Advanced Soil Moisture Predictive Methodology in the Maize Cultivation Region using Hybrid Machine Learning Algorithms

Main Article Content

S. Vimalkumar, R. Latha

Abstract

The moisture level in the soil in which maize is grown is crucial to the plant's health and production. And over 60% of India's maize cultivation comes from the states of South India. Therefore, forecasting the soil moisture of maize will emerge as a crucial factor for regulating the cultivation of maize crops with optimal irrigation. In light of this, this research provides a unique Improved Hybridized Machine Learning (IHML) model, which combines and optimizes several ML models (base learners-BL). The convergence rate of all the considered BL approaches and the preciseness of the proposed approach significantly enhances the process of determining the appropriate parameters to attain the desirable outcome. Consequently, IHML contributes to an improvement in the accuracy of the overall forecast. This research collects data from districts in South India that are primarily committed to maize agriculture to develop a model. The correlation evaluations served as the basis for the model's framework and the parameter selection. This research compares the outcomes of BL models to the IHML model in depth to ensure the model's accuracy. Results reveal that the IHML performs exceptionally well in forecasting soil moisture, comprising Correlation Coefficient (R2) of 0.9762, Root Mean Square Error (RMSE) of 0.293, and Mean Absolute Error (MAE) of 0.731 at a depth of 10 cm. Conceptual IHML models could be used to make smart farming and precise irrigation much better.

Article Details

How to Cite
S. Vimalkumar, et al. (2023). Advanced Soil Moisture Predictive Methodology in the Maize Cultivation Region using Hybrid Machine Learning Algorithms. International Journal on Recent and Innovation Trends in Computing and Communication, 11(10), 185–198. https://doi.org/10.17762/ijritcc.v11i10.8480
Section
Articles
Author Biography

S. Vimalkumar, R. Latha

1,*S. Vimalkumar, 2R. Latha

1Research Scholar, Dept., of Computer Science,

St. Peter's Institute of Higher Education and Research, Chennai.

E-Mail: vimalcheyyar@gmail.com

2Professor and Head, Dept., of Computer Science,

St. Peter's Institute of Higher Education and Research, Chennai.

E-Mail: latharamavel@gmail.com

References

Aboitiz, M., Labadie, J. W., & Heermann, D. F. (1986). Stochastic Soil Moisture Estimation and Forecasting for Irrigated Fields. Water Resources Research, 22(2), 180–190. Portico. https://doi.org/10.1029/wr022i002p00180

Acharya, U., Daigh, A. L. M., & Oduor, P. G. (2021). Machine Learning for Predicting Field Soil Moisture Using Soil, Crop, and Nearby Weather Station Data in the Red River Valley of the North. Soil Systems, 5(4), 57. https://doi.org/10.3390/soilsystems5040057

Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M., & Notarnicola, C. (2015). Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote Sensing, 7(12), 16398–16421. https://doi.org/10.3390/rs71215841

Alun, L., Weizhong, Y., & Juan, L. (2012). Spatial analysis methods and application of regional soil moisture. Chin. Agric. Sci. Bull., 2012(21), 60.

Cafarelli, B., Castrignanò, A., De Benedetto, D., Palumbo, A. D., & Buttafuoco, G. (2014). A linear mixed effect (LME) model for soil water content estimation based on geophysical sensing: a comparison of an LME model and kriging with external drift. Environmental Earth Sciences, 73(5), 1951–1960. https://doi.org/10.1007/s12665-014-3543-8

Chen, C., Tan, J., Yin, J., Zhang, F., & Yao, J. (2010). Prediction model for soil moisture in tobacco fields based on PCA and RBF neural network. Transactions of the Chinese Society of Agricultural Engineering, 26(8), 85-90.

Chen, M., Willgoose, G. R., & Saco, P. M. (2012). Spatial prediction of temporal soil moisture dynamics using HYDRUS-1D. Hydrological Processes, 28(2), 171–185. https://doi.org/10.1002/hyp.9518

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/bf00994018

Daryanto, S., Wang, L., & Jacinthe, P.-A. (2016). Global Synthesis of Drought Effects on Maize and Wheat Production. PLOS ONE, 11(5), e0156362. https://doi.org/10.1371/journal.pone.0156362

Deng, Y., Jia, H., Li, P., Tong, X., Qiu, X., & Li, F. (2019). A Deep Learning Methodology Based on Bidirectional Gated Recurrent Unit for Wind Power Prediction. 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA). https://doi.org/10.1109/iciea.2019.8834205

Directorate of Economics and Statistics, Ministry of Agriculture, Government of India. (2019). Dacnet.nic.in. https://eands.dacnet.nic.in/

District Diagnostic Report. (2020a, July). https://tnrtp.org. https://tnrtp.org/wp-content/uploads/2020/07/SALEM-FINAL.pdf

District Diagnostic Report. (2020b, July). https://tnrtp.org/wp-content/uploads/2020/07/DINDIGUL-FINAL.pdf

District Diagnostic Report. (2020c, July). https://tnrtp.org/wp-content/uploads/2020/07/NAMAKKAL-FINAL.pdf

Drucker, H., Donghui Wu, & Vapnik, V. N. (1999). Support vector machines for spam categorization. IEEE Transactions on Neural Networks, 10(5), 1048–1054. https://doi.org/10.1109/72.788645

Elmaloglou, St., & Malamos, N. (2000). Simulation of soil moisture content of a prairie field with SWAP93. Agricultural Water Management, 43(2), 139–149. https://doi.org/10.1016/s0378-3774(99)00054-2

Elshorbagy, A., & Parasuraman, K. (2008). On the relevance of using artificial neural networks for estimating soil moisture content. Journal of Hydrology, 362(1-2), 1–18. https://doi.org/10.1016/j.jhydrol.2008.08.012

Engman, E. T. (1997). Potential for remotely sensed soil moisture data in hydrologic modeling. Earth Surface Remote Sensing. https://doi.org/10.1117/12.298142

Fang, K., & Shen, C. (2020). Near-Real-Time Forecast of Satellite-Based Soil Moisture Using Long Short-Term Memory with an Adaptive Data Integration Kernel. Journal of Hydrometeorology, 21(3), 399–413. https://doi.org/10.1175/jhm-d-19-0169.1

FAOSTAT. (2020). www.fao.org. https://www.fao.org/faostat/en/#data/QCL/visualize

Farmer, J. A., Baricuatro, J. H., & Campbell, C. T. (2013). Correction to “Ag Adsorption on Reduced CeO2(111) Thin Films.” The Journal of Physical Chemistry C, 117(51), 27167–27167. https://doi.org/10.1021/jp411745x

Fearn, T. (2004). Support Vector Machines I: The Support Vector Classifier. NIR News, 15(5), 14–15. https://doi.org/10.1255/nirn.788

Feki, M., Ravazzani, G., Ceppi, A., Milleo, G., & Mancini, M. (2018). Impact of Infiltration Process Modeling on Soil Water Content Simulations for Irrigation Management. Water, 10(7), 850. https://doi.org/10.3390/w10070850

Gill, M. K., Asefa, T., Kemblowski, M. W., & McKee, M. (2006). Soil Moisture Prediction Using Support Vector Machines. Journal of the American Water Resources Association, 42(4), 1033–1046. https://doi.org/10.1111/j.1752-1688.2006.tb04512.x

Gorthi, S., & Dou, H. (2011). Prediction Models for the Estimation of Soil Moisture Content. Volume 3: 2011 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, Parts A and B. https://doi.org/10.1115/detc2011-48259

Hashemy Shahdany, S. M., Firoozfar, A., Maestre, J. M., Mallakpour, I., Taghvaeian, S., & Karimi, P. (2018). Operational performance improvements in irrigation canals to overcome groundwater overexploitation. Agricultural Water Management, 204, 234–246. https://doi.org/10.1016/j.agwat.2018.04.014

Holland, J. E., & Biswas, A. (2015). Predicting the mobile water content of vineyard soils in New South Wales, Australia. Agricultural Water Management, 148, 34–42. https://doi.org/10.1016/j.agwat.2014.09.018

Hui, D., Yue, Z., Jun, Z., (2016). Application of support vector regression machines in soil moisture prediction based on bacteria foraging optimization algorithm. Bull. Soil Water Conserv. 36(6), 131–135.

Humphrey, V., Zscheischler, J., Ciais, P., Gudmundsson, L., Sitch, S., & Seneviratne, S. I. (2018). Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature, 560(7720), 628–631. https://doi.org/10.1038/s41586-018-0424-4

India Dataset | SWAT | Soil & Water Assessment Tool. (n.d.). Swat.tamu.edu. Retrieved November 23, 2022, from https://swat.tamu.edu/data/india-dataset/

Jensen, M. E., and Allen, R. G., eds. (2016). Evaporation, evapotranspiration, and irrigation water requirements. ASCE manual of practice #70, 2nd Ed., ASCE, Reston, VA.https://doi.org/10.1061/9780784414057

Ji, R., Li, X., & Zhang, S. (2016). Short-term prediction of soil moisture in field based on GM (1, 1) model group. Transactions of The Chinese Society of Agricultural Machinery, 401-407.

Ji, R., Zhang, S., Zheng, L., & Liu, Q. (2017). Prediction of soil moisture based on multilayer neural network with multi-valued neurons. Transactions of the Chinese Society of Agricultural Engineering, 33(1), 126-131.

Jiang, H., & Cotton, W. R. (2004). Soil moisture estimation using an artificial neural network: a feasibility study. Canadian Journal of Remote Sensing, 30(5), 827–839. https://doi.org/10.5589/m04-041

Jin, L., Luo, Y., Miu, Q., (1998). Study of artificial neural network prediction model of soil moisture in farmland. Acta Pedol. Sin. 35(1), 25–32.

K. M., K. R., & G. R., A. R. (2020). Neuro-Fuzzy-Based Smart Irrigation System and Multimodal Image Analysis in Static-Clustered Wireless Sensor Network for Marigold Crops. Deep Neural Networks for Multimodal Imaging and Biomedical Applications, 237–255. https://doi.org/10.4018/978-1-7998-3591-2.ch015

Li, X., Huo, Z., & Xu, B. (2017). Optimal Allocation Method of Irrigation Water from River and Lake by Considering the Field Water Cycle Process. Water, 9(12), 911. https://doi.org/10.3390/w9120911

Liao, R., Yang, P., Wang, Z., Wu, W., & Ren, S. (2018). Development of a Soil Water Movement Model for the Superabsorbent Polymer Application. Soil Science Society of America Journal, 82(2), 436–446. Portico. https://doi.org/10.2136/sssaj2017.05.0164

Liu, H. B., Wu, W., & Wei, C. F. (2003). Study of soil water forecast with neural network. Journal of Soil and Water Conservation, 5, 59-62.

Machado, S., Bynum, E. D., Archer, T. L., Lascano, R. J., Wilson, L. T., Bordovsky, J., ... & Xu, W. (2000). Spatial and temporal variability of corn grain yield: Site-specific relationships of biotic and abiotic factors. Precision agriculture, 2(4), 359-376. https://doi.org/10.1023/a:1012352032031

Martin, E. (n.d.). Methods of Determining When to Irrigate Cooperative Extension Extension Irrigation Specialist. Retrieved November 22, 2022, from https://cals.arizona.edu/extension/ornamentalhort/waterquality/irrigation_when.pdf

Moraru, P. I., & Rusu, T. (2012). Effect of tillage systems on soil moisture, soil temperature, soil respiration and production of wheat, maize and soybean crops. Journal of Food, Agriculture & Environment, 10(2 Part 1), 445-448.

Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology, 133(1-4), 69–88. https://doi.org/10.1016/j.agrformet.2005.07.012

Notarnicola, C., Angiulli, M., & Posa, F. (2008). Soil moisture retrieval from remotely sensed data: Neural network approach versus Bayesian method. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 547–557. https://doi.org/10.1109/tgrs.2007.909951

Pandey, A., Jha, S. K., Srivastava, J. K., & Prasad, R. (2010). Artificial neural network for the estimation of soil moisture and surface roughness. Russian Agricultural Sciences, 36(6), 428–432. https://doi.org/10.3103/s106836741006011x

Pandey, S., Bhandari, H., Ding, S., Prapertchob, P., Sharan, R., Naik, D., Taunk, S. K., & Sastri, A. (2007). Coping with drought in rice farming in Asia: insights from a cross-country comparative study. Agricultural Economics, 37, 213–224. https://doi.org/10.1111/j.1574-0862.2007.00246.x

Pandiyan, S., M., A., R., M., K.M., K. R., & G.R., A. R. (2020). Heterogeneous Internet of things organization Predictive Analysis Platform for Apple Leaf Diseases Recognition. Computer Communications, 154, 99–110. https://doi.org/10.1016/j.comcom.2020.02.054

Sabzevari, M., Martínez-Muñoz, G., & Suárez, A. (2021). Building heterogeneous ensembles by pooling homogeneous ensembles. International Journal of Machine Learning and Cybernetics, 13(2), 551–558. https://doi.org/10.1007/s13042-021-01442-1

Scott, C. A., Bastiaanssen, W. G. M., & Ahmad, M.-D. (2003). Mapping Root Zone Soil Moisture Using Remotely Sensed Optical Imagery. Journal of Irrigation and Drainage Engineering, 129(5), 326–335. https://doi.org/10.1061/(asce)0733-9437(2003)129:5(326)

Shoaib, M., Shamseldin, A. Y., Melville, B. W., & Khan, M. M. (2016). A comparison between wavelet based static and dynamic neural network approaches for runoff prediction. Journal of Hydrology, 535, 211–225. https://doi.org/10.1016/j.jhydrol.2016.01.076

Sulebak, J. R., Tallaksen, L. M., & Erichsen, B. (2000). Estimation of areal soil moisture by use of terrain data. Geografiska Annaler: Series A, Physical Geography, 82(1), 89–105. https://doi.org/10.1111/j.0435-3676.2000.00009.x

Sun, Z., Zhang, Y., Zhang, Z., Gao, Y., Yang, Y., Han, M., & Wang, Z. (2019). Significance of disposable presowing irrigation in wheat in increasing water use efficiency and maintaining high yield under winter wheat-summer maize rotation in the North China Plain. Agricultural Water Management, 225, 105766. https://doi.org/10.1016/j.agwat.2019.105766

Then, Y. L., You, K. Y., Dimon, M. N., & Lee, C. Y. (2016). A modified microstrip ring resonator sensor with lumped element modeling for soil moisture and dielectric predictions measurement. Measurement, 94, 119–125. https://doi.org/10.1016/j.measurement.2016.07.046

Wang, S., Fu, Z., Chen, H., Nie, Y., & Wang, K. (2015). Using Gene-Expression Programming method and geographical location information to simulate evapotranspiration in Hunan and Hubei Provinces. Zhongguo Shengtai Nongye Xuebao/Chinese Journal of Eco-Agriculture, 23(4), 490-496.

Weimann, A., Von Schonermark, M., Schumann, A., Jorn, P., & Gunther, R. (1998). Soil moisture estimation with ERS-1 SAR data in the East-German loess soil area. International Journal of Remote Sensing, 19(2), 237–243. https://doi.org/10.1080/014311698216224

Wu, J. (2014). Study Applicable for Multi-Linear Regression Analysis and Logistic Regression Analysis. The Open Electrical & Electronic Engineering Journal, 8(1), 782–786. https://doi.org/10.2174/1874129001408010782

Xiong, C., Merity, S., & Socher, R. (2016, June). Dynamic memory networks for visual and textual question answering. In International conference on machine learning (pp. 2397-2406). PMLR.

Xu Qiao, Feng Yang, & Xianlei Xu. (2014). The prediction method of soil moisture content based on multiple regression and RBF neural network. Proceedings of the 15th International Conference on Ground Penetrating Radar. https://doi.org/10.1109/icgpr.2014.6970402

Yamaguchi, Y., & Shinoda, M. (2002). Soil Moisture Modeling Based on Multiyear Observations in the Sahel. Journal of Applied Meteorology, 41(11), 1140–1146. https://doi.org/2.0.co;2">10.1175/1520-0450(2002)041<1140:smmbom>2.0.co;2

Yang, S., Wang, Y., Guo, Z., (2006). Study of ARIMA model on soil moisture content prediction. Agric. Res. Arid Areas 24(2), 114–118.

Zhang, X., Li, R., Jiao, M., (2016) Research and development of soil moisture monitoring and forecasting system in farmland. Trans. Chin. Soc. Agric. Eng. 32(18), 140–146.

Zhu, Q., Luo, Y., Xu, Y.-P., Tian, Y., & Yang, T. (2019). Satellite Soil Moisture for Agricultural Drought Monitoring: Assessment of SMAP-Derived Soil Water Deficit Index in Xiang River Basin, China. Remote Sensing, 11(3), 362. https://doi.org/10.3390/rs11030362