Hybridized Darts Game with Beluga Whale Optimization Strategy for Efficient Task Scheduling with Optimal Load Balancing in Cloud Computing
Main Article Content
Abstract
A cloud computing technology permits clients to use hardware and software technology virtually on a subscription basis. The task scheduling process is planned to effectively minimize implementation time and cost while simultaneously increasing resource utilization, and it is one of the most common problems in cloud computing systems. The Nondeterministic Polynomial (NP)-hard optimization problem occurs due to limitations like an insufficient make-span, excessive resource utilization, low implementation costs, and immediate response for scheduling. The task allocation is NP-hard because of the increase in the amount of combinations and computing resources. In this work, a hybrid heuristic optimization technique with load balancing is implemented for optimal task scheduling to increase the performance of service providers in the cloud infrastructure. Thus, the issues that occur in the scheduling process is greatly reduced. The load balancing problem is effectively solved with the help of the proposed task scheduling scheme. The allocation of tasks to the machines based on the workload is done with the help of the proposed Hybridized Darts Game-Based Beluga Whale Optimization Algorithm (HDG-BWOA). The objective functions like higher Cloud Data Center (CDC) resource consumption, increased task assurance ratio, minimized mean reaction time, and reduced energy utilization are considered while allocating the tasks to the virtual machines. This task scheduling approach ensures flexibility among virtual machines, preventing them from overloading or underloading. Also, using this technique, more tasks is efficiently completed within the deadline. The efficacy of the offered arrangement is ensured with the conventional heuristic-based task scheduling approaches in accordance with various evaluation measures.