IMG-GUARD: Watermark Based Approach for Image Privacy in OSN Framework

Main Article Content

Rishvinbanu E, Sujitha T, Subathra R, Gopikrishnan R


A social networking service (also social networking site, SNS or social media) is an online platform that is used by people to build social networks or social relations with another persons who are share their own details or career interests, activities, backgrounds or real-life connections. Social networking sites are varied and they incorporate a range of new information and various tools such as availability personal computers, mobile devices such as tablet computers and smart phones, digital photo/video/sharing and "web logging" diary entries online (blogging). While Online Social Networks (OSNs) enable users to share photos easily, they also expose users to several privacy threats from both the OSNs and external entities. The current privacy controls on social networks are far from adequate, resulting in inappropriate flows of information when users fail to understand their privacy settings or OSNs fail to implement policies correctly. Social networks may be complicated because of privacy expectations when they reserve the right to analyze uploaded photos using automated watermarking technique. A user who uploads digital data such as image to their home page may wish to share it with only mutual friends, which OSNs partially satisfy with privacy settings. In this paper, we concentrate to solve the privacy violation problem occurred when images are published on the online social networks without the permission. According to such images are always shared after uploading process. Therefore, the digital image watermarking based on DWT co-efficient. Watermark bits are embedded in uploaded images. Watermarked images are shared in user homages can be difficult to misuse by other persons.

Article Details

How to Cite
, R. E. S. T. S. R. G. R. (2017). IMG-GUARD: Watermark Based Approach for Image Privacy in OSN Framework. International Journal on Recent and Innovation Trends in Computing and Communication, 5(3), 357–363.