Improving Kidney Tumor Detection Accuracy Using Hybrid U-Net Segmentation

Main Article Content

Anupkumar B Jayswal, Mahesh B Dembrani, Tushar H Jaware

Abstract

Kidney cancer stands as a significant factor in cancer-related mortality, highlighting the critical importance of early and precise tumor detection This study introduces a computer-aided approach using the KiTS19 dataset and a hybrid U-Net architecture. Manual tumor segmentation is resource-intensive and prone to errors. Leveraging the hybrid U-Net, known for its proficiency in medical image analysis, we achieve precise tumor identification. Our method involves initial kidney and tumor segmentation in high-resolution CT images, followed by region of interest (ROI) generation and benign/malignant tumor classification. The assessment conducted on the KiTS19 dataset demonstrates encouraging outcomes, with Dice coefficients of 0.974 for kidney segmentation and 0.818 for tumor segmentation, accompanied by a tumor classification accuracy rate of 94.3%.The hybrid U-Net’s advanced feature extraction and spatial context awareness contribute to these outcomes. By streamlining diagnosis, our approach has the potential to significantly improve patient outcomes. The use of the KiTS19 dataset ensures robustness across various clinical cases and imaging modalities. This method represents a valuable advancement in computer-aided kidney tumor detection, promising to enhance patient care.

Article Details

How to Cite
Anupkumar B Jayswal, et al. (2023). Improving Kidney Tumor Detection Accuracy Using Hybrid U-Net Segmentation. International Journal on Recent and Innovation Trends in Computing and Communication, 11(10), 77–82. https://doi.org/10.17762/ijritcc.v11i10.8467
Section
Articles
Author Biography

Anupkumar B Jayswal, Mahesh B Dembrani, Tushar H Jaware

Anupkumar B Jayswal1, Dr. Mahesh B Dembrani2, Dr. Tushar H Jaware3

1Department E&TC Engineering

R C Patel Institute of Technology

Shirpur, India

jay.anupkumar@gmail.com

2Department E&TC Engineering

R C Patel Institute of Technology

Shirpur, India

mahesh.dembrani@gmail.com

3Department E&TC Engineering

R C Patel Institute of Technology

Shirpur, India

tusharjaware@gmail.com

References

G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of Lipschitz-Hankel type involving products of Bessel functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.

Pandey, M., & Gupta, A. (2021). A systematic review of the automatic kidney segmentation methods in abdominal images. Biocybernetics and Biomedical Engineering, 41(4), 1601-1628.

Nosratabadi, S., Mosavi, A., Duan, P., Ghamisi, P., Filip, F., Band, S. S., & Gandomi, A. H. (2020). Data science in economics: comprehensive review of advanced machine learning and deep learning methods. Mathematics, 8(10), 1799.K. Elissa,

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 (pp. 234-241). Springer International Publishing.

Isensee, F., Petersen, J., Klein, A., Zimmerer, D., Jaeger, P. F., Kohl, S., ... & Maier-Hein, K. H. (2018). nnu-net: Self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486.

Salehi, S. S. M., Erdogmus, D., & Gholipour, A. (2017, September). Tversky loss function for image segmentation using 3D fully convolutional deep networks. In International workshop on machine learning in medical imaging (pp. 379-387). Cham: Springer International Publishing.

Roth, H. R., Farag, A., Lu, L., Turkbey, E. B., & Summers, R. M. (2015, March). Deep convolutional networks for pancreas segmentation in CT imaging. In Medical Imaging 2015: Image Processing (Vol. 9413, pp. 378-385). SPIE.

Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., ... & Rueckert, D. (2018). Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999.

Zhang, D., Zhang, J., Zhang, Q., Han, J., Zhang, S., & Han, J. (2021). Automatic pancreas segmentation based on lightweight DCNN modules and spatial prior propagation. Pattern Recognition, 114, 107762.

Heller, N., Sathianathen, N., Kalapara, A., Walczak, E., Moore, K., Kaluzniak, H., ... & Weight, C. (2019). The kits19 challenge data: 300 kidney tumor cases with clinical context, ct semantic segmentations, and surgical outcomes. arXiv preprint arXiv:1904.00445.

Abdelrahman, A., & Viriri, S. (2022). Kidney tumor semantic segmentation using deep learning: A survey of state-of-the-art. Journal of Imaging, 8(3), 55.

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60-88.

Dembrani, M. B., Khanchandani, K. B., & Zurani, A. (2020). Accurate detection of ECG signals in ECG monitoring systems by eliminating the motion artifacts and improving the signal quality using SSG filter with DBE. Journal of Circuits, Systems and Computers, 29(02), 2050024.

Dembrani, M. B., Khanchandani, K. B., & Zurani, A. (2017, February). FPGA implementation of low power & high speed accurate ECG signal detection using DABLMS algorithm. In Communication and Computing Systems: Proceedings of the International Conference on Communication and Computing Systems (ICCCS 2016), Gurgaon, India, 9-11 September, 2016 (p. 71). CRC Press.

Dembrani, M. B., Khanchandani, K. B., & Zurani, A. (2018). Extraction of FECG signal based on blind source separation using principal component analysis. In Progress in Intelligent Computing Techniques: Theory, Practice, and Applications: Proceedings of ICACNI 2016, Volume 1 (pp. 173-180). Springer Singapore.

Dembrani, M. B., Khanchandani, K. B., & Zurani, A. (2017). Comparative analysis of various adaptive filter structures using Simulink. In Proceeding of International Conference on Intelligent Communication, Control and Devices: ICICCD 2016 (pp. 847-854). Springer Singapore.

Dembrani, M. B., Khanchandani, K. B., & Zurani, A. (2016). Mixed Signal Filter Implementation and Performance Analysis based on Accuracy, Sensitivity and Specificity for Monitoring ECG Signal. Indian Journal of Science and Technology, 9, 44.

Mousavi, S., & Habibi, N. (2022). A Survey on Applications of Machine Learning in Bioinformatics and Neuroscience. Majlesi Journal of Telecommunication Devices, 11(2).

Yin, X. X., Sun, L., Fu, Y., Lu, R., & Zhang, Y. (2022). U-Net-Based medical image segmentation. Journal of Healthcare Engineering, 2022.

Dheyab, M. A., Aziz, A. A., Moradi Khaniabadi, P., Jameel, M. S., Oladzadabbasabadi, N., Mohammed, S. A., ... & Mehrdel, B. (2022). Monodisperse gold nanoparticles: A review on synthesis and their application in modern medicine. International Journal of Molecular Sciences, 23(13), 7400.

Ghosh, P., Shamrat, F. J. M., Shultana, S., Afrin, S., Anjum, A. A., & Khan, A. A. (2020, November). Optimization of prediction method of chronic kidney disease using machine learning algorithm. In 2020 15th international joint symposium on artificial intelligence and natural language processing (iSAI-NLP) (pp. 1-6). IEEE.

Madhuri, G. S., Mahesh, T. R., & Vivek, V. (2022). A Novel Approach for Automatic Brain Tumor Detection Using Machine Learning Algorithms. In Big data management in Sensing (pp. 87-101). River Publishers.

Gharaibeh, M., Alzu’bi, D., Abdullah, M., Hmeidi, I., Al Nasar, M. R., Abualigah, L., & Gandomi, A. H. (2022). Radiology imaging scans for early diagnosis of kidney tumors: a review of data analytics-based machine learning and deep learning approaches. Big Data and Cognitive Computing, 6(1), 29.

Jagga, Z., & Gupta, D. (2014, October). Classification models for clear cell renal carcinoma stage progression, based on tumor RNAseq expression trained supervised machine learning algorithms. In BMC proceedings (Vol. 8, pp. 1-7). BioMed Central.

Muhamed Ali, A., Zhuang, H., Ibrahim, A., Rehman, O., Huang, M., & Wu, A. (2018). A machine learning approach for the classification of kidney cancer subtypes using miRNA genome data. Applied Sciences, 8(12), 2422.

Rasmussen, R., Sanford, T., Parwani, A. V., & Pedrosa, I. (2022). Artificial Intelligence in Kidney Cancer. American Society of Clinical Oncology Educational Book, 42, 300-310.

Qin, T., Wang, Z., He, K., Shi, Y., Gao, Y., & Shen, D. (2020, May). Automatic data augmentation via deep reinforcement learning for effective kidney tumor segmentation. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1419-1423). IEEE.

Gharaibeh, M., Alzu’bi, D., Abdullah, M., Hmeidi, I., Al Nasar, M. R., Abualigah, L., & Gandomi, A. H. (2022). Radiology imaging scans for early diagnosis of kidney tumors: a review of data analytics-based machine learning and deep learning approaches. Big Data and Cognitive Computing, 6(1), 29.

Türk, F., Lüy, M., & Bar??ç?, N. (2020). Kidney and renal tumor segmentation using a hybrid V-Net-Based model. Mathematics, 8(10), 1772.

Ruan, Y., Li, D., Marshall, H., Miao, T., Cossetto, T., Chan, I., ... & Li, S. (2020). MB-FSGAN: Joint segmentation and quantification of kidney tumor on CT by the multi-branch feature sharing generative adversarial network. Medical image analysis, 64, 101721.