A Review on Tomato Leaf Disease Detection using Deep Learning Approaches

Main Article Content

Cheemaladinne Vengaiah
Srinivasa Reddy Konda

Abstract

Agriculture is one of the major sectors that influence the India economy due to the huge population and ever-growing food demand. Identification of diseases that affect the low yield in food crops plays a major role to improve the yield of a crop. India holds the world's second-largest share of tomato production. Unfortunately, tomato plants are vulnerable to various diseases due to factors such as climate change, heavy rainfall, soil conditions, pesticides, and animals. A significant number of studies have examined the potential of deep learning techniques to combat the leaf disease in tomatoes in the last decade. However, despite the range of applications, several gaps within tomato leaf disease detection are yet to be addressed to support the tomato leaf disease diagnosis. Thus, there is a need to create an information base of existing approaches and identify the challenges and opportunities to help advance the development of tools that address the needs of tomato farmers. The review is focussed on providing a detailed assessment and considerations for developing deep learning-based Convolutional Neural Networks (CNNs) architectures like Dense Net, ResNet, VGG Net, Google Net, Alex Net, and LeNet that are applied to detect the disease in tomato leaves to identify 10 classes of diseases affecting tomato plant leaves, with distinct trained disease datasets. The performance of architecture studies using the data from plantvillage dataset, which includes healthy and diseased classes, with the assistance of several different architectural designs. This paper helps to address the existing research gaps by guiding further development and application of tools to support tomato leaves disease diagnosis and provide disease management support to farmers in improving the crop.

Article Details

How to Cite
Vengaiah, C. ., & Konda, S. R. . (2023). A Review on Tomato Leaf Disease Detection using Deep Learning Approaches . International Journal on Recent and Innovation Trends in Computing and Communication, 11(9s), 647–664. https://doi.org/10.17762/ijritcc.v11i9s.7479
Section
Articles

References

Agarwal, M., Singh, A., Arjaria, S., Sinha, A. and Gupta, S., 2020. ToLeD: Tomato leaf disease detection using convolution neural network. Procedia Computer Science, 167, pp.293-301.DOI: 10.1016/j.procs.2020.03.225

Abbas, A., Jain, S., Gour, M. and Vankudothu, S., 2021. Tomato plant disease detection using transfer learning with C-GAN synthetic images. Computers and Electronics in Agriculture, 187, p.106279. https://doi.org/10.1016/j.compag.2021.106279

Fuentes, A., Yoon, S., Kim, S.C. and Park, D.S., 2017. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors, 17(9), p.2022. doi:10.3390/s17092022

Karthik, R., Hariharan, M., Anand, S., Mathikshara, P., Johnson, A. and Menaka, R., 2020. Attention embedded residual CNN for disease detection in tomato leaves. Applied Soft Computing, 86, p.105933. https://doi.org/10.1016/j.asoc.2019.105933

Hong, H., Lin, J. and Huang, F., 2020, June. Tomato disease detection and classification by deep learning. In 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE) (pp. 25-29). IEEE. DOI 10.1109/ICBAIE49996.2020.00012

Saleem, M.H., Potgieter, J. and Arif, K.M., 2019. Plant disease detection and classification by deep learning. Plants, 8(11), p.468. doi:10.3390/plants8110468

Gibran, M. and Wibowo, A., 2021, November. Convolutional Neural Network Optimization for Disease Classification Tomato Plants Through Leaf Image. In 2021 5th International Conference on Informatics and Computational Sciences (ICICoS) (pp. 116-121). IEEE. DOI: 10.1109/ICICOS53627.2021.9651893

Anwar, M.M., Tasneem, Z. and Masum, M.A., 2021, July. An Approach to Develop a Robotic Arm for Identifying Tomato Leaf Diseases using Convolutional Neural Network. In 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI) (pp. 1-6). IEEE. DOI: 10.1109/ACMI53878.2021.9528267

Hemalatha, A. and Vijayakumar, J., 2021, October. Automatic Tomato Leaf Diseases Classification and Recognition using Transfer Learning Model with Image Processing Techniques. In 2021 Smart Technologies, Communication and Robotics (STCR) (pp. 1-5). IEEE. DOI: 10.1109/STCR51658.2021.958899

Gibran, M. and Wibowo, A., 2021, November. Convolutional Neural Network Optimization for Disease Classification Tomato Plants Through Leaf Image. In 2021 5th International Conference on Informatics and Computational Sciences (ICICoS) (pp. 116-121). IEEE. DOI: 10.1109/ICICOS53627.2021.9651893

Varshney, T., Chug, A. and Singh, A.P., 2021, August. Deep Learning Models for Prediction of Tomato Powdery Mildew Disease. In 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 1036-1041). IEEE. DOI: 10.1109/SPIN52536.2021.9566132

Peyal, H.I., Shahriar, S.M., Sultana, A., Jahan, I. and Mondol, M.H., 2021, July. Detection of tomato leaf diseases using transfer learning architectures: A comparative analysis. In 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI) (pp. 1-6). IEEE. DOI: 10.1109/ACMI53878.2021.9528199

Kaabneh, K. and Tarawneh, H., 2021, December. Dynamic Tomato Leaves Disease Detection using Histogram-based K-means Clustering Algorithm with Back-Propagation Neural Network. In 2021 22nd International Arab Conference on Information Technology (ACIT) (pp. 1-5). IEEE. DOI: 10.1109/ACIT53391.2021.967730

Muchtar, K., Chairuman, C., Fitria, M., Kardawi, M.Y., Febriana, A., Zarima, N. and Lin, C.Y., 2021, October. Embedded-based Tomato Septoria Leaf Detection with Intel Movidius Neural Compute Stick. In 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE) (pp. 907-908). IEEE. DOI: 10.1109/GCCE53005.2021.9621829

Yilma, G., Gedamu, K., Assefa, M., Oluwasanmi, A. and Qin, Z., 2021, July. Generation and Transformation Invariant Learning for Tomato Disease Classification. In 2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML) (pp. 121-128). IEEE. | DOI: 10.1109/PRML52754.2021.9520693

David, H.E., Ramalakshmi, K., Gunasekaran, H. and Venkatesan, R., 2021, March. Literature Review of Disease Detection in Tomato Leaf using Deep Learning Techniques. In 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS) (Vol. 1, pp. 274-278). IEEE. DOI: 10.1109/ICACCS51430.2021.9441714

Cholachgudda, K.E., Biradar, R.C., Akansie, K.Y.O., Lohith, R. and Purushotham, A.A.R., Performance Analysis of Deep Neural Networks for Tomato Leaf Disease Classification with Server-Based Computing. In 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 1-6). IEEE. DOI: 10.1109/R10-HTC53172.2021.9641733

Al-Mashhadani, Z. and Chandrasekaran, B., 2021, October. ROS-based Robotic System for Tomato Disease and Ripeness Classification using Convolutional Neural Networks. In 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON) (pp. 0420-0427). IEEE. DOI: 10.1109/IEMCON53756.2021.962318

Karthik, K., Rajaprakash, S., Ahmed, S.N., Perincheeri, R. and Alexander, C.R., 2021, November. Tomato And Potato Leaf Disease Prediction With Health Benefits Using Deep Learning Techniques. In 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 1-3). IEEE. DOI: 10.1109/I-SMAC52330.2021.9640765

Paymode, A.S., Magar, S.P. and Malode, V.B., 2021, March. Tomato Leaf Disease Detection and Classification using Convolution Neural Network. In 2021 International Conference on Emerging Smart Computing and Informatics (ESCI) (pp. 564-570). IEEE. | DOI: 10.1109/ESCI50559.2021.939700

Kibriya, H., Rafique, R., Ahmad, W. and Adnan, S.M., 2021, January. Tomato Leaf Disease Detection Using Convolution Neural Network. In 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST) (pp. 346-351). IEEE. DOI: 10.1109/IBCAST51254.2021.9393311

Yoren, A.I. and Suyanto, S., 2021, August. Tomato Plant Disease Identification through Leaf Image using Convolutional Neural Network. In 2021 9th International Conference on Information and Communication Technology (ICoICT) (pp. 320-325). IEEE. DOI: 10.1109/ICoICT52021.2021.952742

Habiba, S.U. and Islam, M.K., 2021, February. Tomato Plant Diseases Classification Using Deep Learning Based Classifier From Leaves Images. In 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD) (pp. 82-86). IEEE. DOI: 10.1109/ICICT4SD50815.2021.9396883

Kodali, R.K. and Gudala, P., Tomato Plant Leaf Disease Detection using CNN. In 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 1-5). IEEE. DOI: 10.1109/R10-HTC53172.2021.964165

Salonki, V., Baliyan, A., Kukreja, V. and Siddiqui, K.M., 2021, August. Tomato Spotted Wilt Disease Severity Levels Detection: A Deep Learning Methodology. In 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 361-366). IEEE. DOI: 10.1109/SPIN52536.2021.9566053

Deshan, L.C., Thisanke, M.H. and Herath, D., Transfer Learning for Accurate and Efficient Tomato Plant Disease Classification Using Leaf Images. In 2021 IEEE 16th International Conference on Industrial and Information Systems (ICIIS) (pp. 168-173). IEEE. DOI: 10.1109/ICIIS53135.2021.9660681

Zhou, C., Zhou, S., Xing, J. and Song, J., 2021. Tomato leaf disease identification by restructured deep residual dense network. IEEE Access, 9, pp.28822-28831. Digital Object Identifier 10.1109/ACCESS.2021.3058947

Jiang, D., Li, F., Yang, Y. and Yu, S., 2020, August. A tomato leaf diseases classification method based on deep learning. In 2020 chinese control and decision conference (CCDC) (pp. 1446-1450). IEEE. DOI: 10.1109/CCDC49329.2020.9164457

Gehlot, M. and Saini, M.L., 2020, December. Analysis of Different CNN Architectures for Tomato Leaf Disease Classification. In 2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE) (pp. 1-6). IEEE. DOI: 10.1109/ICRAIE51050.2020.9358279

Batool, A., Hyder, S.B., Rahim, A., Waheed, N. and Asghar, M.A., 2020, February. Classification and identification of tomato leaf disease using deep neural network. In 2020 International Conference on Engineering and Emerging Technologies (ICEET) (pp. 1-6). IEEE.DOI: 10.1109/ICEET48479.2020.9048207

Juyal, P. and Sharma, S., 2020, December. Detecting the infectious area along with disease using deep learning in tomato plant leaves. In 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS) (pp. 328-332). IEEE. DOI: 10.1109/ICISS49785.2020.9316108

Chakravarthy, A.S. and Raman, S., 2020, February. Early blight identification in tomato leaves using deep learning. In 2020 International Conference on Contemporary Computing and Applications (IC3A) (pp. 154-158). IEEE.DOI: 10.1109/IC3A48958.2020.233288

Gunarathna, M.M. and Rathnayaka, R.M.K.T., 2020, December. Experimental Determination of CNN Hyper-Parameters for Tomato Disease Detection using Leaf Images. In 2020 2nd International Conference on Advancements in Computing (ICAC) (Vol. 1, pp. 464-469). IEEE. DOI: 10.1109/ICAC51239.2020.9357284

Darmawan, R.R., Rozin, F., Evani, C., Idris, I. and Sumardi, D., 2021, October. IoT and Machine Learning System for Early/Late Blight Disease Severity Level Identification on Tomato Plants. In 2021 13th International Conference on Information & Communication Technology and System (ICTS) (pp. 288-293). IEEE. DOI: 10.1109/ICTS52701.2021.9608788

Ashok, S., Kishore, G., Rajesh, V., Suchitra, S., Sophia, S.G. and Pavithra, B., 2020, June. Tomato leaf disease detection using deep learning techniques. In 2020 5th International Conference on Communication and Electronics Systems (ICCES) (pp. 979-983). IEEE.DOI: 10.1109/ICACCS51430.2021.944171

Bhatia, A., Chug, A. and Singh, A.P., 2020, February. Hybrid SVM-LR classifier for powdery mildew disease prediction in tomato plant. In 2020 7th International conference on signal processing and integrated networks (SPIN) (pp. 218-223). IEEE. DOI: 10.1109/SPIN48934.2020.9071202

Al Mamun, M.A., Karim, D.Z., Pinku, S.N. and Bushra, T.A., 2020, December. TLNet: A Deep CNN model for Prediction of tomato Leaf Diseases. In 2020 23rd International Conference on Computer and Information Technology (ICCIT) (pp. 1-6). IEEE. DOI: 10.1109/ICCIT51783.2020.9392664

Aversano, L., Bernardi, M.L., Cimitile, M., Iammarino, M. and Rondinella, S., 2020, November. Tomato diseases Classification Based on VGG and Transfer Learning. In 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor) (pp.129-133).IEEE.DOI: 10.1109/MetroAgriFor50201.2020.9277626

Wu, Q., Chen, Y. and Meng, J., 2020. DCGAN-based data augmentation for tomato leaf disease identification. IEEE Access, 8, pp.98716-98728. Digital Object Identifier 10.1109/ACCESS.2020.2997001

Yang, G., Chen, G., He, Y., Yan, Z., Guo, Y. and Ding, J., 2020. Self-supervised collaborative multi-network for fine-grained visual categorization of tomato diseases. IEEE Access, 8, pp.211912-211923. Digital Object Identifier 10.1109/ACCESS.2020.3039345

Bir, P., Kumar, R. and Singh, G., 2020, October. Transfer learning based tomato leaf disease detection for mobile applications. In 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON) (pp. 34-39). IEEE. DOI: 10.1109/GUCON48875.2020.9231174

Concepcion, R., Lauguico, S., Dadios, E., Bandala, A., Sybingco, E. and Alejandrino, J., 2020, November. Tomato Septoria Leaf Spot Necrotic and Chlorotic Regions Computational Assessment Using Artificial Bee Colony-Optimized Leaf Disease Index. In 2020 IEEE REGION 10 CONFERENCE (TENCON) (pp. 1243-1248). IEEE. DOI: 10.1109/TENCON50793.2020.9293743

Qasrawi, R., Amro, M., Zaghal, R., Sawafteh, M. and Polo, S.V., 2021, November. Machine learning techniques for tomato plant diseases clustering, prediction and classification. In 2021 International Conference on Promising Electronic Technologies (ICPET) (pp. 40-45). IEEE. DOI: 10.1109/ICPET53277.2021.00014

Gadade, H.D. and Kirange, D.K., 2021, April. Machine Learning Based Identification of Tomato Leaf Diseases at Various Stages of Development. In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC) (pp. 814-819). IEEE. DOI: 10.1109/ICCMC51019.2021.9418263

Gadade, H.D. and Kirange, D.K., 2020, July. Tomato Leaf Disease Diagnosis and Severity Measurement. In 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4) (pp. 318-323). IEEE. DOI: 10.1109/WorldS450073.2020.9210294

Kumar, S.A. and Sasikala, S., 2021, October. Disease Detection in Tomato Leaves using Machine Learning and Statistical Feature Fusion. In 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA) (pp. 1-6). IEEE. | DOI: 10.1109/ICAECA52838.2021.9675597

Gadekallu, T.R., Rajput, D.S., Reddy, M., Lakshmanna, K., Bhattacharya, S., Singh, S., Jolfaei, A. and Alazab, M., 2021. A novel PCA–whale optimization-based deep neural network model for classification of tomato plant diseases using GPU. Journal of Real-Time Image Processing, 18(4), pp.1383-1396. 396 https://doi.org/10.1007/s11554-020-00987-

Devi, P.R., 2021, August. Leaf Disease Detection Using Deep Learning. In 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 1797-1804). IEEE. | DOI: 10.1109/ICESC51422.2021.953290

Lakshmanarao, A., Babu, M.R. and Kiran, T.S.R., 2021, September. Plant Disease Prediction and classification using Deep Learning ConvNets. In 2021 International Conference on Artificial Intelligence and Machine Vision (AIMV) (pp. 1-6). IEEE. DOI: 10.1109/AIMV53313.2021.9670918

Al-Tuwaijari, J.M., Jasim, M.A. and Raheem, M.A.B., 2020, August. Deep Learning Techniques Toward Advancement of Plant Leaf Diseases Detection. In 2020 2nd Al-Noor International Conference for Science and Technology (NICST) (pp. 7-12). IEEE. 10.1109/NICST50904.2020.9280320

Loey, M., ElSawy, A. and Afify, M., 2020. Deep learning in plant diseases detection for agricultural crops: a survey. International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), 11(2), pp.41-58.DOI: 10.4018/IJSSMET.2020040103

Fang, Y. and Ramasamy, R.P., 2015. Current and prospective methods for plant disease detection. Biosensors, 5(3), pp.537-561. doi:10.3390/bios5030537

Ouhami, M., Es-Saady, Y., Hajji, M.E., Hafiane, A., Canals, R. and Yassa, M.E., 2020, June. Deep transfer learning models for tomato disease detection. In International Conference on Image and Signal Processing (pp. 65-73). Springer, Cham.DOI: 10.1007/978-3-030-51935-3_7

Shruthi, U., Nagaveni, V. and Raghavendra, B.K., 2019, March. A review on machine learning classification techniques for plant disease detection. In 2019 5th International conference on advanced computing & communication systems (ICACCS) (pp. 281-284). IEEE. doi:10.1109/icaccs.2019.872841

Kartikeyan, P. and Shrivastava, G., 2021. Review on emerging trends in detection of plant diseases using image processing with machine learning. Int. J. Comput. Appl, 174, pp.39-48.DOI: 10.5120/ijca2021920990

Ferentinos, K.P., 2018. Deep learning models for plant disease detection and diagnosis. Computers and electronics in agriculture, 145, pp.311-318. https://doi.org/10.1016/j.compag.2018.01.009

Chen, J., Chen, J., Zhang, D., Sun, Y. and Nanehkaran, Y.A., 2020. Using deep transfer learning for image-based plant disease identification. Computers and Electronics in Agriculture, 173, p.105393. https://doi.org/10.3389/fpls.2016.01419

Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A.A., 2017, February. Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI conference on artificial intelligence.

Too, E.C., Yujian, L., Njuki, S. and Yingchun, L., 2019. A comparative study of fine-tuning deep learning models for plant disease identification. Computers and Electronics in Agriculture, 161, pp.272-279.DOI: 10.1016/j.compag.2018.03.032

Moriones, E. and Navas-Castillo, J., 2000. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus research, 71(1-2), pp.123-134.DOI: 10.1016/S0168-1702(00)00193-3

Al-Qizwini, M., Barjasteh, I., Al-Qassab, H. and Radha, H., 2017, June. Deep learning algorithm for autonomous driving using googlenet. In 2017 IEEE Intelligent Vehicles Symposium (IV) (pp. 89-96). IEEE. DOI: 10.1109/IVS.2017.7995703

Hughes, D. and Salathé, M., 2015. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv:1511.08060.DOI: arXiv:1511.08060

hikari, S., Unit, D., Shrestha, B., & Baiju, B. (2018). Tomato Plant Diseases Detection System. I(September 2018), 81–86. DOI:10.13140/RG.2.2.22135.68009

Kingma, D.P. and Ba, J., 2015. Adam: A Method for Stochastic Optimization. ICLR. 2015. arXiv preprint arXiv:1412.6980, 9.DOI: arXiv:1412.6980

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y. and Berg, A.C., 2016, October. Ssd: Single shot multibox detector. In European conference on computer vision (pp. 21-37). Springer, Cham.IOD: arXiv:1512.02325

Nutter, F.W., Esker, P.D. and Netto, R.A.C., 2006. Disease assessment concepts and the advancements made in improving the accuracy and precision of plant disease data. European Journal of Plant Pathology, 115(1), pp.95-103. DOI 10.1007/s10658-005-1230-z

Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L.R. and Davis, C.E., 2015. Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development, 35(1), pp.1-25. DOI 10.1007/s13593-014-0246-1

Dai, J., Li, Y., He, K. and Sun, J., 2016. R-fcn: Object detection via region-based fully convolutional networks. Advances in neural information processing systems, 29.DOI: arXiv:1605.06409

Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D. and Stefanovic, D., 2016. Deep neural networks based recognition of plant diseases by leaf image classification. Computational intelligence and neuroscience, 2016.DOI: 10.1155/2016/3289801

Wang, G., Sun, Y. and Wang, J., 2017. Automatic image-based plant disease severity estimation using deep learning. Computational intelligence and neuroscience, 2017.DOI: 10.1155/2017/2917536

Parikh, A., Raval, M.S., Parmar, C. and Chaudhary, S., 2016, October. Disease detection and severity estimation in cotton plant from unconstrained images. In 2016 IEEE international conference on data science and advanced analytics (DSAA) (pp. 594-601). IEEE. DOI 10.1109/DSAA.2016.81

Singh, V. and Misra, A.K., 2015, March. Detection of unhealthy region of plant leaves using image processing and genetic algorithm. In 2015 International Conference on Advances in Computer Engineering and Applications (pp. 1028-1032). IEEE. DOI: 10.1109/ICACEA.2015.7164858

Tm, P., Pranathi, A., SaiAshritha, K., Chittaragi, N.B. and Koolagudi, S.G., 2018, August. Tomato leaf disease detection using convolutional neural networks. In 2018 eleventh international conference on contemporary computing (IC3) (pp. 1-5). IEEE. DOI: 10.1109/IC3.2018.8530532

Sardogan, M., Tuncer, A. and Ozen, Y., 2018, September. Plant leaf disease detection and classification based on CNN with LVQ algorithm. In 2018 3rd International Conference on Computer Science and Engineering (UBMK) (pp. 382-385). IEEE. DOI: 10.1109/UBMK.2018.8566635

Durmu?, H., Güne?, E.O. and K?rc?, M., 2017, August. Disease detection on the leaves of the tomato plants by using deep learning. In 2017 6th International Conference on Agro-Geoinformatics (pp. 1-5). IEEE. DOI: 10.1109/Agro-Geoinformatics.2017.804

Rangarajan, A.K., Purushothaman, R. and Ramesh, A., 2018. Tomato crop disease classification using pre-trained deep learning algorithm. Procedia computer science, 133, pp.1040-1047.DOI: 10.1016/j.procs.2018.07.070

Türko?lu, M. and Hanbay, D., 2019. Plant disease and pest detection using deep learning-based features. Turkish Journal of Electrical Engineering & Computer Sciences, 27(3), pp.1636-1651. doi:10.3906/elk-1809-181

Suryawati, E., Sustika, R., Yuwana, R.S., Subekti, A. and Pardede, H.F., 2018, October. Deep structured convolutional neural network for tomato diseases detection. In 2018 international conference on advanced computer science and information systems (ICACSIS) (pp. 385-390). IEEE.DOI: 10.1109/ICACSIS.2018.8618169

Hang, J., Zhang, D., Chen, P., Zhang, J. and Wang, B., 2019. Classification of plant leaf diseases based on improved convolutional neural network. Sensors, 19(19), p.4161. ; doi:10.3390/s19194161

Chen, J., Liu, Q. and Gao, L., 2019. Visual tea leaf disease recognition using a convolutional neural network model. Symmetry, 11(3), p.343. doi:10.3390/sym11030343

Kamilaris, A. and Prenafeta-Boldú, F.X., 2018. Deep learning in agriculture: A survey. Computers and electronics in agriculture, 147, pp.70-90.DOI: 10.1016/j.compag.2018.02.016

Brahimi, M., Mahmoudi, S., Boukhalfa, K. and Moussaoui, A., 2019, September. Deep interpretable architecture for plant diseases classification. In 2019 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA) (pp. 111-116). IEEE.DOI: 10.23919/SPA.2019.8936759

Khan, M.A., Akram, T., Sharif, M., Awais, M., Javed, K., Ali, H. and Saba, T., 2018. CCDF: Automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN features. Computers and electronics in agriculture, 155, pp.220-236.DOI: 10.1016/j.compag.2018.10.013

Ma, X., Geng, J. and Wang, H., 2015. Hyperspectral image classification via contextual deep learning. EURASIP Journal on Image and Video Processing, 2015(1), pp.1-12. DOI 10.1186/s13640-015-0071-8

Picon, A., Alvarez-Gila, A., Seitz, M., Ortiz-Barredo, A., Echazarra, J. and Johannes, A., 2019. Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Computers and Electronics in Agriculture, 161, pp.280-290.DOI: 10.1016/j.compag.2018.04.002

Park, H., Eun, J.S. and Kim, S.H., 2017, October. Image-based disease diagnosing and predicting of the crops through the deep learning mechanism. In 2017 International Conference on Information and Communication Technology Convergence (ICTC) (pp. 129-131). IEEE. doi:10.1109/ICTC.2017.8190957

Lee, S.H., Chan, C.S., Mayo, S.J. and Remagnino, P., 2017. How deep learning extracts and learns leaf features for plant classification. Pattern Recognition, 71, pp.1-13 doi:10.1016/j.patcog.2017.05.015

Tümen, V., Söylemez, Ö.F. and Ergen, B., 2017, September. Facial emotion recognition on a dataset using convolutional neural network. In 2017 International Artificial Intelligence and Data Processing Symposium (IDAP) (pp. 1-5). IEEE. doi:10.1109/IDAP.2017.8090281

Mokbel, B., Paassen, B., Schleif, F.M. and Hammer, B., 2015. Metric learning for sequences in relational LVQ. Neurocomputing, 169, pp.306-322. doi:10.1016/j.neucom.2014.11.082

Li, X. and Zhang, Y., 2016, June. Digital image edge detection based on LVQ neural network. In 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA) (pp. 1251-1255). IEEE. doi:10.1109/ICIEA.2016.7603776

Anwar, M.M., Tasneem, Z. and Masum, M.A., 2021, July. An Approach to Develop a Robotic Arm for Identifying Tomato Leaf Diseases using Convolutional Neural Network. In 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI) (pp. 1-6). IEEE. | DOI: 10.1109/ACMI53878.2021.952826

Muhammad, U., Wang, W., Chattha, S.P. and Ali, S., 2018, August. Pre-trained VGGNet architecture for remote-sensing image scene classification. In 2018 24th International Conference on Pattern Recognition (ICPR) (pp. 1622-1627). IEEE. doi:10.1109/ICPR.2018.8545591

Elhassouny, A. and Smarandache, F., 2019, July. Smart mobile application to recognize tomato leaf diseases using Convolutional Neural Networks. In 2019 International Conference of Computer Science and Renewable Energies (ICCSRE) (pp. 1-4). IEEE. doi:10.1109/ICCSRE.2019.8807737

Geetharamani, G. and Pandian, A., 2019. Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Computers & Electrical Engineering, 76, pp.323-338.

doi:10.1016/j.compeleceng.2019.04.011

Hasan, M., Tanawala, B. and Patel, K.J., 2019, March. Deep learning precision farming: Tomato leaf disease detection by transfer learning. In Proceedings of 2nd international conference on advanced computing and software engineering (ICACSE). doi:10.2139/ssrn.3349597

Sabrol, H. and Satish, K., 2016, April. Tomato plant disease classification in digital images using classification tree. In 2016 International Conference on Communication and Signal Processing (ICCSP) (pp. 1242-1246). IEEE.doi:10.1109/iccsp.2016.7754351

Singh, J. and Goyal, D., 2015. Fungus/Disease Analysis in Tomato Crop Using Image Processing Techniques. International Journal of Applied Engineering and Technology, 5(1), pp.12-16. DOI:10.14445/22312803/IJCTT-V13P113

Modi, H., Patel, M., Patel, M. and Patel, H., 2019. Implementation of Algorithm to Detect the Diseases in Fruit Using Image Processing Technique. International Journal of Applied Engineering Research, 14(9), pp.2093-2106.

Wang, Q., Qi, F., Sun, M., Qu, J. and Xue, J., 2019. Identification of tomato disease types and detection of infected areas based on deep convolutional neural networks and object detection techniques. Computational intelligence and neuroscience, 2019. https://doi.org/10.1155/2019/9142753

Gibran, M. and Wibowo, A., 2021, November. Convolutional Neural Network Optimization for Disease Classification Tomato Plants Through Leaf Image. In 2021 5th International Conference on Informatics and Computational Sciences (ICICoS) (pp. 116-121). IEEE. | DOI: 10.1109/ICICOS53627.2021.965189

Shijie, J., Peiyi, J. and Siping, H., 2017, October. Automatic detection of tomato diseases and pests based on leaf images. In 2017 Chinese automation congress (CAC) (pp. 2537-2510). IEEE. doi:10.1109/cac.2017.8243388

Kouretas, I. and Paliouras, V., 2019, May. Simplified hardware implementation of the softmax activation function. In 2019 8th international conference on modern circuits and systems technologies (MOCAST) (pp. 1-4). IEEE. doi:10.1109/mocast.2019.8741677

Ioffe, S. and Szegedy, C., 2015, June. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning (pp. 448-456). PMLR.DOI: 10.1080/17512786.2015.1058180

Alom, M.Z., Taha, T.M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M.S., Hasan, M., Van Essen, B.C., Awwal, A.A. and Asari, V.K., 2019. A state-of-the-art survey on deep learning theory and architectures. Electronics, 8(3), p.292. doi:10.3390/electronics8030292

Bhatia, A., Chug, A. and Singh, A.P., 2020. Plant disease detection for high dimensional imbalanced dataset using an enhanced decision tree approach. International Journal of Future Generation Communication and Networking, 13(4), pp.71-78.DOI: 10.33832/ijfgcn.2020.13.4.07

Tharini, V. J. ., & B. L. Shivakumar. (2023). An Efficient Pruned Matrix Aided Utility Tree for High Utility Itemset Mining from Transactional Database. International Journal of Intelligent Systems and Applications in Engineering, 11(4s), 46–55. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/2570

Sherstinsky, A., 2020. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, p.132306. doi:10.1016/j.physd.2019.132306

Pawara, P., Okafor, E., Surinta, O., Schomaker, L. and Wiering, M., 2017, February. Comparing local descriptors and bags of visual words to deep convolutional neural networks for plant recognition. In International Conference on Pattern Recognition Applications and Methods (Vol. 2, pp. 479-486). SciTePress. DOI: 10.5220/0006196204790486

Pawara, P., Okafor, E., Surinta, O., Schomaker, L. and Wiering, M., 2017, February. Comparing local descriptors and bags of visual words to deep convolutional neural networks for plant recognition. In International Conference on Pattern Recognition Applications and Methods (Vol. 2, pp. 479-486). SciTePress. DOI: 10.5220/0006196204790486

Grinblat, G.L., Uzal, L.C., Larese, M.G. and Granitto, P.M., 2016. Deep learning for plant identification using vein morphological patterns. Computers and Electronics in Agriculture, 127, pp.418-424. doi:10.1016/j.compag.2016.07.003

Mim, T.T., Sheikh, M.H., Shampa, R.A., Reza, M.S. and Islam, M.S., 2019, November. Leaves diseases detection of tomato using image processing. In 2019 8th International Conference System Modeling and Advancement in Research Trends (SMART) (pp. 244-249). IEEE.DOI: 10.1109/SMART46866.2019.9117437

Chouhan, S.S., Kaul, A., Singh, U.P. and Jain, S., 2018. Bacterial foraging optimization based radial basis function neural network (BRBFNN) for identification and classification of plant leaf diseases: An automatic approach towards plant pathology. Ieee Access, 6, pp.8852-8863. Digital Object Identifier 10.1109/ACCESS.2018.2800685

Kumar, A. and Vani, M., 2019, July. Image based tomato leaf disease detection. In 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE. doi:10.1109/icccnt45670.2019.8944

Hidayatuloh, A., Nursalman, M. and Nugraha, E., 2018, October. Identification of tomato plant diseases by Leaf image using squeezenet model. In 2018 International Conference on Information Technology Systems and Innovation (ICITSI) (pp. 199-204). IEEE. DOI: 10.1109/ICITSI.2018.8696087

Brahimi, M., Boukhalfa, K. and Moussaoui, A., 2017. Deep learning for tomato diseases: classification and symptoms visualization. Applied Artificial Intelligence, 31(4), pp.299-315. doi:10.1080/08839514.2017.1315516

Barbedo, J.G.A., 2016. A review on the main challenges in automatic plant disease identification based on visible range images. Biosystems engineering, 144, pp.52-60. doi:10.1016/j.biosystemseng.2016

Pasupa, K. and Sunhem, W., 2016, October. A comparison between shallow and deep architecture classifiers on small dataset. In 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE) (pp. 1-6). IEEE. doi:10.1109/iciteed.2016.7863293

Scalero, R.S. and Tepedelenlioglu, N., 1992. A fast new algorithm for training feedforward neural networks. IEEE Transactions on signal processing, 40(1), pp.202-210. DOI: 10.1109/78.157194

Wang, Z., Wang, X. and Wang, G., 2018. Learning fine-grained features via a CNN tree for large-scale classification. Neurocomputing, 275, pp.1231-1240. doi:10.1016/j.neucom.2017.09.061

Verma, S., Chug, A. and Singh, A.P., 2018, September. Prediction models for identification and diagnosis of tomato plant diseases. In 2018 International Conference on advances in computing, communications and informatics (ICACCI) (pp. 1557-1563). IEEE. doi:10.1109/icacci.2018.8554842

Rangarajan, A.K., Purushothaman, R. and Ramesh, A., 2018. Tomato crop disease classification using pre-trained deep learning algorithm. Procedia computer science, 133, pp.1040-1047. doi:10.1016/j.procs.2018.07.070

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z., 2018. Rethinking the Inception Architecture for Computer Vision.[online] Arxiv. org. doi:10.1109/cvpr.2016.308

Cap, Q.H., Uga, H., Kagiwada, S. and Iyatomi, H., 2020. Leafgan: An effective data augmentation method for practical plant disease diagnosis. IEEE Transactions on Automation Science and Engineering. doi:10.1109/tase.2020.3041499

Yilma, G., Belay, S., Qin, Z., Gedamu, K. and Ayalew, M., 2020, December. Plant Disease Classification Using Two Pathway Encoder GAN Data Generation. In 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP) (pp. 67-72). IEEE. DOI: 10.1109/ICCWAMTIP51612.2020.9317494

Tafa, Z., 2016. Concurrent implementation of supervised learning algorithms in disease detection. Journal of Advances in Information Technology Vol, 7(2).DOI: 10.12720/jait.7.2.124-128

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H. and He, Q., 2020. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1), pp.43-76. doi:10.1109/jproc.2020.3004555

Bao, J., Chen, D., Wen, F., Li, H. and Hua, G., 2017. CVAE-GAN: fine-grained image generation through asymmetric training. In Proceedings of the IEEE international conference on computer vision (pp. 2745-2754). doi:10.1109/iccv.2017.299

Al-Hiary, H., Bani-Ahmad, S., Reyalat, M., Braik, M. and Alrahamneh, Z., 2011. Fast and accurate detection and classification of plant diseases. International Journal of Computer Applications, 17(1), pp.31-38. 10.5120/2183-2754

Dr. S.A. Sivakumar. (2019). Hybrid Design and RF Planning for 4G networks using Cell Prioritization Scheme. International Journal of New Practices in Management and Engineering, 8(02), 08 - 15. https://doi.org/10.17762/ijnpme.v8i02.76

Arivazhagan, S., Shebiah, R.N., Ananthi, S. and Varthini, S.V., 2013. Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agricultural Engineering International: CIGR Journal, 15(1), pp.211-217. doi: 10.1109/I2CT.2014.7092035.

Ozguven, M.M. and Adem, K., 2019. Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms. Physica A: statistical mechanics and its applications, 535, p.122537. doi:10.1016/j.physa.2019.122537

Khan, A., Sohail, A., Zahoora, U. and Qureshi, A.S., 2020. A survey of the recent architectures of deep convolutional neural networks. Artificial intelligence review, 53(8), pp.5455-5516. https://doi.org/10.1007/s10462-020-09825-6

Sharma, P., Hans, P. and Gupta, S.C., 2020, January. Classification of plant leaf diseases using machine learning and image preprocessing techniques. In 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 480-484). IEEE. doi:10.1109/Confluence47617.2020.9057889

Ahmed, R.Z. and Biradar, R.C., 2016, September. Energy aware routing in WSN for pest detection in coffee plantation. In 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 398-403). IEEE. doi:10.1109/ICACCI.2016.7732078

Huang, Y., Wu, Z., Wang, L. and Tan, T., 2013. Feature coding in image classification: A comprehensive study. IEEE transactions on pattern analysis and machine intelligence, 36(3), pp.493-506. doi:10.1109/tpami.2013.113

Hari, S.S., Sivakumar, M., Renuga, P. and Suriya, S., 2019, March. Detection of plant disease by leaf image using convolutional neural network. In 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN) (pp. 1-5). IEEE. doi:10.1109/vitecon.2019.8899748

Liu, J. and Wang, X., 2021. Plant diseases and pests detection based on deep learning: a review. Plant Methods, 17(1), pp.1-18. doi:10.1186/s13007-021-00722-9

Anand, R., Veni, S. and Aravinth, J., 2016, April. An application of image processing techniques for detection of diseases on brinjal leaves using k-means clustering method. In 2016 international conference on recent trends in information technology (ICRTIT) (pp. 1-6). IEEE. doi:10.1109/icrtit.2016.7569531

Dhaware, C.G. and Wanjale, K.H., 2017, January. A modern approach for plant leaf disease classification which depends on leaf image processing. In 2017 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1-4). IEEE. doi:10.1109/iccci.2017.8117733

Kurale, N.G. and Vaidya, M.V., 2018, July. Classification of leaf disease using texture feature and neural network classifier. In 2018 International Conference on Inventive Research in Computing Applications (ICIRCA) (pp. 1-6). IEEEdoi:10.1109/icirca.2018.8597434

Kuricheti, G. and Supriya, P., 2019, April. Computer vision based turmeric leaf disease detection and classification: a step to smart agriculture. In 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 545-549). IEEE.DOI: 10.1109/ICOEI.2019.8862706

Militante, S.V., Gerardo, B.D. and Dionisio, N.V., 2019, October. Plant leaf detection and disease recognition using deep learning. In 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE) (pp. 579-582). IEEE.DOI: 10.1109/ECICE47484.2019.8942686

Prajapati, B.S., Dabhi, V.K. and Prajapati, H.B., 2016, March. A survey on detection and classification of cotton leaf diseases. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (pp. 2499-2506). IEEE.doi:10.1109/iceeot.2016.7755143

Khirade, S.D. and Patil, A.B., 2015, February. Plant disease detection using image processing. In 2015 International conference on computing communication control and automation (pp. 768-771). IEEE. doi:10.1109/iccubea.2015.153

Karthik, K., Rajaprakash, S., Ahmed, S.N., Perincheeri, R. and Alexander, C.R., 2021, November. Tomato And Potato Leaf Disease Prediction With Health Benefits Using Deep Learning Techniques. In 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 1-3). IEEE. | DOI: 10.1109/I-SMAC52330.2021.9640765

Saranya, A. and Kottilingam, K., 2021, March. A survey on bone fracture identification techniques using quantitative and learning based algorithms. In 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS) (pp. 241-248). IEEE. DOI: 10.1109/ICAIS50930.2021.9395817

Raja, G., Kottursamy, K., Theetharappan, A., Cengiz, K., Ganapathisubramaniyan, A., Kharel, R. and Yu, K., 2020, December. Dynamic polygon generation for flexible pattern formation in large-scale uav swarm networks. In 2020 IEEE Globecom Workshops (GC Wkshps (pp. 1-6). IEEE. DOI: 10.1109/GCWkshps50303.2020.9367501

Chen, Y.R., Chao, K. and Kim, M.S., 2002. Machine vision technology for agricultural applications. Computers and electronics in Agriculture, 36(2-3), pp.173-191.. doi:10.1016/s0168-1699(02)00100-x

Pandian, J.A., Geetharamani, G. and Annette, B., 2019, December. Data augmentation on plant leaf disease image dataset using image manipulation and deep learning techniques. In 2019 IEEE 9th International Conference on Advanced Computing (IACC) (pp. 199-204). IEEE. doi:10.1109/iacc48062.2019.8971580

Ruiz-Garcia, L., Lunadei, L., Barreiro, P. and Robla, I., 2009. A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends. sensors, 9(6), pp.4728-4750. doi:10.3390/s90604728

Francis, M. and Deisy, C., 2019, March. Disease detection and classification in agricultural plants using convolutional neural networks—a visual understanding. In 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 1063-1068). IEEE. doi:10.1109/spin.2019.8711701

Nachtigall, L.G., Araujo, R.M. and Nachtigall, G.R., 2016, November. Classification of apple tree disorders using convolutional neural networks. In 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 472-476). IEEE. doi:10.1109/ictai.2016.0078

Han, L., Haleem, M.S. and Taylor, M., 2015, July. A novel computer vision-based approach to automatic detection and severity assessment of crop diseases. In 2015 Science and Information Conference (SAI) (pp. 638-644). IEEE. doi:10.1109/sai.2015.7237209

Cruz, A., Ampatzidis, Y., Pierro, R., Materazzi, A., Panattoni, A., De Bellis, L. and Luvisi, A., 2019. Detection of grapevine yellows symptoms in Vitis vinifera L. with artificial intelligence. Computers and electronics in agriculture, 157, pp.63-76.DOI: 10.1016/j.compag.2018.12.028

Zhang, S., Wu, X., You, Z. and Zhang, L., 2017. Leaf image based cucumber disease recognition using sparse representation classification. Computers and electronics in agriculture, 134, pp.135-141. doi:10.1016/j.compag.2017.01.014

Revathi, P. and Hemalatha, M., 2012, December. Classification of cotton leaf spot diseases using image processing edge detection techniques. In 2012 International Conference on Emerging Trends in Science, Engineering and Technology (INCOSET) (pp. 169-173). IEEE. doi:10.1109/incoset.2012.6513900

Singh, V. and Misra, A.K., 2017. Detection of plant leaf diseases using image segmentation and soft computing techniques. Information processing in Agriculture, 4(1), pp.41-49. doi:10.1016/j.inpa.2016.10.005

Singh, U.P., Chouhan, S.S., Jain, S. and Jain, S., 2019. Multilayer convolution neural network for the classification of mango leaves infected by anthracnose disease. IEEE Access, 7, pp.43721-43729. doi:10.1109/ACCESS.2019.2907383

Putra, I.K.G.D., Fauzi, R., Witarsyah, D. and Putra, I.P.D.J., 2020. Classification of tomato plants diseases using convolutional neural network. Int J Adv Sci Eng Inf Technol, 10(5), pp.1821-1827. 10.18517/ijaseit.10.5.11665

Afridila, S., 2019, October. Aceh tomato farmers and the application of tomato cultivation technology. In IOP Conference Series: Earth and Environmental Science (Vol. 365, No. 1, p. 012069). IOP Publishing. doi:10.1088/1755-1315/365/1/012069

Chaerani, R. and Voorrips, R.E., 2006. Tomato early blight (Alternaria solani): the pathogen, genetics, and breeding for resistance. Journal of general plant pathology, 72(6), pp.335-347. DOI 10.1007/s10327-006-0299-3

Mwangi, J., Cohen, D., Silva, C., Min-ji, K., & Suzuki, H. Feature Extraction Techniques for Natural Language Processing Tasks. Kuwait Journal of Machine Learning, 1(3). Retrieved from http://kuwaitjournals.com/index.php/kjml/article/view/137

Ibrahim, H., 2019. Susceptibility Studies on Two Varieties of Tomato (Lycopersicon esculentum) to Fungal Leaf Spots. EAS J. Nutr. Food Sci., 1(1), pp.3-8.DOI: https://doi.org/10.1186/s42269-020-00300-4

Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.DOI: https://arxiv.org/abs/1409.1556

He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778 doi:10.1109/CVPR.2016.90

F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1800-1807, doi: 10.1109/CVPR.2017.195.

Zhang, C., Zhou, P., Li, C. and Liu, L., 2015, October. A convolutional neural network for leaves recognition using data augmentation. In 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (pp. 2143-2150). IEEE. doi:10.1109/cit/iucc/dasc/picom.2015.318

Jeon, W.S. and Rhee, S.Y., 2017. Plant leaf recognition using a convolution neural network. International Journal of Fuzzy Logic and Intelligent Systems, 17(1), pp.26-34. http://dx.doi.org/10.5391/IJFIS.2017.17.1.26

De Luna, R.G., Baldovino, R.G., Cotoco, E.A., De Ocampo, A.L.P., Valenzuela, I.C., Culaba, A.B. and Gokongwei, E.P.D., 2017, December. Identification of philippine herbal medicine plant leaf using artificial neural network. In 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1-8). IEEE. doi:10.1109/hnicem.2017.8269470

Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q., 2017. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708). doi:10.1109/cvpr.2017.243

Kawasaki, Y., Uga, H., Kagiwada, S. and Iyatomi, H., 2015, December. Basic study of automated diagnosis of viral plant diseases using convolutional neural networks. In International symposium on visual computing (pp. 638-645). Springer, Cham. doi:10.1007/978-3-319-27863-6_59

Annabel, L.S.P. and Muthulakshmi, V., 2019, December. AI-powered image-based tomato leaf disease detection. In 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 506-511). IEEE. doi:10.1109/i-smac47947.2019.9032621

Brahimi, M., Arsenovic, M., Laraba, S., Sladojevic, S., Boukhalfa, K. and Moussaoui, A., 2018. Deep learning for plant diseases: detection and saliency map visualisation. In Human and machine learning (pp. 93-117). doi:10.1007/978-3-319-90403-0_6

Barbedo, J.G.A., 2017. A new automatic method for disease symptom segmentation in digital photographs of plant leaves. European journal of plant pathology, 147(2), pp.349-364. doi:10.1007/s10658-016-1007-6

Kumar, D. and Kukreja, V., 2021, March. N-CNN based transfer learning method for classification of powdery mildew wheat disease. In 2021 International Conference on Emerging Smart Computing and Informatics (ESCI) (pp. 707-710). IEEE.DOI: 10.1109/ESCI50559.2021.9396972

Kukreja, V. and Dhiman, P., 2020, September. A Deep Neural Network based disease detection scheme for Citrus fruits. In 2020 International conference on smart electronics and communication(ICOSEC) (pp.97-101).IEEE. doi:10.1109/icosec49089.2020.921535910.1109/icosec49089.2020.9215359

Kukreja, V., Kumar, D. and Kaur, A., 2020, November. GAN-based synthetic data augmentation for increased CNN performance in Vehicle Number Plate Recognition. In 2020 4th international conference on electronics, communication and aerospace technology (ICECA) (pp.1190-1195).IEEE. doi:10.1109/iceca49313.2020.929762510.1109/iceca49313.2020.9297625

Chang, C.L. and Hsu, M.Y., 2009. The study that applies artificial intelligence and logistic regression for assistance in differential diagnostic of pancreatic cancer. Expert Systems with applications, 36(7),pp.10663-10672. doi:10.1016/j.eswa.2009.02.04610.1016/j.eswa.2009.02.046

Albawi, S., Mohammed, T.A. and Al-Zawi, S., 2017, August. Understanding of a convolutional neural network. In 2017 international conference on engineering and technology (ICET) (pp. 1-6). Ieee. doi:10.1109/icengtechnol.2017.830818610.1109/icengtechnol.2017.8308186

Szegedy, C., Toshev, A. and Erhan, D., 2013. Deep neural networks for object detection. Advances in neural information processing systems, 26. DOI: 10.1109/TENCON.2018.8650517

Yu, D. and Seltzer, M.L., 2011. Improved bottleneck features using pretrained deep neural networks. In Twelfth annual conference of the international speech communication association. DOI: 10.21437/interspeech.2011-91

He, K., Zhang, X., Ren, S. and Sun, J., 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision (pp. 1026-1034). doi:10.1109/iccv.2015.123

Kamal, K.C., Yin, Z., Li, B., Ma, B. and Wu, M., 2019, September. Transfer learning for fine-grained crop disease classification based on leaf images. In 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS) (pp. 1-5). IEEE. doi:10.1109/WHISPERS.2019.8921213

Prasad, S., Peddoju, S.K. and Ghosh, D., 2016. Multi-resolution mobile vision system for plant leaf disease diagnosis. Signal, image and video processing, 10(2), pp.379-388. DOI 10.1007/s11760-015-0751-y

Raza, S.E.A., Prince, G., Clarkson, J.P. and Rajpoot, N.M., 2015. Automatic detection of diseased tomato plants using thermal and stereo visible light images. PloS one, 10(4), p.e0123262. doi:10.1371/journal.pone.0123262

Khamparia, A., Pandey, B., Tiwari, S., Gupta, D., Khanna, A. and Rodrigues, J.J., 2020. An integrated hybrid CNN–RNN model for visual description and generation of captions. Circuits, Systems, and Signal Processing, 39(2), pp.776-788. https://doi.org/10.1007/s00034-019-01306-8

Khamparia, A., Pandey, B., Tiwari, S., Gupta, D., Khanna, A. and Rodrigues, J.J., 2020. An integrated hybrid CNN–RNN model for visual description and generation of captions. Circuits, Systems, and Signal Processing, 39(2), pp.776-788. doi:10.1007/s00034-019-01306-8

Zhu, J., Jiang, Z., Evangelidis, G.D., Zhang, C., Pang, S. and Li, Z., 2019. Efficient registration of multi-view point sets by K-means clustering. Information Sciences, 488, pp.205-218. doi:10.1016/j.ins.2019.03.024

Srivastava, ., Ma, S. and Inoue, K., 2004, August. Development of a sensor for automatic detection of downey mildew disease. In 2004 International Conference on Intelligent Mechatronics and Automation, 2004. Proceedings. (pp. 562-567). IEEE. doi:10.1109/icima.2004.1384259

Zhang, X., Zou, Y. and Shi, W., 2017, August. Dilated convolution neural network with LeakyReLU for environmental sound classification. In 2017 22nd international conference on digital signal processing (DSP) (pp. 1-5). IEEE. doi:10.1109/ICDSP.2017.8096153

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. and Torralba, A., 2014. Object detectors emerge in deep scene cnns. arXiv preprint arXiv:1412.6856. https://doi.org/10.48550/arXiv.1412.6856

Sarangdhar, A.A. and Pawar, V.R., 2017, April. Machine learning regression technique for cotton leaf disease detection and controlling using IoT. In 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA) (Vol. 2, pp. 449-454). IEEE. doi:10.1109/ICECA.2017.8212855

Laurindo, B.S., Laurindo, R.D.F., Azevedo, A.M., Delazari, F.T., Zanuncio, J.C. and da Silva, D.J.H., 2017. Optimization of the number of evaluations for early blight disease in tomato accessions using artificial neural networks. Scientia horticulturae, 218, pp.171-176. doi:10.1016/j.scienta.2017.02.005

Alejandro Garcia, Machine Learning for Customer Segmentation and Targeted Marketing , Machine Learning Applications Conference Proceedings, Vol 3 2023.

Wang, X., Zhang, M., Zhu, J. and Geng, S., 2008. Spectral prediction of Phytophthora infestans infection on tomatoes using artificial neural network (ANN). International Journal of Remote Sensing, 29(6), pp.1693-1706. doi:10.1080/01431160701281007

Marino, S., Beauseroy, P. and Smolarz, A., 2019, February. Deep Learning-based Method for Classifying and Localizing Potato Blemishes. In ICPRAM (pp. 107-117). DOI: 10.5220/0007350101070117

Tran, T.T., Choi, J.W., Le, T.T.H. and Kim, J.W., 2019. A comparative study of deep CNN in forecasting and classifying the macronutrient deficiencies on development of tomato plant. Applied Sciences, 9(8), p.1601.doi:10.3390/app9081601

Wagle, S.A., 2021. A Deep Learning-Based Approach in Classification and Validation of Tomato Leaf Disease. Traitement du Signal, 38(3). DOI:https://doi.org/10.18280/ts.380317

Pandey, B. and Khamparia, A. eds., 2019. Hidden Link Prediction in Stochastic Social Networks. IGI Global. DOI:10.4018/978-1-5225-9096-5

Gupta, D., Polkowski, Z., Khanna, A., Bhattacharyya, S. and Castillo, O., Proceedings of Data Analytics and Management.

Chatterjee, J.M. ed., 2020. Internet of Things and Machine Learning in Agriculture. Nova Science Publishers. DOI: @ 1685071929

Thangaraj, R., Anandamurugan, S., Pandiyan, P. and Kaliappan, V.K., 2021. Artificial intelligence in tomato leaf disease detection: a comprehensive review and discussion. Journal of Plant Diseases and Protection, pp.1-20. doi:10.1007/s41348-021-00500-8

Jacob, I.J., Shanmugam, S.K. and Bestak, R., Data Intelligence and Cognitive Informatics. https://doi.org/10.1007/978-981-16-6460-1_1K. Elissa, “Title of paper if known,” unpublished.