Exploring the Potential of Convolutional Neural Networks in Healthcare Engineering for Skin Disease Identification

Main Article Content

Jilani Sayyad, Prashant Patil, Shashidhar Gurav

Abstract

Skin disorders affect millions of individuals worldwide, underscoring the urgency of swift and accurate detection for optimal treatment outcomes. Convolutional Neural Networks (CNNs) have emerged as valuable assets for automating the identification of skin ailments. This paper conducts an exhaustive examination of the latest advancements in CNN-driven skin condition detection. Within dermatological applications, CNNs proficiently analyze intricate visual motifs and extricate distinctive features from skin imaging datasets. By undergoing training on extensive data repositories, CNNs proficiently classify an array of skin maladies such as melanoma, psoriasis, eczema, and acne. The paper spotlights pivotal progressions in CNN-centered skin ailment diagnosis, encompassing diverse CNN architectures, refinement methodologies, and data augmentation tactics. Moreover, the integration of transfer learning and ensemble approaches has further amplified the efficacy of CNN models. Despite their substantial potential, there exist pertinent challenges. The comprehensive portrayal of skin afflictions and the mitigation of biases mandate access to extensive and varied data pools. The quest for comprehending the decision-making processes propelling CNN models remains an ongoing endeavor. Ethical quandaries like algorithmic predisposition and data privacy also warrant significant consideration. By meticulously scrutinizing the evolutions, obstacles, and potential of CNN-oriented skin disorder diagnosis, this critique provides invaluable insights to researchers and medical professionals. It underscores the importance of precise and efficacious diagnostic instruments in ameliorating patient outcomes and curbing healthcare expenditures.

Article Details

How to Cite
Jilani Sayyad, et al. (2023). Exploring the Potential of Convolutional Neural Networks in Healthcare Engineering for Skin Disease Identification . International Journal on Recent and Innovation Trends in Computing and Communication, 11(10), 307–319. https://doi.org/10.17762/ijritcc.v11i10.8494
Section
Articles
Author Biography

Jilani Sayyad, Prashant Patil, Shashidhar Gurav

Jilani Sayyad1, Prashant Patil2, Shashidhar Gurav3

1,2,3 Department of Artificial Intelligence and Data Science, SITCOE, Yadrav (Ichalkaranji), Maharashtra, India

References

Abbas, Q. and Celebi, M.E., 2019. DermoDeep-A classification of melanoma-nevus skin lesions using multi-feature fusion of visual features and deep neural network. Multimedia Tools and Applications, 78(16), pp.23559-23580.

Ahlawat, S., Choudhary, A., Nayyar, A., Singh, S. and Yoon, B., 2020. Improved handwritten digit recognition using convolutional neural networks (CNN). Sensors, 20(12), p.3344.

Ahmad, B., Usama, M., Ahmad, T., Khatoon, S. and Alam, C.M., 2022. An ensemble model of convolution and recurrent neural network for skin disease classification. International Journal of Imaging Systems and Technology, 32(1), pp.218-229.

Ahn, E., Kumar, A., Fulham, M., Feng, D. and Kim, J., 2019. Convolutional sparse kernel network for unsupervised medical image analysis. Medical image analysis, 56, pp.140-151.

Alam, T.M., Shaukat, K., Khan, W.A., Hameed, I.A., Almuqren, L.A., Raza, M.A., Aslam, M. and Luo, S., 2022. An Efficient Deep Learning-Based Skin Cancer Classifier for an Imbalanced Dataset. Diagnostics, 12(9), p.2115.

Allugunti, V.R., 2022. A machine learning model for skin disease classification using convolution neural network. International Journal of Computing, Programming and Database Management, 3(1), pp.141-147.

Altenberger, F. and Lenz, C., 2018. A non-technical survey on deep convolutional neural network architectures. arXiv preprint arXiv:1803.02129.

Ayan, E., Erbay, H. and Varç?n, F., 2020. Crop pest classification with a genetic algorithm-based weighted ensemble of deep convolutional neural networks. Computers and Electronics in Agriculture, 179, p.105809.

Ayan, E., Karabulut, B. and Ünver, H.M., 2022. Diagnosis of pediatric pneumonia with ensemble of deep convolutional neural networks in chest x-ray images. Arabian Journal for Science and Engineering, pp.1-17.

Baker, B., Gupta, O., Naik, N. and Raskar, R., 2016. Designing neural network architectures using reinforcement learning. arXiv preprint arXiv:1611.02167.

Bala, D., Hossain, M.S., Hossain, M.A., Abdullah, M.I., Rahman, M.M., Manavalan, B., Gu, N., Islam, M.S. and Huang, Z., 2023. MonkeyNet: A robust deep convolutional neural network for monkeypox disease detection and classification. Neural Networks, 161, pp.757-775.

Bollino, R., Bovenzi, G., Cipolletta, F., Docimo, L., Gravina, M., Marrone, S., Parmeggiani, D. and Sansone, C., 2022. Synergy-Net: Artificial Intelligence at the Service of Oncological Prevention. Handbook of Artificial Intelligence in Healthcare: Vol. 1-Advances and Applications, pp.389-424.

Carcagnì, P., Leo, M., Cuna, A., Mazzeo, P.L., Spagnolo, P., Celeste, G. and Distante, C., 2019. Classification of skin lesions by combining multilevel learnings in a DenseNet architecture. In Image Analysis and Processing–ICIAP 2019: 20th International Conference, Trento, Italy, September 9–13, 2019, Proceedings, Part I 20 (pp. 335-344). Springer International Publishing.

Chauhan, N.K. and Singh, K., 2018, September. A review on conventional machine learning vs deep learning. In 2018 International conference on computing, power and communication technologies (GUCON) (pp. 347-352). IEEE.

Ching, T., Himmelstein, D.S., Beaulieu-Jones, B.K., Kalinin, A.A., Do, B.T., Way, G.P., Ferrero, E., Agapow, P.M., Zietz, M., Hoffman, M.M. and Xie, W., 2018. Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface, 15(141), p.20170387.

Dieleman, S., De Fauw, J. and Kavukcuoglu, K., 2016, June. Exploiting cyclic symmetry in convolutional neural networks. In International conference on machine learning (pp. 1889-1898). PMLR.

Du?Harpur, X., Watt, F.M., Luscombe, N.M. and Lynch, M.D., 2020. What is AI? Applications of artificial intelligence to dermatology. British Journal of Dermatology, 183(3), pp.423-430.

Espinosa, R., Ponce, H., Gutiérrez, S., Martínez-Villaseñor, L., Brieva, J. and Moya-Albor, E., 2019. A vision-based approach for fall detection using multiple cameras and convolutional neural networks: A case study using the UP-Fall detection dataset. Computers in biology and medicine, 115, p.103520.

Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M. and Thrun, S., 2017. Dermatologist-level classification of skin cancer with deep neural networks. nature, 542(7639), pp.115-118.

Gholamalinezhad, H. and Khosravi, H., 2020. Pooling methods in deep neural networks, a review. arXiv preprint arXiv:2009.07485.

Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M. and Kagal, L., 2018, October. Explaining explanations: An overview of interpretability of machine learning. In 2018 IEEE 5th International Conference on data science and advanced analytics (DSAA) (pp. 80-89). IEEE.

Gandarias, J.M., Garcia-Cerezo, A.J. and Gomez-de-Gabriel, J.M., 2019. CNN-based methods for object recognition with high-resolution tactile sensors. IEEE Sensors Journal, 19(16), pp.6872-6882.

Gu, Y., Ge, Z., Bonnington, C.P. and Zhou, J., 2019. Progressive transfer learning and adversarial domain adaptation for cross-domain skin disease classification. IEEE journal of biomedical and health informatics, 24(5), pp.1379-1393.

Gu, R., Wang, G., Song, T., Huang, R., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T. and Zhang, S., 2020. CA-Net: Comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE transactions on medical imaging, 40(2), pp.699-711.

Hamida, S., El Gannour, O., Maafiri, A., Lamalem, Y., Haddou-Oumouloud, I. and Cherradi, B., 2023, May. Data Balancing through Data Augmentation to Improve Transfer Learning Performance for Skin Disease Prediction. In 2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) (pp. 1-7). IEEE.

Han, S.S., Park, G.H., Lim, W., Kim, M.S., Na, J.I., Park, I. and Chang, S.E., 2018. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network. PloS one, 13(1), p.e0191493.

Haque, K.F. and Abdelgawad, A., 2020. A deep learning approach to detect COVID-19 patients from chest X-ray images. AI, 1(3), p.27.

Hannun, A.Y., Rajpurkar, P., Haghpanahi, M., Tison, G.H., Bourn, C., Turakhia, M.P. and Ng, A.Y., 2019. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature medicine, 25(1), pp.65-69.

Hasan, M.K., Elahi, M.T.E., Alam, M.A., Jawad, M.T. and Martí, R., 2022. DermoExpert: Skin lesion classification using a hybrid convolutional neural network through segmentation, transfer learning, and augmentation. Informatics in Medicine Unlocked, 28, p.100819.

Hassan, M.M., Hassan, M.M., Yasmin, F., Khan, M.A.R., Zaman, S., Islam, K.K. and Bairagi, A.K., 2023. A comparative assessment of machine learning algorithms with the Least Absolute Shrinkage and Selection Operator for breast cancer detection and prediction. Decision Analytics Journal, 7, p.100245.

Hosseini, M.S., Bejnordi, B.E., Trinh, V.Q.H., Hasan, D., Li, X., Kim, T., Zhang, H., Wu, T., Chinniah, K., Maghsoudlou, S. and Zhang, R., 2023. Computational Pathology: A Survey Review and The Way Forward. arXiv preprint arXiv:2304.05482.

Hughes, J.W., Olgin, J.E., Avram, R., Abreau, S.A., Sittler, T., Radia, K., Hsia, H., Walters, T., Lee, B., Gonzalez, J.E. and Tison, G.H., 2021. Performance of a convolutional neural network and explainability technique for 12-lead electrocardiogram interpretation. JAMA cardiology, 6(11), pp.1285-1295.

Inthiyaz, S., Altahan, B.R., Ahammad, S.H., Rajesh, V., Kalangi, R.R., Smirani, L.K., Hossain, M.A. and Rashed, A.N.Z., 2023. Skin disease detection using deep learning. Advances in Engineering Software, 175, p.103361.

Janoria, H., Minj, J. and Patre, P., 2020, November. Classification of skin disease from skin images using transfer learning technique. In 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA) (pp. 888-895). IEEE.

Juyal, S., Sharma, S. and Shukla, A.S., 2021. Smart skin health monitoring using AI-enabled cloud-based IoT. Materials Today: Proceedings, 46, pp.10539-10545.

Kalpana, B., Reshmy, A.K., Pandi, S.S. and Dhanasekaran, S., 2023. OESV-KRF: optimal ensemble support vector kernel random forest based early detection and classification of skin diseases. Biomedical Signal Processing and Control, 85, p.104779.

Kavitha, R., Jothi, D.K., Saravanan, K., Swain, M.P., Gonzáles, J.L.A., Bhardwaj, R.J. and Adomako, E., 2023. Ant colony optimization-enabled CNN deep learning technique for accurate detection of cervical cancer. BioMed Research International, 2023.

Ker, J., Wang, L., Rao, J. and Lim, T., 2017. Deep learning applications in medical image analysis. Ieee Access, 6, pp.9375-9389.

Khamparia, A., Singh, P.K., Rani, P., Samanta, D., Khanna, A. and Bhushan, B., 2021. An internet of health things?driven deep learning framework for detection and classification of skin cancer using transfer learning. Transactions on Emerging Telecommunications Technologies, 32(7), p.e3963.

Khan, M., Jan, B., Farman, H., Ahmad, J., Farman, H. and Jan, Z., 2019. Deep learning methods and applications. Deep learning: convergence to big data analytics, pp.31-42.

Khan, A., Sohail, A., Zahoora, U. and Qureshi, A.S., 2020. A survey of the recent architectures of deep convolutional neural networks. Artificial intelligence review, 53, pp.5455-5516.

Kim, B., Park, J. and Suh, J., 2020. Transparency and accountability in AI decision support: Explaining and visualizing convolutional neural networks for text information. Decision Support Systems, 134, p.113302.

Kimball, A.B., Jacobson, C., Weiss, S., Vreeland, M.G. and Wu, Y., 2005. The psychosocial burden of psoriasis. American journal of clinical dermatology, 6, pp.383-392.

Korotkov, K. and Garcia, R., 2012. Computerized analysis of pigmented skin lesions: a review. Artificial intelligence in medicine, 56(2), pp.69-90.

Kwasigroch, A., Miko?ajczyk, A. and Grochowski, M., 2017, August. Deep neural networks approach to skin lesions classification—a comparative analysis. In 2017 22nd international conference on methods and models in automation and robotics (MMAR) (pp. 1069-1074). IEEE.

Li, Z., Wang, H., Han, Q., Liu, J., Hou, M., Chen, G., Tian, Y. and Weng, T., 2022. Convolutional Neural Network with Multiscale Fusion and Attention Mechanism for Skin Diseases Assisted Diagnosis. Computational Intelligence and Neuroscience, 2022.

Liang, S. and Gu, Y., 2021. A deep convolutional neural network to simultaneously localize and recognize waste types in images. Waste Management, 126, pp.247-257.

Liopyris, K., Gregoriou, S., Dias, J. and Stratigos, A.J., 2022. Artificial Intelligence in Dermatology: Challenges and Perspectives. Dermatology and Therapy, pp.1-15.

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y. and Alsaadi, F.E., 2017. A survey of deep neural network architectures and their applications. Neurocomputing, 234, pp.11-26.

Maduranga, M.W.P. and Nandasena, D., 2022. Mobile-based skin disease diagnosis system using convolutional neural networks (CNN). IJ Image Graphics Signal Process., 3, pp.47-57.

Manzoor, K., Majeed, F., Siddique, A., Meraj, T., Rauf, H.T., El-Meligy, M.A., Sharaf, M. and Elgawad, A.E.E.A., 2022. A lightweight approach for skin lesion detection through optimal features fusion. Computers, Materials & Continua, 70(1), pp.1617-1630.

Mieras, L.F., Taal, A.T., Post, E.B., Ndeve, A.G. and Van Hees, C.L., 2018. The development of a mobile application to support peripheral health workers to diagnose and treat people with skin diseases in resource-poor settings. Tropical medicine and infectious disease, 3(3), p.102.

Mohapatra, S., Abhishek, N.V.S., Bardhan, D., Ghosh, A.A. and Mohanty, S., 2021. Comparison of MobileNet and ResNet CNN Architectures in the CNN?Based Skin Cancer Classifier Model. Machine Learning for Healthcare Applications, pp.169-186.

Nahata, H. and Singh, S.P., 2020. Deep learning solutions for skin cancer detection and diagnosis. Machine Learning with Health Care Perspective: Machine Learning and Healthcare, pp.159-182.

Nirthika, R., Manivannan, S., Ramanan, A. and Wang, R., 2022. Pooling in convolutional neural networks for medical image analysis: a survey and an empirical study. Neural Computing and Applications, 34(7), pp.5321-5347.

Panthakkan, A., Anzar, S.M., Jamal, S. and Mansoor, W., 2022. Concatenated Xception-ResNet50—A novel hybrid approach for accurate skin cancer prediction. Computers in Biology and Medicine, 150, p.106170.

Pathan, S., Prabhu, K.G. and Siddalingaswamy, P.C., 2018. Techniques and algorithms for computer aided diagnosis of pigmented skin lesions—A review. Biomedical Signal Processing and Control, 39, pp.237-262.

Perez, E., Reyes, O. and Ventura, S., 2021. Convolutional neural networks for the automatic diagnosis of melanoma: An extensive experimental study. Medical image analysis, 67, p.101858.

Qin, Z., Yu, F., Liu, C. and Chen, X., 2018. How convolutional neural network see the world-A survey of convolutional neural network visualization methods. arXiv preprint arXiv:1804.11191.

Quinn, J.A., Nakasi, R., Mugagga, P.K., Byanyima, P., Lubega, W. and Andama, A., 2016, December. Deep convolutional neural networks for microscopy-based point of care diagnostics. In Machine learning for healthcare conference (pp. 271-281). PMLR.

Rathod, J., Waghmode, V., Sodha, A. and Bhavathankar, P., 2018, March. Diagnosis of skin diseases using Convolutional Neural Networks. In 2018 second international conference on electronics, communication and aerospace technology (ICECA) (pp. 1048-1051). IEEE.

Rao, K.S., Yelkar, P.S., Pise, O.N. and Borde, S., 2021. Skin Disease Detection using Machine Learning. International Journal of Engineering Research & Technology (IJERT), 9(3), pp.2278-0181.

Reshi, A.A., Rustam, F., Mehmood, A., Alhossan, A., Alrabiah, Z., Ahmad, A., Alsuwailem, H. and Choi, G.S., 2021. An efficient CNN model for COVID-19 disease detection based on X-ray image classification. Complexity, 2021, pp.1-12.

Reyes, M., Meier, R., Pereira, S., Silva, C.A., Dahlweid, F.M., Tengg-Kobligk, H.V., Summers, R.M. and Wiest, R., 2020. On the interpretability of artificial intelligence in radiology: challenges and opportunities. Radiology: artificial intelligence, 2(3), p.e190043.

Rigel, D.S., Russak, J. and Friedman, R., 2010. The evolution of melanoma diagnosis: 25 years beyond the ABCDs. CA: a cancer journal for clinicians, 60(5), pp.301-316.

Salehi, A.W., Khan, S., Gupta, G., Alabduallah, B.I., Almjally, A., Alsolai, H., Siddiqui, T. and Mellit, A., 2023. A Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope. Sustainability, 15(7), p.5930.

Salih, O. and Duffy, K.J., 2023. Optimization Convolutional Neural Network for Automatic Skin Lesion Diagnosis Using a Genetic Algorithm. Applied Sciences, 13(5), p.3248.

Saranya, A. and Subhashini, R., 2023. A systematic review of Explainable Artificial Intelligence models and applications: Recent developments and future trends. Decision analytics journal, p.100230.

Sen, C.K., Gordillo, G.M., Roy, S., Kirsner, R., Lambert, L., Hunt, T.K., Gottrup, F., Gurtner, G.C. and Longaker, M.T., 2009. Human skin wounds: a major and snowballing threat to public health and the economy. Wound repair and regeneration, 17(6), pp.763-771.

Shahin, M., Chen, F.F., Hosseinzadeh, A., Koodiani, H.K., Shahin, A. and Nafi, O.A., 2023. A smartphone-based application for an early skin disease prognosis: Towards a lean healthcare system via computer-based vision. Advanced Engineering Informatics, 57, p.102036.

Shanthi, T., Sabeenian, R.S. and Anand, R., 2020. Automatic diagnosis of skin diseases using convolution neural network. Microprocessors and Microsystems, 76, p.103074.

Sharma, M., Jain, B., Kargeti, C., Gupta, V. and Gupta, D., 2021. Detection and diagnosis of skin diseases using residual neural networks (RESNET). International Journal of Image and Graphics, 21(05), p.2140002.

Shetty, B., Fernandes, R., Rodrigues, A.P., Chengoden, R., Bhattacharya, S. and Lakshmanna, K., 2022. Skin lesion classification of dermoscopic images using machine learning and convolutional neural network. Scientific Reports, 12(1), p.18134.

Srinidhi, C.L., Ciga, O. and Martel, A.L., 2021. Deep neural network models for computational histopathology: A survey. Medical Image Analysis, 67, p.101813.

Srinivasu, P.N., SivaSai, J.G., Ijaz, M.F., Bhoi, A.K., Kim, W. and Kang, J.J., 2021. Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM. Sensors, 21(8), p.2852.

Stofa, M.M., Zulkifley, M.A. and Zainuri, M.A.A.M., 2021. Skin lesions classification and segmentation: a review. International Journal of Advanced Computer Science and Applications, 12(10).

Sun, X., Yang, J., Sun, M. and Wang, K., 2016. A benchmark for automatic visual classification of clinical skin disease images. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI 14 (pp. 206-222). Springer International Publishing.

Sun, T., 2019. Applying deep learning to audit procedures: An illustrative framework. Accounting Horizons, 33(3), pp.89-109.

Tabrizchi, H., Parvizpour, S. and Razmara, J., 2022. An improved VGG model for skin cancer detection. Neural Processing Letters, pp.1-18.

Tang, P., Liang, Q., Yan, X., Xiang, S. and Zhang, D., 2020. GP-CNN-DTEL: Global-part CNN model with data-transformed ensemble learning for skin lesion classification. IEEE journal of biomedical and health informatics, 24(10), pp.2870-2882.

Tariq, M., Iqbal, S., Ayesha, H., Abbas, I., Ahmad, K.T. and Niazi, M.F.K., 2021. Medical image based breast cancer diagnosis: State of the art and future directions. Expert Systems with Applications, 167, p.114095.

Thomsen, K., Christensen, A.L., Iversen, L., Lomholt, H.B. and Winther, O., 2020. Deep learning for diagnostic binary classification of multiple-lesion skin diseases. Frontiers in medicine, 7, p.574329.

Unal, Y., Taspinar, Y.S., Cinar, I., Kursun, R. and Koklu, M., 2022. Application of pre-trained deep convolutional neural networks for coffee beans species detection. Food Analytical Methods, 15(12), pp.3232-3243.

Van, S.P., Le, H.M., Thanh, D.V., Dang, T.D., Loc, H.H. and Anh, D.T., 2020. Deep learning convolutional neural network in rainfall–runoff modelling. Journal of Hydroinformatics, 22(3), pp.541-561.

Velasco, J., Pascion, C., Alberio, J.W., Apuang, J., Cruz, J.S., Gomez, M.A., Molina Jr, B., Tuala, L., Thio-ac, A. and Jorda Jr, R., 2019. A smartphone-based skin disease classification using mobilenet cnn. arXiv preprint arXiv:1911.07929.

Venugopal, V., Raj, N.I., Nath, M.K. and Stephen, N., 2023. A deep neural network using modified EfficientNet for skin cancer detection in dermoscopic images. Decision Analytics Journal, p.100278.

Vijayalakshmi, M.M., 2019. Melanoma skin cancer detection using image processing and machine learning. International Journal of Trend in Scientific Research and Development (IJTSRD), 3(4), pp.780-784.

Voon, W., Hum, Y.C., Tee, Y.K., Yap, W.S., Salim, M.I.M., Tan, T.S., Mokayed, H. and Lai, K.W., 2022. Performance analysis of seven Convolutional Neural Networks (CNNs) with transfer learning for Invasive Ductal Carcinoma (IDC) grading in breast histopathological images. Scientific reports, 12(1), p.19200.

Wang, X., Lu, Y., Wang, Y. and Chen, W.B., 2018, July. Diabetic retinopathy stage classification using convolutional neural networks. In 2018 IEEE International Conference on Information Reuse and Integration (IRI) (pp. 465-471). IEEE.

Wang, Y., Cai, J., Louie, D.C., Wang, Z.J. and Lee, T.K., 2021. Incorporating clinical knowledge with constrained classifier chain into a multimodal deep network for melanoma detection. Computers in Biology and Medicine, 137, p.104812.

Wen, H., Yu, W., Wu, Y., Zhao, J., Liu, X., Kuang, Z. and Fan, R., 2022. Acne detection and severity evaluation with interpretable convolutional neural network models. Technology and Health Care, 30(S1), pp.143-153.

Winkler, J.K., Fink, C., Toberer, F., Enk, A., Deinlein, T., Hofmann-Wellenhof, R., Thomas, L., Lallas, A., Blum, A., Stolz, W. and Haenssle, H.A., 2019. Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition. JAMA dermatology, 155(10), pp.1135-1141.

Wu, Z.H.E., Zhao, S., Peng, Y., He, X., Zhao, X., Huang, K., Wu, X., Fan, W., Li, F., Chen, M. and Li, J., 2019. Studies on different CNN algorithms for face skin disease classification based on clinical images. IEEE Access, 7, pp.66505-66511.

Wu, H., Yin, H., Chen, H., Sun, M., Liu, X., Yu, Y., Tang, Y., Long, H., Zhang, B., Zhang, J. and Zhou, Y., 2020. A deep learning, image based approach for automated diagnosis for inflammatory skin diseases. Annals of translational medicine, 8(9).

Xiang, K., Peng, L., Yang, H., Li, M., Cao, Z., Jiang, S. and Qu, G., 2021. A novel weight pruning strategy for light weight neural networks with application to the diagnosis of skin disease. Applied Soft Computing, 111, p.107707.

Xu, X., Lin, L., Sun, S. and Wu, S., 2023. A review of the application of three-dimensional convolutional neural networks for the diagnosis of Alzheimer’s disease using neuroimaging. Reviews in the Neurosciences, (0).

Yamashita, R., Nishio, M., Do, R.K.G. and Togashi, K., 2018. Convolutional neural networks: an overview and application in radiology. Insights into imaging, 9, pp.611-629.

Yang, Y., Wang, J., Xie, F., Liu, J., Shu, C., Wang, Y., Zheng, Y. and Zhang, H., 2021. A convolutional neural network trained with dermoscopic images of psoriasis performed on par with 230 dermatologists. Computers in Biology and Medicine, 139, p.104924.

Yu, Z., Wang, K., Wan, Z., Xie, S. and Lv, Z., 2023. Popular deep learning algorithms for disease prediction: a review. Cluster Computing, 26(2), pp.1231-1251.

Zhao, Z., Wu, C.M., Zhang, S., He, F., Liu, F., Wang, B., Huang, Y., Shi, W., Jian, D., Xie, H. and Yeh, C.Y., 2021. A novel convolutional neural network for the diagnosis and classification of rosacea: usability study. JMIR medical informatics, 9(3), p.e23415.

Zhang, R., Zheng, Y., Poon, C.C., Shen, D. and Lau, J.Y., 2018. Polyp detection during colonoscopy using a regression-based convolutional neural network with a tracker. Pattern recognition, 83, pp.209-219.

Zhang, B., Zhou, X., Luo, Y., Zhang, H., Yang, H., Ma, J. and Ma, L., 2021. Opportunities and challenges: Classification of skin disease based on deep learning. Chinese Journal of Mechanical Engineering, 34(1), pp.1-14.

Zhu, C.Y., Wang, Y.K., Chen, H.P., Gao, K.L., Shu, C., Wang, J.C., Yan, L.F., Yang, Y.G., Xie, F.Y. and Liu, J., 2021. A deep learning based framework for diagnosing multiple skin diseases in a clinical environment. Frontiers in medicine, 8, p.626369.