Comparative Review of Object Detection Algorithms in Small Single-Board Computers

Main Article Content

Tuan Muhammad Naeem Bin Tuan Rashid
Lokman Mohd Fadzil

Abstract

Object detection is a crucial task in computer vision with a wide range of applications. However, deploying object detection algorithms on small single-board computers (SBCs) poses unique challenges. In this review article, we present an in-depth comparative analysis of object detection algorithms tailored for small SBCs. We have conducted an extensive literature review on existing research in object detection algorithms and evaluated the performance of different approaches on benchmark datasets. Our review encompasses cutting-edge deep learning methods, which are YOLO, SSD, and Faster R-CNN. We delve into the challenges and limitations of implementing these algorithms on small SBCs and offer recommendations for optimizing their performance in such environments. Our analysis aims to shed light on the strengths and weaknesses of various object detection algorithms for small SBCs, ultimately guiding practitioners in making informed decisions and identifying potential avenues for future research in this domain.

Article Details

How to Cite
Tuan Rashid, T. M. N. B. ., & Fadzil, L. M. . (2023). Comparative Review of Object Detection Algorithms in Small Single-Board Computers. International Journal on Recent and Innovation Trends in Computing and Communication, 11(7), 244–252. https://doi.org/10.17762/ijritcc.v11i7.7904
Section
Articles

References

Pathak, A. R., Pandey, M., & Rautaray, S. (2018). Application of deep learning for object detection. Procedia computer science, 132, 1706-1717.

O'Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G. V., Krpalkova, L., ... & Walsh, J. (2020). Deep learning vs traditional computer vision. In Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference (CVC), Volume 1 1 (pp. 128-144). Springer International Publishing.

Ildar, R. (2021). Increasing FPS for single board computers and embedded computers in 2021 (Jetson nano and YOVOv4-tiny). Practice and review. arXiv preprint arXiv:2107.12148.

NVIDIA. (n.d.). Jetson Nano Developer Kit. NVIDIA Developer. Retrieved May 2, 2023, from https://developer.nvidia.com/embedded/jetson-nano-developer-kit.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14 (pp. 21-37). Springer International Publishing.

Girshick, R. (2015). Fast r-CNN. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448).

Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object detection with deep learning: A review. IEEE Transactions on neural networks and learning systems, 30(11), 3212-3232. [8] Lee, Y. H., & Kim, Y. (2020). Comparison of CNN and YOLO for Object Detection. Journal of the semiconductor & display technology, 19(1), 85-92.

Malhotra, P., & Garg, E. (2020, July). Object detection techniques: a comparison. In 2020 7th International Conference on Smart Structures and Systems (ICSSS) (pp. 1-4). IEEE.

Lee, C., Kim, H. J., & Oh, K. W. (2016, October). Comparison of faster R-CNN models for object detection. In 2016 16th international conference on Control, automation and systems (iccas) (pp. 107-110). IEEE.

Jabir, B., Falih, N., & Rahmani, K. (2021). Accuracy and Efficiency Comparison of Object Detection Open-Source Models. International Journal of Online & Biomedical Engineering, 17(5).

[12] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).

Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7263-7271).

Farhadi, A., & Redmon, J. (2018, June). Yolov3: An incremental improvement. In Computer vision and pattern recognition (Vol. 1804, pp. 1-6). Berlin/Heidelberg, Germany: Springer.

Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.

Jocher, G., et al. (2022). YOLOv5: State-of-the-art object detection model (v7.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.7347926

Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., ... & Wei, X. (2022). YOLOv6: A single-stage object detection framework for industrial applications. arXiv preprint arXiv:2209.02976.

Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M. (2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696.’

Gevorgyan, Z. (2022). SIoU loss: More powerful learning for bounding box regression. arXiv preprint arXiv:2205.12740.

Terven, J., & Cordova-Esparza, D. (2023). A Comprehensive Review of YOLO: From YOLOv1 to YOLOv8 and Beyond. arXiv preprint arXiv:2304.00501.

C.-Y. Wang, H.-Y. M. Liao, and I.-H. Yeh, "Designing network design strategies through gradient path analysis," arXiv preprint arXiv:2211.04800, 2022.

X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, "Repvgg: Making vgg-style convnets great again," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 13733–13742, 2021.

K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE Conference on computer vision and pattern recognition, pp. 770–778, 2016.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," in Proceedings of the IEEE Conference on computer vision and pattern recognition, pp. 4700–4708, 2017.

C.-Y. Wang, I.-H. Yeh, & H.-Y. M. Liao, "You only learn one representation: Unified network for multiple tasks," arXiv preprint arXiv:2105.04206, 2021.

Uijlings, J. R., Van De Sande, K. E., Gevers, T., & Smeulders, A. W. (2013). Selective search for object recognition. International journal of computer vision, 104, 154-171.

Noble, W. S. (2006). What is a support vector machine?. Nature Biotechnology, 24(12), 1565-1567.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28.

Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2023). Object detection in 20 years: A survey. Proceedings of the IEEE.

Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? The Kitti Vision Benchmark Suite. 2012 IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/cvpr.2012.6248074

Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90. https://doi.org/10.1016/j.compag.2018.02.016

Deng, C., & Liu, Y. (2021). A deep learning-based inventory management and demand prediction optimization method for ANOMALY DETECTION. Wireless Communications and Mobile Computing, 2021, 1–14. https://doi.org/10.1155/2021/9969357

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on Deep Learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., & Quillen, D. (2017). Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. The International Journal of Robotics Research, 37(4–5), 421–436. https://doi.org/10.1177/0278364917710318

Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6848-6856).

Han, S., Mao, H., & Dally, W. J. (2015). Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149.

Cheng, Y., Wang, D., Zhou, P., & Zhang, T. (2017). A survey of model compression and acceleration for deep neural networks. arXiv preprint arXiv:1710.09282.

Geirhos, R., Temme, C. R., Rauber, J., Schütt, H. H., Bethge, M., & Wichmann, F. A. (2018). Generalisation in humans and deep neural networks. Advances in neural information processing systems, 31.

Cath, C., Wachter, S., Mittelstadt, B., Taddeo, M., & Floridi, L. (2018). Artificial intelligence and the ‘good society’: the US, EU, and UK approach. Science and engineering ethics, 24, 505-528.

Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., ... & Adam, H. (2019). Searching for mobilenetv3. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 1314-1324).

Models and pre-trained weights. Models and pre-trained weights - Torchvision 0.15 documentation. (n.d.). https://pytorch.org/vision/stable/models.html