A Machine Learning Framework for Generating Photorealistic Photos of Real Time Objects using Adam Optimizer by a Generative Adversarial Network (GAN)

Main Article Content

Lakshmikanth Paleti
Ramakrishna Badiguntla
H. Venkateshwara Reddy
K. Prabhakar
CH. Suresh Babu
K. Vamsi Krishna

Abstract

Photographic training can result in new photographs that, to human observers, appear to be at least superficially authentic, with many realistic features. will discuss a number of intriguing GAN applications in order to help you develop an understanding of the types of problems where GANs can be used and useful. It is not an exhaustive list, but it includes numerous examples of GAN applications that have garnered media attention. This Paper Proposes a Framework for Generating Photorealistic Photos of real time objects (FGPPO) using Adam Optimizer by Generative Adversarial Networks.

Article Details

How to Cite
Paleti, L., Badiguntla, R., Reddy, H. V., Prabhakar, K. ., Babu, C. S., & Krishna, K. V. (2022). A Machine Learning Framework for Generating Photorealistic Photos of Real Time Objects using Adam Optimizer by a Generative Adversarial Network (GAN). International Journal on Recent and Innovation Trends in Computing and Communication, 10(12), 76–82. https://doi.org/10.17762/ijritcc.v10i12.5888
Section
Articles

References

Alsaiari, A., Rustagi, R., Thomas, M. M., & Forbes, A. G. (2019, March). Image denoising using a generative adversarial network. In 2019 IEEE 2nd international conference on information and computer technologies (ICICT) (pp. 126-132). IEEE.

Lian, J., Jia, W., Zareapoor, M., Zheng, Y., Luo, R., Jain, D. K., & Kumar, N. (2019). Deep-learning-based small surface defect detection via an exaggerated local variation-based generative adversarial network. IEEE Transactions on Industrial Informatics, 16(2), 1343-1351.

Dhir, R., Ashok, M., & Gite, S. (2020). An overview of advances in image colorization using computer vision and deep learning techniques. Review of Computer Engineering Research, 7(2), 86-95.

Liu, M. Y., Huang, X., Yu, J., Wang, T. C., & Mallya, A. (2021). Generative adversarial networks for image and video synthesis: Algorithms and applications. Proceedings of the IEEE, 109(5), 839-862.

Fekri, M. N., Ghosh, A. M., & Grolinger, K. (2019). Generating energy data for machine learning with recurrent generative adversarial networks. Energies, 13(1), 130.

Liu, M. Y., Huang, X., Yu, J., Wang, T. C., & Mallya, A. (2020). Generative adversarial networks for image and video synthesis: Algorithms and applications. arXiv preprint arXiv:2008.02793.

Gonog, L., & Zhou, Y. (2019, June). A review: generative adversarial networks. In 2019 14th IEEE conference on industrial electronics and applications (ICIEA) (pp. 505-510). IEEE.

Cui, Q., Zhou, Z., Fu, Z., Meng, R., Sun, X., & Wu, Q. J. (2019). Image steganography based on foreground object generation by generative adversarial networks in mobile edge computing with Internet of Things. IEEE Access, 7, 90815-90824.

Huh, M., Sun, S. H., & Zhang, N. (2019). Feedback adversarial learning: Spatial feedback for improving generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1476-1485).

Dang, L. M., Hassan, S. I., Im, S., Lee, J., Lee, S., & Moon, H. (2018). Deep learning based computer generated face identification using convolutional neural network. Applied Sciences, 8(12), 2610.

Lee, S., An, G. H., & Kang, S. J. (2018). Deep recursive hdri: Inverse tone mapping using generative adversarial networks. In proceedings of the European Conference on Computer Vision (ECCV) (pp. 596-611).

Li, X., Wu, Y., Zhang, W., Wang, R., & Hou, F. (2020). Deep learning methods in real-time image super-resolution: a survey. Journal of Real-Time Image Processing, 17(6), 1885-1909.

Zhang, Z., Pan, X., Jiang, S., & Zhao, P. (2020). High-quality face image generation based on generative adversarial networks. Journal of Visual Communication and Image Representation, 71, 102719.

Ferdous, S. N., Mostofa, M., & Nasrabadi, N. M. (2019, May). Super resolution-assisted deep aerial vehicle detection. In Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications (Vol. 11006, pp. 432-443). SPIE.

Alotaibi, A. (2020). Deep generative adversarial networks for image-to-image translation: A review. Symmetry, 12(10), 1705.

Wang, K., Gou, C., Duan, Y., Lin, Y., Zheng, X., & Wang, F. Y. (2017). Generative adversarial networks: introduction and outlook. IEEE/CAA Journal of Automatica Sinica, 4(4), 588-598.

Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan, B., De Mello, S., ... & Wetzstein, G. (2022). Efficient geometry-aware 3D generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 16123-16133).

Dirvanauskas, D., Maskeli?nas, R., Raudonis, V., Damaševi?ius, R., & Scherer, R. (2019). Hemigen: human embryo image generator based on generative adversarial networks. Sensors, 19(16), 3578.

Berrahal, M., & Azizi, M. (2022). Optimal text-to-image synthesis model for generating portrait images using generative adversarial network techniques. Indones. J. Electr. Eng. Comput. Sci., 25(2), 972-979.

Liu, Y., Li, Q., Sun, Z., & Tan, T. (2021). A 3 GAN: an attribute-aware attentive generative adversarial network for face aging. IEEE Transactions on Information Forensics and Security, 16, 2776-2790.

Alotaibi, A. Deep Generative Adversarial Networks for Image-to-Image Translation: A Review. Symmetry 2020, 12, 1705. https://doi.org/10.3390/sym12101705