki, M.; Krol, T.; tojewski, U.R.A.: Application of Computational Intelligence Methods for the Automated Identification of Paper-Ink Samples Based on LIBS. MDPI Sensors. 18(11), 1-15 (2018)

Ganapathy, N.; Swaminathan, R.; Deserno, T.: Deep Learning on 1-D Biosignals: a Taxonomy-based Survey. Yearbook Med Informatics 2018. 27(1), 98-109 (2018) doi:10.1055/s-0038-1667083

Kermany, D. S.; Goldbaum, M.; Cai, W.; Valentim, C. C. S.; Liang, H.; Baxter, S:. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Elsevier Inc.. 172(5), 1-20. (2018). https://doi.org/10.1016/j.cell.2018.02.010

Poplin, R.; Vardaman, A. V.; Blumer, K.; Liu, Y.; McConnell, M. V.; Corrido.: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering. 2, 158-164. (2018). https://doi.org/10.1038/s41551-018-0195-0

Myronenko, A.: 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization. Lecture Notes in Computer Science. 311-320 (2019) https://doi.org/10.1007/978-3-030-11726-9_28

Murtadha Hssayeni.: Computed Tomography Images for Intracranial Hemorrhage Detection and Segmentation. PhysioNet. 1-4. (2020) https://doi.org/10.13026/4nae-zg36

Hssayeni, M.D.; Croock, M.S.; Salman, A.D.; Al-khafaji, H.F.; Yahya, Z.: Intracranial Hemorrhage Segmentation Using A Deep Convolutional Model. Data Descriptor. 5(14), 1-18 (2020) http://dx.doi.org/10.3390/data5010014

Liew, Sook-Lei. The Anatomical Tracings of Lesions after Stroke (ATLAS) Dataset - Release 2.0, 2021. Inter-university Consortium for Political and Social Research [distributor], 2022-08-08. https://doi.org/10.3886/ICPSR36684.v5