Yolov5 AI Deep Learning model driven Nuclear Pleomorphism Grading on Breast Cancer Pathology WSI for Nottingham Cancer Grading AI Driven Nuclear Pleomorphism Grading on Breast Cancer Pathology WSI
Main Article Content
Abstract
Breast cancer is the second largest cancer caused in the world due to the uncontrollable growth in breast cells. Nottingham Grading is the internationally acceptable system to grade breast cancer. Nuclear pleomorphism is one of the breast cancer biomarkers for computing Nottingham grading. Pathologists grade nuclear pleomorphism on breast cancer glass tissue slides using a conventional microscope which is time consuming and has considerable inter-observer variability between pathologists. The paper proposed an Artificial Intelligence (AI) deep learning model to grade grade1, grade2, grade3 nuclear pleomorphism on breast cancer whole slide images (WSI). The proposed Yolov5 model is trained and tested on 1,30,000 WSI tiles having around two lakh annotations. The accuracy of the model is mAP 0.89. The proposed model saves the time and reduces the workload of the pathologist and also helps them to produce accurate results.
Article Details
References
Mehrotra R, Yadav K. Breast cancer in India: Present scenario and the challenges ahead. World J Clin Oncol. 2022 Mar 24;13(3):209-218. doi: 10.5306/wjco.v13.i3.209. PMID: 35433294; PMCID: PMC8966510.
2 Ginter PS, Idress R, D'Alfonso TM, Fineberg S, Jaffer S, Sattar AK, Chagpar A, Wilson P, Harigopal M. Histologic grading of breast carcinoma: a multi-institution study of interobserver variation using virtual microscopy. Mod Pathol. 2021 Apr;34(4):701-709. doi: 10.1038/s41379-020-00698-2. Epub 2020 Oct 19. PMID: 33077923; PMCID: PMC7987728.
Pallua JD, Brunner A, Zelger B, Schirmer M, Haybaeck J. The future of pathology is digital. Pathol Res Pract. 2020 Sep;216(9):153040. doi: 10.1016/j.prp.2020.153040. Epub 2020 Jun 20. PMID: 32825928.
Sui D, Liu W, Chen J, Zhao C, Ma X, Guo M, Tian Z. A Pyramid Architecture-Based Deep Learning Framework for Breast Cancer Detection. Biomed Res Int. 2021 Oct 1;2021:2567202. doi: 10.1155/2021/2567202. PMID: 34631877; PMCID: PMC8500767.
BLOOM HJ, RICHARDSON WW. Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer. 1957 Sep;11(3):359-77. doi: 10.1038/bjc.1957.43. PMID: 13499785; PMCID: PMC2073885.
Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991 Nov;19(5):403-10. doi: 10.1111/j.1365-2559.1991.tb00229.x. PMID: 1757079.
Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao. "Yolov4: Optimal speed and accuracy of object detection." arXiv preprint arXiv:2004.10934 (2020).
Rajasekaran Subramanian, R. Devika Rubi, Rohit Tapadia, Katakam Karthik, Mohammad Faseeh Ahmed and Allam Manudeep, “Web based Mitosis Detection on Breast Cancer Whole Slide Images using Faster R-CNN and YOLOv5” International Journal of Advanced Computer Science and Applications(IJACSA), 13(12), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131268
Rajasekaran Subramanian, R. Devika Rubi, Rohit Tapadia and Rochan Singh, “KMIT-Pathology: Digital Pathology AI Platform for Cancer Biomarkers Identification on Whole Slide Images” International Journal of Advanced Computer Science and Applications(IJACSA), 13(11), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131170
Tekin, E., Yaz?c?, Ç., Kusetogullari, H. et al. Tubule-U-Net: a novel dataset and deep learning-based tubule segmentation framework in whole slide images of breast cancer. Sci Rep 13, 128 (2023). https://doi.org/10.1038/s41598-022-27331-3
Peregrina-Barreto H, Ramirez-Guatemala VY, Lopez-Armas GC, Cruz-Ramos JA. Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer. Sensors (Basel). 2022 Jul 28;22(15):5649. doi: 10.3390/s22155649. PMID: 35957203; PMCID: PMC9371191.
Brázdil T, Gallo M, Nenutil R, Kubanda A, Toufar M, Holub P. Automated annotations of epithelial cells and stroma in hematoxylin-eosin-stained whole-slide images using cytokeratin re-staining. J Pathol Clin Res. 2022 Mar;8(2):129-142. doi: 10.1002/cjp2.249. Epub 2021 Oct 30. PMID: 34716754; PMCID: PMC8822376.
Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. "You only look once: Unified, real-time object detection." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788. 2016.
Mercan, C., Balkenhol, M., Salgado, R. et al. Deep learning for fully-automated nuclear pleomorphism scoring in breast cancer. npj Breast Cancer 8, 120 (2022). https://doi.org/10.1038/s41523-022-00488-w
Wetstein, S.C., de Jong, V.M.T., Stathonikos, N. et al. Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images. Sci Rep 12, 15102 (2022). https://doi.org/10.1038/s41598-022-19112-9
Campanella, G., Hanna, M.G., Geneslaw, L. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med 25, 1301–1309 (2019). https://doi.org/10.1038/s41591-019-0508-1
Lu, Cheng & Romo, David & Wang, Xiangxue & Janowczyk, Andrew & Ganesan, Shridar & Gilmore, Hannah & Rimm, David & Madabhushi, Anant. (2018). Nuclear shape and orientation features from H&E images predict survival in early-stage estrogen receptor-positive breast cancers. Laboratory Investigation. 98. 1. https://doi.org/10.1038/s41374-018-0095-7
Maqlin, P., Thamburaj, R., Mammen, J.J., Manipadam, M.T. (2015). Automated Nuclear Pleomorphism Scoring in Breast Cancer Histopathology Images Using Deep Neural Networks. In: Prasath, R., Vuppala, A., Kathirvalavakumar, T. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2015. Lecture Notes in Computer Science(), vol 9468. Springer, Cham. https://doi.org/10.1007/978-3-319-26832-3_26
Y. Wang, B. Acs, S. Robertson, B. Liu, L. Solorzano, C. Wählby, J. Hartman, M. Rantalainen, Improved breast cancer histological grading using deep learning, Annals of Oncology,Volume 33, Issue 1,2022,Pages 89-98,ISSN 0923-7534,https://doi.org/10.1016/j.annonc.2021.09.007.(https://www.sciencedirect.com/science/article/pii/S0923753421044860)
Jaroensri, R., Wulczyn, E., Hegde, N. et al. Deep learning models for histologic grading of breast cancer and association with disease prognosis. npj Breast Cancer 8, 113 (2022). https://doi.org/10.1038/s41523-022-00478-y