Clustering Based Dynamic Bandwidth Allocation in HC-RAN

Main Article Content

Abhishek Malviya
Sudhakar Pandey

Abstract

A wireless network is composed of several independent nodes or gadgets that communicate mutually through a wireless link. The most destructive challenge encountered in a wireless network is bandwidth allocation because it defines the amount the network will cost and how effectively it will function. The most cutting-edge network architecture in the present wireless communication system, cluster-based heterogeneous cloud radio access networks (HC-RANs), is what powers cloud computing in heterogeneous networks. In this research, we proposed an HC-RANs that may optimize energy consumption for wireless data transfer in the multi-hop device to device scenario. The proposed scheme offers bandwidth allocation in wireless environments where there are concerns about significant user mobility over the course of a given time. The above design, we used clustering with joint beam formation for the down link of heterogeneous cloud radio access network (HC-RAN), developed design to improved amount of FBS. Result outcomes helped in calculating Critical bandwidth usage (CBU).

Article Details

How to Cite
Malviya, A. ., & Pandey, S. . (2022). Clustering Based Dynamic Bandwidth Allocation in HC-RAN. International Journal on Recent and Innovation Trends in Computing and Communication, 10(11), 121–130. https://doi.org/10.17762/ijritcc.v10i11.5788
Section
Articles

References

E. Mahmoud Mohamed, “Joint users selection and beamforming in downlink millimetre-wave NOMA based on users positioning,” IET Communications, Vol. 14, No. 8, pp. 1234-1240, 2020.

X. Lu et al., “A joint angle and distance based user pairing strategy for millimeter wave NOMA networks,” in Proc. IEEE WCNC,, Seoul, Korea (South), Jun. 2020, pp. 1-6.

M. Vaezi et al., Multiple access techniques for 5G wireless networks and beyond. Cham, Switz.: Springer, 2019.

D. Do et al., “Impacts of imperfect SIC and imperfect hardware in performance analysis on AF non-orthogonal multiple access network,” Telecommun. Syst., Vol. 72, pp. 579–593, 2019.

C. Cicconetti, I. F. Akyildiz, and L. Lenzini, “FEBA: a bandwidth allocation algorithm for service differentiation in IEEE 802.16 mesh networks,” IEEE/ACM Transactions on Networking, Vol. 17, No. 3, pp. 884–897, 2009.

JIANLIANG XU ?, DIK L. LEE and BO LI Department of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China, “On Bandwidth Allocation for Data Dissemination in Cellular Mobile Networks”, Wireless Networks, Vol. 9, pp. 103–116, 2003. 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Sanjeev Jain, Vijay Shanker Tripathi, Sudarshan Tiwari, "Bandwidth Allocation Based on Traffic Load and Interference in IEEE 802.16 Mesh Networks", Journal of Engineering, Vol. 13, 2013, Article ID 197295, 7 pages, 2013. https://doi.org/10.1155/2013/197295.

C. C. Yang, Y. T. Mai, and I. W. Lin, “Adaptive zone-based bandwidth management in the IEEE 802.16j multi-hop relay network,” in Proceedings of the International Multi Conference of Engineers and Computer Scientists (IMECS '11), vol. 1, pp. 16–18, 2011.

A. S. de Sena, D. B. da Costa, Z. Ding, and P. H. J. Nardelli, “Massive MIMO-NOMA networks with multi-polarized antennas,” IEEE Trans. Wireless Communication, pp. 1–1, 2019.

B. Makki, K. Chitti, A. Behravan, and M.-S. Alouini, “A survey of NOMA: Current status and open research challenges,'' IEEE Open J. Commun. Soc., Vol. 1, pp. 179-189, Feb. 2020.

O. Maraqa, A. S. Rajasekaran, S. Al-Ahmadi, H. Yanikomeroglu, and S. M. Sait, “A survey of rate-optimal power domain NOMA with enabling technologies of future wireless networks,'' IEEE Commun. Surveys Tuts., Vol. 22, No. 4, pp. 2192-2235, Aug. 2020.

Q. N. Le, A. Yadav, N.-P. Nguyen, O. A. Dobre, and R. Zhao, “Fullduplex non-orthogonal multiple access cooperative overlay spectrum sharing networks with SWIPT,'' IEEE Trans. Green Commun. Netw., Vol. 5, No. 1, pp. 322-334, Mar. 2021.

N. Nomikos, T. Charalambous, D. Vouyioukas, R. Wichman, and G. K. Karagiannidis, “Integrating broadcasting and NOMA in fullduplex buffer-aided opportunistic relay networks,'' IEEE Trans. Veh.Technol., Vol. 69, No. 8, pp. 9157-9162, Aug. 2020.

X. Li, W. Xu, Z. Feng, X. Lin, and J. Lin, “Matching-theory-based spectrum utilization in cognitive NOMA-OFDM systems,'' in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), San Francisco, CA, USA, Mar. 2017, pp. 1-6.

Y. Yu, H. Chen, Y. Li, Z. Ding, and L. Zhuo, “Antenna selection in MIMO cognitive radio-inspired NOMA systems,'' IEEE Commun. Lett., Vol. 21, No. 12, pp. 2658-2661, Dec. 2017.

X. Liu, Y. Wang, S. Liu, and J. Meng, “Spectrum resource optimization for NOMA-based cognitive radio in 5G communications,'' IEEE Access, Vol. 6, No. 10, pp. 24904-24911, 2018.

K. He, Y. Li, C. Yin, and Y. Zhang, “A novel compressed sensing based non-orthogonal multiple access scheme for massive MTC in 5G systems,'' EURASIP J. Wireless Commun. Netw., Vol. 43, No. 1, pp. 81-92, Dec. 2018.

I. Budhiraja, S. Tyagi, S. Tanwar, N.Kumar, and N. Guizani, “Subchannel assignment for SWIPT-NOMA based HetNet with imperfect channel state information,'' in Proc. 15th Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), Tangier, Morocco, pp. 842847, Jun. 2019.

I. Budhiraja, N. Kumar, S. Tyagi, S. Tanwar, and M. Guizani, “An energy efficient resource allocation scheme for SWIPT-NOMA based femtocells users with imperfect CSI,'' IEEE Trans. Veh. Technol., Vol. 69, No. 7, pp. 7790-7805, Jul. 2020.

Z. Ding and H. V. Poor, “On the application of BAC-NOMA to 6G umMTC,'' Feb. 2021, arXiv:2102.06584. [Online]. Available: http://arxiv.org/abs/2102.06584

W. Chen, H. Ding, S. Wang, D. B. da Costa, F. Gong, and P. H. J. Nardelli, “Backscatter cooperation in NOMA communications systems,'' IEEE Trans. Wireless Commun., early access, Jan. 18, 2021, doi: 10.1109/TWC.2021.3050600.

G. Yang, X. Xu, and Y.-C. Liang, “Resource allocation in NOMA enhanced backscatter communication networks for wireless powered IoT,'' IEEE Wireless Commun. Lett., Vol. 9, No. 1, pp. 117-120, Jan. 2020.

Y. Xu, Z. Qin, G. Gui, H. Gacanin, H. Sari, and F. Adachi, “Energy efficiency maximization in NOMA enabled backscatter communications with QoS guarantee,'' IEEE Wireless Commun. Lett., Vol. 10, No. 2, pp. 353-357, Feb. 2021.

J. Wang, H.-T. Ye, X. Kang, S. Sun, and Y.-C. Liang, “Cognitive backscatter NOMA networks with multi-slot energy causality,'' IEEE Commun. Lett., Vol. 24, No. 12, pp. 2854-2858, Dec. 2020.

S. Zeb, Q. Abbas, S. A. Hassan, A. Mahmood, R. Mumtaz, S. M. H. Zaidi, S. A. R. Zaidi, and M. Gidlund, “NOMA enhanced backscatter communication for green IoT networks,'' in Proc. 16th Int. Symp. Wireless Commun. Syst. (ISWCS), Oulu, Finland, pp. 640-644, Aug. 2019.

Z. Chen, Z. Ding, X. Dai, and G. K. Karagiannidis, “On the application of quasi-degradation to MISO-NOMA downlink,'' IEEE Trans. Signal Process., Vol. 64, No. 23, pp. 6174-6189, Dec. 2016.

C. Xu, Y. Hu, C. Liang, J. Ma, and L. Ping, “Massive MIMO, non-orthogonal multiple access and interleave division multiple access,'' IEEE Access, Vol. 5, No. 7, pp. 14728-14748, Jul. 2017.

H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta,``Cell-free massive MIMO versus small cells,'' IEEE Trans. Wireless Commun., Vol. 16, No. 3, pp. 1834-1850, Mar. 2017.

W. Chu, J. Dang, Z. Zhang, and L. Wu, “Effect of clipping on the achievable rate of non-orthogonal multiple access with DCO-OFDM,' in Proc. IEEE 9th Int. Conf. Wireless Commun. Signal Process. (WCSP), Nanjing, China, Oct. 2017, pp. 1-6.

S. A. A. Shah, E. Ahmed, M. Imran, and S. Zeadally, “5G for vehicular communications,'' IEEE Commun. Mag., Vol. 56, No. 1, pp. 111-117, Jan. 2018.