A State-of-the-Art Review of Time Series Forecasting Using Deep Learning Approaches

Main Article Content

Radhika Chandrasekaran
Senthil Kumar Paramasivan

Abstract

Time series forecasting has recently emerged as a crucial study area with a wide spectrum of real-world applications. The complexity of data processing originates from the amount of data processed in the digital world. Despite a long history of successful time-series research using classic statistical methodologies, there are some limits in dealing with an enormous amount of data and non-linearity. Deep learning techniques effectually handle the complicated nature of time series data. The effective analysis of deep learning approaches like Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long short-term memory (LSTM), Gated Recurrent Unit (GRU), Autoencoders, and other techniques like attention mechanism, transfer learning, and dimensionality reduction are discussed with their merits and limitations. The performance evaluation metrics used to validate the model's accuracy are discussed. This paper reviews various time series applications using deep learning approaches with their benefits, challenges, and opportunities.

Article Details

How to Cite
Chandrasekaran , R., & Kumar Paramasivan, S. (2022). A State-of-the-Art Review of Time Series Forecasting Using Deep Learning Approaches. International Journal on Recent and Innovation Trends in Computing and Communication, 10(12), 92–105. https://doi.org/10.17762/ijritcc.v10i12.5890
Section
Articles

References

Ayoobi, N., Sharifrazi, D., Alizadehsani, R., Shoeibi, A., Gorriz, J. M., Moosaei, H., ... & Mosavi, A. (2021). Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods. Results in Physics, 27, 104495.

Niu, T., Wang, J., Lu, H., Yang, W., & Du, P. (2020). Developing a deep learning framework with two-stage feature selection for multivariate financial time series forecasting. Expert Systems with Applications, 148, 113237.

Harrou, F., Dairi, A., Kadri, F., & Sun, Y. (2020). Forecasting emergency department overcrowding: A deep learning framework. Chaos, Solitons & Fractals, 139, 110247.

Shastri, S., Singh, K., Kumar, S., Kour, P., & Mansotra, V. (2020). Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study. Chaos, Solitons & Fractals, 140, 110227.

Bharati, S., Podder, P., & Mondal, M. R. H. (2020). Hybrid deep learning for detecting lung diseases from X-ray images. Informatics in Medicine Unlocked, 20, 100391.

Li, R., & Liu, Z. (2020). Stress detection using deep neural networks. BMC Medical Informatics and Decision Making, 20(11), 1-10.

Shen, J., & Shafiq, M. O. (2020). Short-term stock market price trend prediction using a comprehensive deep learning system. Journal of big Data, 7(1), 1-33.

Chen, Q., Zhang, W., & Lou, Y. (2020). Forecasting stock prices using a hybrid deep learning model integrating attention mechanism, multi-layer perceptron, and bidirectional long-short term memory neural network. IEEE Access, 8, 117365-117376.

Hrasko, R., Pacheco, A. G., & Krohling, R. A. (2015). Time series prediction using restricted boltzmann machines and backpropagation. Procedia Computer Science, 55, 990-999.

Mudassir, M., Bennbaia, S., Unal, D., & Hammoudeh, M. (2020). Time-series forecasting of Bitcoin prices using high-dimensional features: a machine learning approach. Neural computing and applications, 1-15.

Hewage, P., Trovati, M., Pereira, E., & Behera, A. (2021). Deep learning-based effective fine-grained weather forecasting model. Pattern Analysis and Applications, 24(1), 343-366.

Khan, M. I., & Maity, R. (2020). Hybrid deep learning approach for multi-step-ahead daily rainfall prediction using GCM simulations. IEEE Access, 8, 52774-52784.

Bajpai, V., Bansal, A., Verma, K., & Agarwal, S. (2020). Prediction of Rainfall in Rajasthan, India using Deep and Wide Neural Network. arXiv preprint arXiv:2010.11787.

Sun, D., Wu, J., Huang, H., Wang, R., Liang, F., & Xinhua, H. (2021). Prediction of short-time rainfall based on deep learning. Mathematical Problems in Engineering, 2021.

Dabhade, A., Roy, S., Moustafa, M. S., Mohamed, S. A., El Gendy, R., & Barma, S. (2021, December). Extreme Weather Event (Cyclone) Detection in India Using Advanced Deep Learning Techniques. In 2021 9th International Conference on Orange Technology (ICOT) (pp. 1-4). IEEE.

Li, H., Cui, Y., Wang, S., Liu, J., Qin, J., & Yang, Y. (2020). Multivariate financial time-series prediction with certified robustness. IEEE Access, 8, 109133-109143.

Sharma, S., Rai, S., & Krishnan, N. C. (2020). Wheat crop yield prediction using deep LSTM model. arXiv preprint arXiv:2011.01498.

Sagan, V., Maimaitijiang, M., Bhadra, S., Maimaitiyiming, M., Brown, D. R., Sidike, P., & Fritschi, F. B. (2021). Field-scale crop yield prediction using multi-temporal WorldView-3 and PlanetScope satellite data and deep learning. ISPRS journal of photogrammetry and remote sensing, 174, 265-281.

Jin, X. B., Yang, N. X., Wang, X. Y., Bai, Y. T., Su, T. L., & Kong, J. L. (2020). Hybrid deep learning predictor for smart agriculture sensing based on empirical mode decomposition and gated recurrent unit group model. Sensors, 20(5), 1334.

Khaki, S., & Wang, L. (2019). Crop yield prediction using deep neural networks. Frontiers in plant science, 10, 621.

Son, H., & Kim, C. (2020). A deep learning approach to forecasting monthly demand for residential–sector electricity. Sustainability, 12(8), 3103.

Mehdipour Pirbazari, A., Farmanbar, M., Chakravorty, A., & Rong, C. (2020). Short-term load forecasting using smart meter data: A generalization analysis. Processes, 8(4), 484.

Gasparin, A., Lukovic, S., & Alippi, C. (2022). Deep learning for time series forecasting: The electric load case. CAAI Transactions on Intelligence Technology, 7(1), 1-25.

Shao, X., Pu, C., Zhang, Y., & Kim, C. S. (2020). Domain fusion CNN-LSTM for short-term power consumption forecasting. IEEE Access, 8, 188352-188362.

Kim, M., Choi, W., Jeon, Y., & Liu, L. (2019). A hybrid neural network model for power demand forecasting. Energies, 12(5), 931.

Bouktif, S., Fiaz, A., Ouni, A., & Serhani, M. A. (2018). Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies, 11(7), 1636.

Hu, T., Wu, W., Guo, Q., Sun, H., Shi, L., & Shen, X. (2019). Very short-term spatial and temporal wind power forecasting: A deep learning approach. CSEE Journal of Power and Energy Systems, 6(2), 434-443.

Tan, M., Yuan, S., Li, S., Su, Y., Li, H., & He, F. (2019). Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning. IEEE transactions on power systems, 35(4), 2937-2948.

Yan, K., Wang, X., Du, Y., Jin, N., Huang, H., & Zhou, H. (2018). Multi-step short-term power consumption forecasting with a hybrid deep learning strategy. Energies, 11(11), 3089.

Liu, B., Zhao, S., Yu, X., Zhang, L., & Wang, Q. (2020). A novel deep learning approach for wind power forecasting based on WD-LSTM model. Energies, 13(18), 4964.

Xie, H., Zhang, L., & Lim, C. P. (2020). Evolving CNN-LSTM models for time series prediction using enhanced grey wolf optimizer. IEEE Access, 8, 161519-161541.

Freeman, B. S., Taylor, G., Gharabaghi, B., & Thé, J. (2018). Forecasting air quality time series using deep learning. Journal of the Air & Waste Management Association, 68(8), 866-886.

Bata, M. T., Carriveau, R., & Ting, D. S. K. (2020). Short-term water demand forecasting using hybrid supervised and unsupervised machine learning model. Smart Water, 5(1), 1-18.

Chu, Y., Huang, C., Xie, X., Tan, B., Kamal, S., & Xiong, X. (2018). Multilayer hybrid deep-learning method for waste classification and recycling. Computational Intelligence and Neuroscience, 2018.

Du, S., Li, T., Yang, Y., & Horng, S. J. (2019). Deep air quality forecasting using hybrid deep learning framework. IEEE Transactions on Knowledge and Data Engineering, 33(6), 2412-2424.

Abrishami, A., & Aliakbary, S. (2019). Predicting citation counts based on deep neural network learning techniques. Journal of Informetrics, 13(2), 485-499.

Sharfuddin, A. A., Tihami, M. N., & Islam, M. S. (2018, September). A deep recurrent neural network with bilstm model for sentiment classification. In 2018 International conference on Bangla speech and language processing (ICBSLP) (pp. 1-4). IEEE.

Suhermi, N., Prastyo, D. D., & Ali, B. (2018). Roll motion prediction using a hybrid deep learning and ARIMA model. Procedia computer science, 144, 251-258.

Ali Shah, S. A., Uddin, I., Aziz, F., Ahmad, S., Al-Khasawneh, M. A., & Sharaf, M. (2020). An enhanced deep neural network for predicting workplace absenteeism. Complexity, 2020.

Kaneko, Y., & Yada, K. (2016). A deep learning approach for the prediction of retail store sales. In 2016 IEEE 16th International conference on data mining workshops (ICDMW) (pp. 531-537). IEEE.

Vallés-Pérez, I., Soria-Olivas, E., Martínez-Sober, M., Serrano-López, A. J., Gómez-Sanchís, J., & Mateo, F. (2022). Approaching sales forecasting using recurrent neural networks and transformers. Expert Systems with Applications, 201, 116993.

Tealab, A. (2018). Time series forecasting using artificial neural networks methodologies: A systematic review. Future Computing and Informatics Journal, 3(2), 334-340.

Rajagukguk, R. A., Ramadhan, R. A., & Lee, H. J. (2020). A review on deep learning models for forecasting time series data of solar irradiance and photovoltaic power. Energies, 13(24), 6623.

Sagheer, A., & Kotb, M. (2019). Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing, 323, 203-213.

Paramasivan, S. K. (2021). Deep Learning Based Recurrent Neural Networks to Enhance the Performance of Wind Energy Forecasting: A Review. Rev. d'Intelligence Artif., 35(1), 1-10.

Dong, S., Wang, P., & Abbas, K. (2021). A survey on deep learning and its applications. Computer Science Review, 40, 100379.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.

Fu, R., Chen, J., Zeng, S., Zhuang, Y., & Sudjianto, A. (2019). Time series simulation by conditional generative adversarial net. arXiv preprint arXiv:1904.11419.

Wu, N., Green, B., Ben, X., & O'Banion, S. (2020). Deep transformer models for time series forecasting: The influenza prevalence case. arXiv preprint arXiv:2001.08317.

Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P. A. (2018, December). Transfer learning for time series classification. In 2018 IEEE international conference on big data (Big Data) (pp. 1367-1376). IEEE.

Ye, R., & Dai, Q. (2021). Implementing transfer learning across different datasets for time series forecasting. Pattern Recognition, 109, 107617.

Ma, J., Cheng, J. C., Lin, C., Tan, Y., & Zhang, J. (2019). Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques. Atmospheric Environment, 214, 116885.

Senthil, K. P. (2017). A review of soft computing techniques in short-term load forecasting. Int J Appl Eng Res, 12(18), 7202-7206.

Senthil Kumar, P., & Lopez, D. (2016). A review on feature selection methods for high dimensional data. International Journal of Engineering and Technology, 8(2), 669-672.

Subbiah, S. S., & Chinnappan, J. (2020). An improved short term load forecasting with ranker based feature selection technique. Journal of Intelligent & Fuzzy Systems, 39(5), 6783-6800.

Swaroop, G., Senthil Kumar, P., & Muthamil Selvan, T. (2014). An efficient model for share market prediction using data mining techniques. Int J Appl Eng Res, 9(17), 3807-3812.

Subbiah, S. S. (2022). Deep Learning Based Load Forecasting with Decomposition and Feature Selection Techniques. Journal of scientific & Industrial research, 81, 505-517.

Subbiah, S. S., & Chinnappan, J. (2022). Deep learning based short term load forecasting with hybrid feature selection. Electric Power Systems Research, 210, 108065.

Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2018). Deep learning for healthcare: review, opportunities and challenges. Briefings in bioinformatics, 19(6), 1236-1246.

Qin, F. Y., Lv, Z. Q., Wang, D. N., Hu, B., & Wu, C. (2020). Health status prediction for the elderly based on machine learning. Archives of gerontology and geriatrics, 90, 104121.

Agila, N., & Senthil Kumar, P. (2020). An efficient crop identification using deep learning. International Journal of Scientific & Technology Research, 9(1), 2805-2808.

Amani, M. A., & Marinello, F. (2022). A deep learning-based model to reduce costs and increase productivity in the case of small datasets: A case study in cotton cultivation. Agriculture, 12(2), 267.

Li, J., Li, X., & Wang, K. (2019). Atmospheric PM2. 5 concentration prediction based on time series and interactive multiple model approach. Advances in Meteorology, 2019.

Yan, K., Li, W., Ji, Z., Qi, M., & Du, Y. (2019). A hybrid LSTM neural network for energy consumption forecasting of individual households. Ieee Access, 7, 157633-157642.