A Cloud-Oriented Green Computing Architecture for E-Learning Applications

Main Article Content

K. Palanivel, S. Kuppuswami

Abstract

Cloud computing is a highly scalable and cost-effective infrastructure for running Web applications. E-learning or e-Learning is one of such Web application has increasingly gained popularity in the recent years, as a comprehensive medium of global education system/training systems. The development of e-Learning Application within the cloud computing environment enables users to access diverse software applications, share data, collaborate more easily, and keep their data safely in the infrastructure. However, the growing demand of Cloud infrastructure has drastically increased the energy consumption of data centers, which has become a critical issue. High energy consumption not only translates to high operational cost, which reduces the profit margin of Cloud providers, but also leads to high carbon emissions which is not environmentally friendly. Hence, energy-efficient solutions are required to minimize the impact of Cloud-Oriented E-Learning on the environment. E-learning methods have drastically changed the educational environment and also reduced the use of papers and ultimately reduce the production of carbon footprint. E-learning methodology is an example of Green computing. Thus, in this paper, it is proposed a Cloud-Oriented Green Computing Architecture for eLearning Applications (COGALA). The e-Learning Applications using COGALA can lower expenses, reduce energy consumption, and help organizations with limited IT resources to deploy and maintain needed software in a timely manner. This paper also discussed the implication of this solution for future research directions to enable Cloud-Oriented Green Computing.

Article Details

How to Cite
, K. P. S. K. (2014). A Cloud-Oriented Green Computing Architecture for E-Learning Applications. International Journal on Recent and Innovation Trends in Computing and Communication, 2(11), 3775–3783. https://doi.org/10.17762/ijritcc.v2i11.3556
Section
Articles