Design and Analysis of Metamaterial Absorber using Split Ring Resonator for Dual Band Terahertz Applications

Main Article Content

Swathi Dasi
G. Manmadha Rao

Abstract

There are numerous applications for microwave absorbers in the L, S, C, X, and Ku bands. Creating a terahertz absorber, on the other hand, has proven difficult. This paper presents a metamaterial absorber operates at terahertz frequencies. It has a square shaped outer ring and a circle shaped inner ring unit cell split ring resonator. The substrate is dielectric material and the ground is metallic. According to the simulation results, the unit cell resonates at two frequencies that is at 1.3027THz and 1.7853THz with absorptivity  is greater than 90% at normal incidence .The main cause of high absorbance is due to strong electromagnetic field. The proposed structure in this paper is useful for terahertz imaging, detection of malignant tumors and stealth technology.

Article Details

How to Cite
Dasi , S. ., & Rao, G. M. . (2023). Design and Analysis of Metamaterial Absorber using Split Ring Resonator for Dual Band Terahertz Applications. International Journal on Recent and Innovation Trends in Computing and Communication, 11(1), 128–132. https://doi.org/10.17762/ijritcc.v11i1.6059
Section
Articles

References

Sirtori C. Bridge for the terahertz gap. Nature, 2002, 417(6885):132– 133

Tonouchi M. Cutting-edge terahertz technology. Nature Photonics,2007, 1(2): 97–105

Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy andimaging–modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166

Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F,Zimdars D. THz imaging and sensing for security applications—explosives, weapons and drugs. Semiconductor Science and Technology, 2005, 20(7): S266–S280

Salisbury W W. Absorbent body for electromagnetic waves. UnitedStates Patent US 2599944. 1952

Knott E F, Schaeffer J F, Tulley M T. Radar Cross Section. Raleigh:SciTech Publishing, 2004

Watts C M, Liu X, Padilla W J. Metamaterial electromagnetic wave absorberAdvanced Materials, 2012, 24(23): OP98–OP120, OP181

. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. chultz,“Compositemediumwithsimultaneouslynegativepermeabilityandpermittivity,”Phys.Rev.Lett,vol.84,no.18,pp.4184,2000.

D. Schurig, J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr,andD.Smith,“Metamaterialelectromagneticcloakatmicrowavefrequencies,”Science,vol.314,no.5801,pp.977-980,2006.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials andnegative refractive index,” Science, vol. 305, no. 5685, pp. 788-792,2004.

G. Wang, M. Liu, X. Hu, L. Kong, L. Cheng, and Z. Chen, “Broadbandand ultra-thin terahertz metamaterial absorber

based on multi-circularpatches,”EurPhysJB,vol.86,no.7,pp.1-9,2013.

Hhen,W.J.Padilla,J.M.Zide,A.C.Gossard,A.J.Taylor,andR.D. Averitt, “Active terahertz metamaterial devices,” Nature, vol. 444, no.7119,pp.597-600,2006.

T. Driscoll, G. Andreev, D. Basov, S. Palit, S. Cho, N. Jokerst, and D.Smith, “Tuned permeability in terahertz split-ring resonators for devicesandsensors,”Appl.Phys. Lett,vol.91,no.6,pp.062511,2007.

O.Paul,C.Imhof,B.L?gel,S.Wolff,J.Heinrich,A.Forchel,R.Zengerle, R. Beigang, and M. Rahm, “Polarization-independent activemetamaterial for high-frequency terahertz modulation,” Opt. Exp, vol.17,no.2,pp.819-827,2009.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfectmetamaterial absorber,” Phys. Rev. Lett, vol. 100, no. 20, pp. 207402,2008.

J.Chen,X.Huang,G.Zerihun,Z.Hu,S. Wang,G. Wang,X.Hu,andM.Liu, “Polarization-independent, thin, broadband metamaterial absorberusing double-circle rings loaded with lumped resistances,” J. Electron.Mater,vol.44,no.11,pp.4269-4274,2015.

S.Bhattacharyya,S.Ghosh,D.Chaurasiya,andK.V.Srivastava,“Wide angle broadband microwave metamaterial absorber with octavebandwidth,”IETMicrowAntennaP,vol.9,no.11,pp.1160-1166,2015.

B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, and X.Zhai, “Theoretical investigation of broadband and wide-angle terahertzmetamaterial absorber,” IEEE Photon TechnolLett, vol. 26, no. 2, pp.111-114,2014.

Y.Wen,W.Ma,J. Bailey,G.Matmon,andX.Yu,“Broadbandterahertzmetamaterialabsorberbasedonasymmetricresonatorswithperfectabsorption,”IEEETThzSciTechn,vol.5,no.3,pp.406-411,2015.

J. A. Mason, G. Allen, V. A. Podolskiy, and D. Wasserman, “Strongcoupling of molecular and mid-infrared perfect absorber resonances,”IEEEPhotonTechnolLett,vol.24,no.1,pp.31-33,2012.

M.K.Hedayati,M.Javaherirahim,B.Mozooni,R.Abdelaziz,A.Tavassolizadeh,V.S.K.Chakravadhanula,V.Zaporojtchenko,T.Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorberat visible frequencies using plasmonic metamaterials,” Adv Mater, vol.23,no.45,pp.5410-5414,2011