Quality Assessment of Ambulatory Electrocardiogram Signals by Noise Detection using Optimal Binary Classification

Main Article Content

V. Supraja
P. Nageswara Rao
M. N. Giriprasad

Abstract

In order to improve the diagnostic capability in Ambulatory Electrocardiogram signal and to reduce the noise signal impacts, there is a need for more robust models in place. In terms of improvising to the existing solutions, this article explores a novel binary classifier that learns from the features optimized by fusion of diversity assessment measures, which performs Quality Assessment of Ambulatory Electrocardiogram Signals (QAAES) by Noise Detection. The performance of the proposed model QAAES has been scaled by comparing it with contemporary models. Concerning performance analysis, the 10-fold cross-validation has been carried on a benchmark dataset. The results obtained from experiments carried on proposed and other contemporary models for cross-validation metrics have been compared to signify the sensitivity, specificity, and noise detection accuracy.

Article Details

How to Cite
Supraja, V., P. N. . Rao, and M. N. . Giriprasad. “Quality Assessment of Ambulatory Electrocardiogram Signals by Noise Detection Using Optimal Binary Classification”. International Journal on Recent and Innovation Trends in Computing and Communication, vol. 10, no. 10, Oct. 2022, pp. 91-108, doi:10.17762/ijritcc.v10i10.5739.
Section
Articles

References

Quaglini, S., Rognoni, C., Spazzolini, C., Priori, S. G., Mannarino, S., & Schwartz, P. J. (2006). Cost-effectiveness of neonatal ECG screening for the long QT syndrome. European heart journal, 27(15), 1824-1832.

Chawla, M. P. S., Verma, H. K., & Kumar, V. (2008). RETRACTED: Artifacts and noise removal in electrocardiograms using independent component analysis.

Zaunseder, S.,s Huhle, R., & Malberg, H. (2011, September). CinC challenge—Assessing the usability of ECG by ensemble decision trees. In 2011 Computing in Cardiology (pp. 277-280). IEEE.

Chudá?ek, V., Zach, L., Kužílek, J., Spilka, J., & Lhotská, L. (2011, September). Simple scoring system for ECG quality assessment on android platform. In 2011 Computing in Cardiology (pp. 449-451). IEEE.

Varon, C., Testelmans, D., Buyse, B., Suykens, J. A., & Van Huffel, S. (2012, August). Robust artefact detection in long-term ECG recordings based on autocorrelation function similarity and percentile analysis. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3151-3154). IEEE.

Friesen, G. M., Jannett, T. C., Jadallah, M. A., Yates, S. L., Quint, S. R., & Nagle, H. T. (1990). A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Transactions on biomedical engineering, 37(1), 85-98.

Oster, J., Behar, J., Sayadi, O., Nemati, S., Johnson, A. E., & Clifford, G. D. (2015). Semisupervised ECG ventricular beat classification with novelty detection based on switching Kalman filters. IEEE Transactions on Biomedical Engineering, 62(9), 2125-2134.

Li, Q., & Clifford, G. D. (2012). Signal quality and data fusion for false alarm reduction in the intensive care unit. Journal of electrocardiology, 45(6), 596-603.

Falk, T. H., & Maier, M. (2014). MS-QI: A modulation spectrum-based ECG quality index for telehealth applications. IEEE Transactions on Biomedical Engineering, 63(8), 1613-1622.

Orphanidou, C., Bonnici, T., Charlton, P., Clifton, D., Vallance, D., & Tarassenko, L. (2014). Signal-quality indices for the electrocardiogram and photoplethysmogram: Derivation and applications to wireless monitoring. IEEE journal of biomedical and health informatics, 19(3), 832-838.

Castro, D., Félix, P., & Presedo, J. (2014). A method for context-based adaptive QRS clustering in real time. IEEE journal of biomedical and health informatics, 19(5), 1660-1671.

Takalokastari, T., Alasaarela, E., Kinnunen, M., & Jämsä, T. (2013). Quality of the wireless electrocardiogram signal during physical exercise in different age groups. IEEE journal of biomedical and health informatics, 18(3), 1058-1064.

Brüser, C., Antink, C. H., Wartzek, T., Walter, M., & Leonhardt, S. (2015). Ambient and unobtrusive cardiorespiratory monitoring techniques. IEEE reviews in biomedical engineering, 8, 30-43.

Forouzanfar, M., Dajani, H. R., Groza, V. Z., Bolic, M., Rajan, S., & Batkin, I. (2015). Oscillometric blood pressure estimation: past, present, and future. IEEE reviews in biomedical engineering, 8, 44-63.

Arteaga-Falconi, J. S., Al Osman, H., & El Saddik, A. (2015). ECG authentication for mobile devices. IEEE Transactions on Instrumentation and Measurement, 65(3), 591-600.

Kiranyaz, S., Ince, T., & Gabbouj, M. (2015). Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Transactions on Biomedical Engineering, 63(3), 664-675.

Yathiraju, D. . (2022). Blockchain Based 5g Heterogeneous Networks Using Privacy Federated Learning with Internet of Things. Research Journal of Computer Systems and Engineering, 3(1), 21–28. Retrieved from https://technicaljournals.org/RJCSE/index.php/journal/article/view/37

Ye, C., Kumar, B. V., & Coimbra, M. T. (2015). An automatic subject-adaptable heartbeat classifier based on multiview learning. IEEE journal of biomedical and health informatics, 20(6), 1485-1492.

Satija, U., Ramkumar, B., & Manikandan, M. S. (2017). Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring. IEEE Internet of Things Journal, 4(3), 815-823.

Satija, U., Ramkumar, B., & Manikandan, M. S. (2017). Automated ECG noise detection and classification system for unsupervised healthcare monitoring. IEEE Journal of biomedical and health informatics, 22(3), 722-732.

Clifford, G. D., Azuaje, F., & Mcsharry, P. (2006). ECG statistics, noise, artifacts, and missing data. Advanced methods and tools for ECG data analysis, 6(1), 18.

Shanthi, D. N. ., & J, S. . (2022). Machine Learning Architecture in Soft Sensor for Manufacturing Control and Monitoring System Based on Data Classification. Research Journal of Computer Systems and Engineering, 2(2), 01:05. Retrieved from https://technicaljournals.org/RJCSE/index.php/journal/article/view/24

Van Alste, J. A., & Schilder, T. S. (1985). Removal of base-line wander and power-line interference from the ECG by an efficient FIR filter with a reduced number of taps. IEEE transactions on biomedical engineering, (12), 1052-1060.

Kolios, P., Panayiotou, C., Ellinas, G., & Polycarpou, M. (2016). Data-driven event triggering for IoT applications. IEEE Internet of Things Journal, 3(6), 1146-1158.

Satija, U., Ramkumar, B., & Manikandan, M. S. (2016). Robust cardiac event change detection method for long?term healthcare monitoring applications. Healthcare technology letters, 3(2), 116-123.

Satija, U., Ramkumar, B., & Manikandan, M. S. (2016). Robust cardiac event change detection method for long?term healthcare monitoring applications. Healthcare technology letters, 3(2), 116-123.

Zhang, Y., Wei, S., Long, Y., & Liu, C. (2015). Performance analysis of multiscale entropy for the assessment of ECG signal quality. Journal of Electrical and Computer Engineering, 2015.

Mann, S. A., & Orglmeister, R. (2014, September). A flexible PCA-based ECG-reconstruction algorithm with confidence estimation for ECG during exercise. In Computing in Cardiology 2014 (pp. 33-36). IEEE.

Martinez-Tabares, F. J., Espinosa-Oviedo, J., & Castellanos-Dominguez, G. (2012, January). Improvement of ECG signal quality measurement using correlation and diversity-based approaches. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 4295-4298). IEEE.

Maan, A. C., van Zwet, E. W., Man, S., Oliveira-Martens, S. M., Schalij, M. J., & Swenne, C. A. (2011, September). Assessment of signal quality and electrode placement in ECGs using a reconstruction matrix. In 2011 Computing in Cardiology (pp. 289-292). IEEE.

Noponen, K., Karsikas, M., Tiinanen, S., Kortelainen, J., Huikuri, H., & Seppänen, T. (2011, September). Electrocardiogram quality classification based on robust best subsets linear prediction error. In 2011 Computing in Cardiology (pp. 365-368). IEEE.

Moody, B. E. (2011, September). Rule-based methods for ECG quality control. In 2011 Computing in Cardiology (pp. 361-363). IEEE.

Langley, P., Di Marco, L. Y., King, S., Duncan, D., Di Maria, C., Duan, W., ... & Murray, A. (2011, September). An algorithm for assessment of quality of ECGs acquired via mobile telephones. In 2011 Computing in Cardiology (pp. 281-284). IEEE.

Aboukhalil, A., Nielsen, L., Saeed, M., Mark, R. G., & Clifford, G. D. (2008). Reducing false alarm rates for critical arrhythmias using the arterial blood pressure waveform. Journal of biomedical informatics, 41(3), 442-451.

Xia, H., Garcia, G. A., McBride, J. C., Sullivan, A., De Bock, T., Bains, J., ... & Zhao, X. (2011, September). Computer algorithms for evaluating the quality of ECGs in real time. In 2011 Computing in Cardiology (pp. 369-372). IEEE.

Lee, J., McManus, D. D., Merchant, S., & Chon, K. H. (2011). Automatic motion and noise artifact detection in Holter ECG data using empirical mode decomposition and statistical approaches. IEEE Transactions on Biomedical Engineering, 59(6), 1499-1506.

Oh, S. (2004). A new quality measure in electrocardiogram signal (Doctoral dissertation, University of Florida).

Tobón, D. P., & Falk, T. H. (2015, May). Online ECG quality assessment for context-aware wireless body area networks. In 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE) (pp. 587-592). IEEE.

Morgado, E., Alonso-Atienza, F., Santiago-Mozos, R., Barquero-Pérez, Ó., Silva, I., Ramos, J., & Mark, R. (2015). Quality estimation of the electrocardiogram using cross-correlation among leads. Biomedical engineering online, 14(1), 1-19.

Schumm, J. (2010). Quality assessment of physiological signals during ambulatory measurements. ETH Zurich.

Yu, C., Liu, Z., McKenna, T., Reisner, A. T., & Reifman, J. (2006). A method for automatic identification of reliable heart rates calculated from ECG and PPG waveforms. Journal of the American Medical Informatics Association, 13(3), 309-320.

Satija, U., Ramkumar, B., & Manikandan, M. S. (2017). Noise-aware dictionary-learning-based sparse representation framework for detection and removal of single and combined noises from ECG signal. Healthcare technology letters, 4(1), 2-12.

Abdulaal, A. H., Shah, A. F. M. S., & Pathan, A.-S. K. (2022). NM-LEACH: A Novel Modified LEACH Protocol to Improve Performance in WSN. International Journal of Communication Networks and Information Security (IJCNIS), 14(1). https://doi.org/10.17762/ijcnis.v14i1.5127

Naseri, H., & Homaeinezhad, M. R. (2015). Electrocardiogram signal quality assessment using an artificially reconstructed target lead. Computer Methods in Biomechanics and Biomedical Engineering, 18(10), 1126-1141.

V. Supraja, P. Nageswara Rao, M. N. Giriprasad, (2021). “Supervised Learning-based Noise Detection to Improve the Performance of Filter-based ECG Signal Denoising” Journal of Artificial Intelligence and Soft Computing Research, 2022.

Moeyersons, J., Smets, E., Morales, J., Villa, A., De Raedt, W., Testelmans, D., ... & Varon, C. (2019). Artefact detection and quality assessment of ambulatory ECG signals. Computer methods and programs in biomedicine, 182, 105050.

Mu, E., & Pereyra-Rojas, M. (2016). Practical decision making: an introduction to the Analytic Hierarchy Process (AHP) using super decisions V2. Springer.

Yang XS, D. S. (2014, Jan 1). Cuckoo search: recent advances and applications. Neural Computing and Applications., 24(1), 169-74.

Ghasemi A, Z. S. (2012). Normality tests for statistical analysis: a guide for non-statisticians. International journal of endocrinology and metabolism., 10(2), 486.

McKnight PE, N. J. (2010, Jan 30). Mann?Whitney U Test. The Corsini encyclopedia of psychology., 1-1.

Budak H, T. S. (2016, Dec 20). A modified t-score for feature selection. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A-Uygulamal? Bilimler ve Mühendislik., 17(5), 845-52.

Huikuri, H. V., Castellanos, A., & Myerburg, R. J. (2001). Sudden death due to cardiac arrhythmias. New England Journal of Medicine, 345(20), 1473-1482.

Kadambe, S., Murray, R., & Boudreaux-Bartels, G. F. (1999). Wavelet transform-based QRS complex detector. IEEE Transactions on biomedical Engineering, 46(7), 838-848.

Ye, C., Kumar, B. V., & Coimbra, M. T. (2012). Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Transactions on Biomedical Engineering, 59(10), 2930-2941.

Addison, P. S. (2005). Wavelet transforms and the ECG: a review. Physiological measurement, 26(5), R155.

Reddy, K. Uday Kumar, S. Shabbiha, and M. Rudra Kumar. "Design of high-security smart health care monitoring system using IoT." Int. J 8 (2020).

Nam, T. S., Thuc, H. V., & Long, N. V. (2022). A High-Throughput Hardware Implementation of NAT Traversal For IPSEC VPN. International Journal of Communication Networks and Information Security (IJCNIS), 14(1). https://doi.org/10.17762/ijcnis.v14i1.5260

Suneel, Chenna Venkata, K. Prasanna, and M. Rudra Kumar. "Frequent data partitioning using parallel mining item sets and MapReduce." International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2.4 (2017)

Sahoo, P., & Riedel, T. (1998). Mean value theorems and functional equations. World Scientific.

Z-table. (n.d.). Retrieved from http://www.sjsu.edu/faculty/gerstman/StatPrimer/z-table.PDF

Savoy. (2012, Jan). Feature selection in sentiment analysis. Proc. CORIA, no., 273-84.

Rudra Kumar, M., Rashmi Pathak, and Vinit Kumar Gunjan. "Diagnosis and Medicine Prediction for COVID-19 Using Machine Learning Approach." Computational Intelligence in Machine Learning. Springer, Singapore, 2022. 123-133.

Rudra Kumar, M., Rashmi Pathak, and Vinit Kumar Gunjan. "Machine Learning-Based Project Resource Allocation Fitment Analysis System (ML-PRAFS)." Computational Intelligence in Machine Learning. Springer, Singapore, 2022. 1-14.

Rutkowski L, J. M. (2020). Misclassification Error Impurity Measure. InStream Data Mining: Algorithms and Their Probabilistic Properties, 63-82.

Xue Y, H. M. (2017). Active learning of classification models with likert-scale feedback. In Proceedings of the 2017 SIAM International Conference on Data Mining, (pp. 28-35).