Histopathological Image Classification Methods and Techniques in Deep Learning Field

Main Article Content

Sudha Rani V
M Jogendra Kumar

Abstract

A cancerous tumour in a woman's breast, Histopathology detects breast cancer. Histopathological images are a hotspot for medical study since they are difficult to judge manually. In addition to helping doctors identify and treat patients, this image classification can boost patient survival. This research addresses the merits and downsides of deep learning methods for histopathology imaging of breast cancer. The study's histopathology image classification and future directions are reviewed. Automatic histopathological image analysis often uses complete supervised learning where we can feed the labeled dataset to model for the classification. The research methods are frequentlytrust on feature extraction techniques tailored to specific challenges, such as texture, spatial, graph-based, and morphological features. Many deep learning models are also created for picture classification. There are various deep learning methods for classifying histopathology images.

Article Details

How to Cite
Rani V, S. ., & Kumar, M. J. . (2022). Histopathological Image Classification Methods and Techniques in Deep Learning Field. International Journal on Recent and Innovation Trends in Computing and Communication, 10(2s), 158–165. https://doi.org/10.17762/ijritcc.v10i2s.5923
Section
Articles

References

F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, and Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mo, CA. Cancer J. Clin. 68 (2018) 394–424. doi:10.3322/caac.21492

R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2016. - PubMed - NCBI, CA. Cancer J. Clin. 66 (2016) 7–30. doi:10.3322/caac.21332

C.E. DeSantis, S.A. Fedewa, A. Goding Sauer, J.L. Kramer, R.A. Smith, A. Jemal, Breast cancer statistics, 2015: Convergence of incidence rates between black and white women, CA. Cancer J. Clin. 66 (2016) 31–42. doi:10.3322/caac.21320

N. Stathonikos, M. Veta, A. Huisman, P. van Diest, Going fully digital: Perspective of a Dutch academic pathology lab, J. Pathol. Inform. 4 (2013) 15. doi:10.4103/2153- 3539.114206

Sandeep Pande and Manna Sheela Rani Chetty, “Analysis of Capsule Network (Capsnet) Architectures and Applications”, Journal of Advanced Research in Dynamical and Control Systems, Vol. 10, No. 10, pp. 2765-2771, 2018.

Sandeep Pande and Manna Sheela Rani Chetty, “Bezier Curve Based Medicinal Leaf Classification using Capsule Network”, International Journal of Advanced Trends in Computer Science and Engineering, Vol. 8, No. 6, pp. 2735-2742, 2019.

Pande S.D., Chetty M.S.R. (2021) Fast Medicinal Leaf Retrieval Using CapsNet. In: Bhattacharyya S., Nayak J., Prakash K.B., Naik B., Abraham A. (eds) International Conference on Intelligent and Smart Computing in Data Analytics. Advances in Intelligent Systems and Computing, vol 1312.

Sandeep Dwarkanath Pande, Pramod Pandurang Jadhav, Rahul Joshi, Amol Dattatray Sawant, Vaibhav Muddebihalkar, Suresh Rathod, Madhuri NavnathGurav, Soumitra Das, “Digitization of handwritten Devanagari text using CNN transfer learning – A better customer service support”, Neuroscience Informatics, Volume 2, Issue 3, 2022.

AA. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1097–1105.

Wang, Fei, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang. "Residual attention network for image classification." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156-3164. 2017.

C. Szegedyet al., “Going deeper with convolutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

Wan J, Yilmaz A, Yan L. Dcf-bow: Build match graph using bag of deep convolutional features for structure from motion. IEEE Geosci Remote SensLett 2018;15(12):1847–51.

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556 (2014)

Sitaula C, Hossain M. Attention-based vgg-16 model for covid-19 chest x-ray image classification. ApplIntell 2020. https://doi.org/10.1007/s10489-020-02055-x

Zhou B, Khosla A, Lapedriza A, Torralba A, Oliva A. Places: an image database for deep scene understanding. arXiv preprint arXiv:161002055 (2016).

Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004;60(2):91–110.

Oliva A, Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis. 2001;42(3):145–75.

Chollet F. Xception: Deep learning with depthwise separable convolutions. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp 1251–1258 (2017)

Hearst MA. Support vector machines. IEEE Intell Syst. 1998;13(4):18–28.

Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

Pande, Sandeep Dwarkanath et al. ‘Shape and Textural Based Image Retrieval Using K-NN Classifier’, Journal of Intelligent & Fuzzy Systems, vol. 43, no. 4, pp. 4757-4768, 2022.

Lewis DD. Naive (bayes) at forty: The independence assumption in information retrieval. In: Proc. European Conference on Machine Learning, pp 4–15 (1998)

Loey M, Smarandache F, Khalifa M. Within the lack of chest covid-19 x-ray dataset: a novel detection model based on gan and deep transfer learning. Symmetry. 2020;12(4):651.

J. Xie, R. Liu, J. Luttrell, and C. Zhang, ``Deep learning based analysis of histopathological images of breast cancer,'' Frontiers Genet., vol. 10, p. 80, Feb. 2019.

C. Kaushal, S. Bhat, D. Koundal, and A. Singla, ``Recent trends in computer assisted diagnosis (CAD) system for breast cancer diagnosis using histopathological images,'' IRBM, vol. 40, no. 4, pp. 211_227, Aug. 2019.

A. Das, M. S. Nair, and S. D. Peter, ``Computer-aided histopathological image analysis techniques for automated nuclear atypia scoring of breast cancer: A review,'' J. Digit. Imag., pp. 1_31, Jan. 2020, doi: 10.1007/s10278-019-00295-z.

L. Vincent and P. Soille, ``Watersheds in digital spaces: An efficient algorithm based on immersion simulations,'' IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 6, pp. 583_598, Jun. 1991.

Y. Benhammou, B. Achchab, F. Herrera, and S. Tabik, ``BreakHis based breast cancer automatic diagnosis using deep learning: Taxonomy, survey and insights,'' Neurocomputing, vol. 375, pp. 9_24, Jan. 2020

M. Hammad, P. Pªawiak, K. Wang, and U. R. Acharya, ``ResNet_Attention model for human authentication using ECG signals,'' Expert Syst., p. e12547, Mar. 2020, doi: 10.1111/exsy.12547

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ``Gradient-based learning applied to document recognition,'' Proc. IEEE, vol. 86, no. 11, pp. 2278_2324, Nov. 1998.

T. Araújo, G. Aresta, E. Castro, J. Rouco, P. Aguiar, C. Eloy, A. Polónia, and A. Campilho, ``Classi_cation of breast cancer histology images using convolutional neural networks,'' PLoS ONE, vol. 12, no. 6, Jun. 2017, Art. no. e0177544.

J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead, ``Winnertake- all networks of O (n) complexity,'' in Proc. Adv. Neural Inf. Process. Syst., 1989, pp. 703_711.

Pin Wang, PufeiLi , Yongming Li , Jiaxin Wang , Jin Xu, Histopathological image classification based on cross-domain deep transferred feature fusion, Biomedical Signal Processing and Control 68 (2021) 102705

Saini, Manisha, and Seba Susan. "Deep transfer with minority data augmentation for imbalanced breast cancer dataset." Applied Soft Computing 97 (2020): 106759.

Trung Vu, RavivRaich, UK Arvind Rao, A Novel Attribute-Based Symmetric Multiple Instance Learning for Histopathological Image Analysis, IEEE transactions on medical imaging, VOL. 39, NO. 10, OCTOBER 2020

Yusuf Celik ,MuhammedTalo , OzalYildirim , Murat Karabatak , U Rajendra Acharya, Automated Invasive Ductal Carcinoma Detection Based Using Deep Transfer Learning with Whole-Slide Images, Pattern Recognition Letters (2020) , https://doi.org/10.1016/j.patrec.2020.03.011

Said Boumaraf ,Xiabi Liu , A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images, September 2020Biomedical Signal Processing and Control 63(January 2021):1746-8094

Xi Wang ,Hao Chen, Qi Dou, EfstratiosTsougenis, Qitao Huang, MuyanCai, and Pheng-Ann Heng, Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis, IEEE Transactions On Cybernetics, VoL. 50, NO. 9, SEPTEMBER 2020

featuresPinWanga,, Qi Songa, YongmingLia, ShanshanLva, JiaxinWanga, LinyuLia,HeHuaZhangba, Cross-task extreme learning machine for breast cancer image classification with deep convolutional features, Biomedical Signal Processing and Control 63 (2021) 102192

F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte, ``A dataset for breast cancer histopathological image classification,'' IEEE Trans. Biomed. Eng., vol. 63, no. 7, pp. 1455_1462, Jul. 2016.

Ojala T, Pietikäinen M, Harwood D 1996 Pattern. Rec. 29 51-59

Ojala T, Pietikainen M, Maenpaa T 2002 IEEE Trans. on Pattern Anal. and Mach Intell. 24 971- 987

Guo Z, Zhang L, Zhang D 2010 IEEE Trans. on Image Proc. 19 1657-1663.

Filipczuk P, Fevens T, Krzyak A 2013 IEEE Trans. on Med. Imaging 32 2169-2178.

George Y M, Zayed H H, Roushdy M I 2013 IEEE Sys. J. 8 949-964.

Wang P, Hu X, Li Y 2016 Signal Processing 122 pp 1-13

Osareh A, Shadgar B 2010 5th Int. Symp. on Health Info. and Bio. 114-120.

Spanhol F A, Oliveira L S, Petitjean C 2016 IJCNN. 2560-2567.

Bayramoglu N, Kannala J, Heikkilä J 2016 ICPR. 2440-2445

Song Y, Zou J J, Chang H 2017 ISBI. 600-603

Song Y, Chang H, Huang H 2017 Int. Conf. on Med. Image Comp. and Computer-Assisted Interv. 99-106.

Spanhol F A, Oliveira L S, Cavalin P R 2017 IEEE Int. Conf. on SMC 1868-1873.

S. Pouyanfar, S.C. Chen, M.L. Shyu, An efficient deep residual-inceptionnetwork for multimedia classification, IEEE International Conference on Multimedia and Expo (2017) 373–378, http://dx.doi.org/10.1109/ICME.2017.8019447.

M. Oquab, L. Bottou, I. Laptev, et al., Learning and Transferring Mid-levelImage Representations Using Convolutional Neural Networks[C]// ComputerVision and Pattern Recognition, 2014, pp. 1717–1724, http://dx.doi.org/10.1109/CVPR.2014.222.

G.B. Huang, H. Zhou, X. Ding, et al., Extreme learning machine for regressionand multiclass classification, IEEE Trans. Syst. Man Cybern. B Cybern. 42 (2)(2012) 513–529, http://dx.doi.org/10.1109/tsmcb.2011.2168604.