Sentiment Analysis for Online Product Reviews and Recommendation Using Deep Learning Based Optimization Algorithm
Main Article Content
Abstract
Recently, online shopping is becoming a popular means for users to buy and consume with the advances in Internet technologies. Satisfaction of users could be efficiently improvised by carrying out a Sentiment Analysis (SA) of larger amount of user reviews on e-commerce platform. But still, it is a challenge to envision the precise sentiment polarity of the user reviews due to the modifications in sequence length, complicated logic, and textual order. In this study, we propose a Hybrid-Flash Butterfly Optimization with Deep Learning based Sentiment Analysis (HFBO-DLSA) for Online Product Reviews. The presented HFBO-DLSA technique mainly aims to determine the nature of sentiments based on online product reviews. For accomplishing this, the presented HFBO-DLSA technique applies data pre-processing at the preliminary stage to make it compatible. Besides, the HFBO-DLSA model uses deep belief network (DBN) model for classification. The HFBO algorithm is used as a hyperparameter tuning process to improve the SA performance of the DBN method. The experimental validation of the presented HFBO-DLSA method has been tested under a set of datasets. The experimental results reveal that the HFBO-DLSA approach surpasses recent techniques in terms of SA outcomes. Specifically, when compared to various existing models on the Canon dataset, the HFBO-DLSA technique achieves remarkable results with an accuracy of 97.66%, precision of 98.54%, recall of 94.64%, and an F-score of 96.43%. In comparative analysis, other approaches such as ACO, SVM, and NN exhibit poorer performance, while TextCNN, BiLSTM, and RCNN approaches yield slightly improved SA results.