LFM based Wideband DOA Estimation using Deep Neural Network at Low SNR

Main Article Content

Nagaraju L
Lokesh Dharma Theja ch
Puli Kishore Kumar


This work focuses on deep learning-based wideband direction-of-arrival (DoA) estimation for a wideband in particular LFM in case of extreme noise. We propose a convolutional neural network (CNN) that utilizes the correlation matrix to estimate and trained using multi-channel data in low SNR conditions. By using a systematic approach and treating the problem as a way to identify multiple possible DoAs, the CNN is trained to predict DoAs under different SNR conditions. This allows the CNN to accurately estimate the directions from which signals are coming, regardless of the level of noise in the environment. The architecture proposed exhibits robustness to noise, works effectively with a small number of snapshots, and achieves high resolution in angle estimation. Experimental findings demonstrate notable enhancements in performance under low SNR conditions when compared to existing methods, without the need for parameter tuning for correlated and uncorrelated sources. The enhanced robustness of our solution has broad applications in various fields, including wireless array sensors, acoustic microphones, and sonars.

Article Details

How to Cite
L, N. ., Theja ch, L. D. ., & Kumar, P. K. . (2023). LFM based Wideband DOA Estimation using Deep Neural Network at Low SNR. International Journal on Recent and Innovation Trends in Computing and Communication, 11(9s), 607–614. https://doi.org/10.17762/ijritcc.v11i9s.7473


M. Mart´?nez-Ram´on, A. Gupta, J. L. Rojo-´Alvarez, C. Christodoulou, K. Cools, Machine learning applications in electromagnetics and antenna array processing [book review], IEEE Antennas and Propagation Magazine 64 (4) (2022) 178–179. doi:10.1109/MAP.2022.3178921.

C.-L. Liu, P. P. Vaidyanathan, Remarks on the spatial smoothing step in coarray music, IEEE SP Letters 22 (9) (2015) 1438–1442. doi:10.1109/LSP.2015.2409153.

L. Hachad, O. Cherrak, H. Ghennioui, F. Mrabti, M. Zouak, Doa es timation based on time-frequency music application to massive mimo systems, in: 2017 International Conference on Advanced Technolo gies for Signal and Image Processing (ATSIP), 2017, pp. 1–5. doi:10.1109/ATSIP.2017.807558.

R. Zhagypar, K. Zhagyparova, M. T. Akhtar, spatially smoothed tf-root-music for doa estimation of coherent and non-stationary sources under noisy conditions, IEEE Access. doi:10.1109/ACCESS.2021.3095345.

C. A. D. Mahdi Khosravy, Nilanjan Dey, Compressive Sensing in Health- care, Vol. 11, Mara Conner, 2020.

S. Ganguly, I. Ghosh, R. Ranjan, J. Ghosh, P. K. Kumar, M. Mukhopadhyay, Compressive sensing based off-grid doa estimation using omp algorithm, in: 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), 2019, pp. 772–775. doi:10.1109/SPIN.2019.8711677.

P. R. Bhargav, N. L, P. K. Kumar, Compressive sensing based doa estimation for multi-path environment, in: 2021 IEEE International Conference on Mi- crowaves, Antennas, Communications and Electronic Systems (COMCAS), 2021, pp. 309–313. doi:10.1109/COMCAS52219.2021.9629116.

N. L, P. K. Kumar, Performance analysis of sparse array using compressive sensing in a closed multi-path environment, in: 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), 2022, pp. 1413–1417. doi:10.1109/MAPCON56011.2022.10046420.

Y. C. Eldar, M. Mishali, Robust recovery of signals from a structured union of subspaces, IEEE Transactions on Information Theory 55 (11) (2009) 5302–5316. doi:10.1109/TIT.2009.2030471.

Z. Yang, L. Xie, Enhancing sparsity and resolution via reweighted atomic norm minimization, IEEE Transactions on Signal Processing 64 (4) (2016) 995–1006. doi:10.1109/TSP.2015.2493987.

G. K. Papageorgiou, M. Sellathurai, Y. C. Eldar, Deep networks for direction-of-arrival estimation in low snr, IEEE Transactions on Signal Pro- cessing 69 (2021) 3714–3729. doi:10.1109/TSP.2021.3089927.

M. Q. Nguyen, R. Feger, T. Wagner, A. Stelzer, High angular resolution method based on deep learning for fmcw mimo radar, IEEE Transactions on Microwave Theory and Techniques (2023) 1– 15doi:10.1109/TMTT.2023.3277022.

Y. Kase, T. Nishimura, T. Ohgane, Y. Ogawa, D. Kitayama, Y. Kishiyama, Doa estimation of two targets with deep learning, in: 2018 15th Workshop on Positioning, Navigation and Communications (WPNC), 2018, pp. 1–5. doi:10.1109/WPNC.2018.8555814.

H. Huang, J. Yang, H. Huang, Y. Song, G. Gui, Deep learning for super- resolution channel estimation and doa estimation based massive mimo system, IEEE Transactions on Vehicular Technology 67 (9) (2018) 8549–8560. doi:10.1109/TVT.2018.2851783.

Z.-M. Liu, C. Zhang, P. S. Yu, Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections, IEEE Transactions on Antennas and Propagation 66 (12) (2018) 7315–7327. doi:10.1109/TAP.2018.2874430.

L. Dharma Theja ch, L. Nagaraju, K. Kumar Puli, Classification based doa estimation using ann and cnn models, in: 2022 IEEE Microwaves, An- tennas, and Propagation Conference (MAPCON). doi:10.1109/MAPCON56011.2022.10047297.

E. Ozanich, P. Gerstoft, H. Niu, A deep network for single-snapshot di- rection of arrival estimation, in: 2019 IEEE 29th International Work- shop on Machine Learning for Signal Processing (MLSP), 2019, pp. 1–6. doi:10.1109/MLSP.2019.8918746.

J. Yu, L. Zhang, K. Liu, coherently distributed wideband lfm source localization, IEEE Signal Processing Letters 22 (4) (2015) 504–508. doi:10.1109/LSP.2014.2363843.

J. Y. K. L. Liang Zhang, Cheng-Yu Hung, Linear chirp signal doa estima- tion using sparse time–frequency dictionary, Int J Wireless Inf Networks 27 (2020) 568–574. doi:10.1007/s10776-020-00489-1.

K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Networks 2 (5) (1989) doi: https://doi.org/10.1016/0893-6080(89)90020-8.

Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86 (11) (1998) 2278– 2324. doi:10.1109/5.726791.

J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai, T. Chen, Recent advances in convolutional neural networks, Pattern Recognition 77 (2018) 354–377. doi: https://doi.org/10.1016/j.patcog.2017.10.013.

M. Wang, Z. Zhang, A. Nehorai, Performance analysis of coarray-based music in the presence of sensor location errors, IEEE Transactions on Signal Processing 66 (12) (2018) 3074–3085. doi:10.1109/TSP.2018.2824283.

M. Jansson, B. Goransson, B. Ottersten, A subspace method for direction of arrival estimation of uncorrelated emitter signals, IEEE Transactions on Signal Processing 47 (4) (1999) 945–956. doi:10.1109/78.752593.

P. Stoica, A. Nehorai, Performance study of conditional and unconditional direction-of-arrival estimation, IEEE Transactions on Acoustics, Speech, and Signal Processing 38 (10) (1990) 1783–1795. doi:10.1109/29.60109.

C. Ozdemiir, Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms.