Optimized Visual Internet of Things in Video Processing for Video Streaming

Main Article Content

Bagade Shilpa
Budati Anil Kumar
L Koteswara Rao

Abstract

The global expansion of the Visual Internet of Things (VIoT) has enabled various new applications during the last decade through the interconnection of a wide range of devices and sensors.Frame freezing and buffering are the major artefacts in broad area of multimedia networking applications occurring due to significant packet loss and network congestion. Numerous studies have been carried out in order to understand the impact of packet loss on QoE for a wide range of applications. This paper improves the video streaming quality by using the proposed framework Lossy Video Transmission (LVT)  for simulating the effect of network congestion on the performance of  encrypted static images sent over wireless sensor networks.The simulations are intended for analysing video quality and determining packet drop resilience during video conversations.The assessment of emerging trends in quality measurement, including picture preference, visual attention, and audio visual quality is checked. To appropriately quantify the video quality loss caused by the encoding system, various encoders compress video sequences at various data rates.Simulation results for different QoE metrics with respect to user developed videos have been demonstrated which outperforms the existing metrics.

Article Details

How to Cite
Shilpa, B. ., Kumar, B. A. ., & Rao, L. K. . (2023). Optimized Visual Internet of Things in Video Processing for Video Streaming . International Journal on Recent and Innovation Trends in Computing and Communication, 11(5s), 362–369. https://doi.org/10.17762/ijritcc.v11i5s.7045
Section
Articles

References

C. W. Chen, ‘Internet of Video Things: Next-Generation IoT With Visual Sensors’, IEEE Internet Things J., vol. 7, no. 8, pp. 6676–6685, Aug. 2020, doi: 10.1109/JIOT.2020.3005727.

S. Soro and W. Heinzelman, ‘A Survey of Visual Sensor Networks’, Advances in Multimedia, vol. 2009, pp. 1–21, 2009, doi: 10.1155/2009/640386.

X. Feng, T. Liu, D. Yang, and Y. Wang, ‘Saliency Inspired Full-Reference Quality Metrics for Packet-Loss-Impaired Video’, IEEE Trans. on Broadcast., vol. 57, no. 1, pp. 81–88, Mar. 2011, doi: 10.1109/TBC.2010.2092150.

K. T. Tan and M. Ghanbari, ‘A multi-metric objective picture-quality measurement model for MPEG video’, IEEE Trans. Circuits Syst. Video Technol., vol. 10, no. 7, pp. 1208–1213, Oct. 2000, doi: 10.1109/76.875525.

F. Zhang and D. R. Bull, ‘A Perception-Based Hybrid Model for Video Quality Assessment’, IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 6, pp. 1017–1028, Jun. 2016, doi: 10.1109/TCSVT.2015.2428551.

J. You and J. Korhonen, ‘Deep Neural Networks for No-Reference Video Quality Assessment’, in 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, Sep. 2019, pp. 2349–2353. doi: 10.1109/ICIP.2019.8803395.

S. Winkler and P. Mohandas, ‘The Evolution of Video Quality Measurement: From PSNR to Hybrid Metrics’, IEEE Trans. on Broadcast., vol. 54, no. 3, pp. 660–668, Sep. 2008, doi: 10.1109/TBC.2008.2000733.

D. Laniewski, B. Schutz, and N. Aschenbruck, ‘On the Impact of Burst Loss for QoE-Based Performance Evaluations for Video Streaming’, in 2020 IEEE 45th LCN Symposium on Emerging Topics in Networking (LCN Symposium), Sydney, Australia, Nov. 2020, pp. 78–87. doi: 10.1109/LCNSymposium50271.2020.9363272.

J. Qiao, Y. He, and X. S. Shen, ‘Improving Video Streaming Quality in 5G Enabled Vehicular Networks’, IEEE Wireless Commun., vol. 25, no. 2, pp. 133–139, Apr. 2018, doi: 10.1109/MWC.2018.1700173.

K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack, ‘Study of Subjective and Objective Quality Assessment of Video’, IEEE Trans. on Image Process., vol. 19, no. 6, pp. 1427–1441, Jun. 2010, doi: 10.1109/TIP.2010.2042111.

P. Paudyal, F. Battisti, and M. Carli, ‘Impact of video content and transmission impairments on quality of experience’, Multimed Tools Appl, vol. 75, no. 23, pp. 16461–16485, Dec. 2016, doi: 10.1007/s11042-015-3214-0.

E. Pakulova, K. Miller, and A. Wolisz, ‘Adaptive low-delay video streaming in heterogeneous wireless networks using MPRTP’, in 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, Jun. 2017, pp. 14–19. doi: 10.1109/IWCMC.2017.7986255.

B. Shilpa, A. K. Budati, L. K. Rao, and S. B. Goyal, ‘Deep learning based optimised data transmission over 5G networks with Lagrangian encoder’, Computers and Electrical Engineering, vol. 102, p. 108164, Sep. 2022, doi: 10.1016/j.compeleceng.2022.108164.

B. Schutz and N. Aschenbruck, ‘Packet-Preserving Network Coding Schemes for Padding Overhead Reduction’, in 2019 IEEE 44th Conference on Local Computer Networks (LCN), Osnabrueck, Germany, Oct. 2019, pp. 447–454. doi: 10.1109/LCN44214.2019.8990879.

Y.-K. Wang, Y. Sanchez, T. Schierl, S. Wenger, and M. M. Hannuksela, ‘RTP Payload Format for High Efficiency Video Coding (HEVC)’, RFC Editor, RFC7798, Mar. 2016. doi: 10.17487/RFC7798.

Y. J. Liang, J. G. Apostolopoulos, and B. Girod, ‘Analysis of Packet Loss for Compressed Video: Effect of Burst Losses and Correlation Between Error Frames’, IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 7, pp. 861–874, Jul. 2008, doi: 10.1109/TCSVT.2008.923139.

S. Winkler and P. Mohandas, ‘The Evolution of Video Quality Measurement: From PSNR to Hybrid Metrics’, IEEE Trans. on Broadcast., vol. 54, no. 3, pp. 660–668, Sep. 2008, doi: 10.1109/TBC.2008.2000733.

M. Sepulcre, M. Gonzalez-Martin, J. Gozalvez, R. Molina-Masegosa, and B. Coll-Perales, ‘Analytical Models of the Performance of IEEE 802.11p Vehicle to Vehicle Communications’, IEEE Trans. Veh. Technol., vol. 71, no. 1, pp. 713–724, Jan. 2022, doi: 10.1109/TVT.2021.3124708.

S. Li, F. Zhang, L. Ma, and K. N. Ngan, ‘Image Quality Assessment by Separately Evaluating Detail Losses and Additive Impairments’, IEEE Trans. Multimedia, vol. 13, no. 5, pp. 935–949, Oct. 2011, doi: 10.1109/TMM.2011.2152382.

C. T. Calafate, P. Manzoni, and M. P. Malumbres, ‘Speeding up the evaluation of multimedia streaming applications in MANETs using HMMs’, in Proceedings of the 7th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems - MSWiM ’04, Venice, Italy, 2004, p. 315. doi: 10.1145/1023663.1023719.

C. T. Calafate, M. P. Malumbres, and P. Manzoni, ‘Performance of H.264 compressed video streams over 802.11b based MANETs’, in 24th International Conference on Distributed Computing Systems Workshops, 2004. Proceedings., Hachioji, Tokyo, Japan, 2004, pp. 776–781. doi: 10.1109/ICDCSW.2004.1284121.

G. Van Wallendael, H. Mareen, J. Vounckx, and P. Lambert, ‘Keyframe Insertion: Enabling Low-Latency Random Access and Packet Loss Repair’, Electronics, vol. 10, no. 6, p. 748, Mar. 2021, doi: 10.3390/electronics10060748.

H. Hamdoun, S. Nazir, J. A. Alzubi, P. Laskot, and O. A. Alzubi, ‘Performance Benefits of Network Coding for HEVC Video Communications in Satellite Networks’, IJEEE, vol. 17, no. 3, Sep. 2021, doi: 10.22068/IJEEE.17.3.1956.

M. Ghosh and C. Singhal, ‘MO-QoE: Video QoE using multi-feature fusion based Optimized Learning Models’, Signal Processing: Image Communication, vol. 107, p. 116766, Sep. 2022, doi: 10.1016/j.image.2022.116766.

N.-N. Dao, A.-T. Tran, N. H. Tu, T. T. Thanh, V. N. Q. Bao, and S. Cho, ‘A Contemporary Survey on Live Video Streaming from a Computation-Driven Perspective’, ACM Comput. Surv., vol. 54, no. 10s, pp. 1–38, Jan. 2022, doi: 10.1145/3519552