Business Analytics Using Predictive Algorithms
Main Article Content
Abstract
In today's data-driven business landscape, organizations strive to extract actionable insights and make informed decisions using their vast data. Business analytics, combining data analysis, statistical modeling, and predictive algorithms, is crucial for transforming raw data into meaningful information. However, there are gaps in the field, such as limited industry focus, algorithm comparison, and data quality challenges. This work aims to address these gaps by demonstrating how predictive algorithms can be applied across business domains for pattern identification, trend forecasting, and accurate predictions. The report focuses on sales forecasting and topic modeling, comparing the performance of various algorithms including Linear Regression, Random Forest Regression, XGBoost, LSTMs, and ARIMA. It emphasizes the importance of data preprocessing, feature selection, and model evaluation for reliable sales forecasts, while utilizing S-BERT, UMAP, and HDBScan unsupervised algorithms for extracting valuable insights from unstructured textual data.
Article Details
References
G. D. Kalyankar, S. R. Poojara, and N. V. Dharwadkar, “Predictive Analysis of Diabetic Patient Data Using Machine Learning and Hadoop,” 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Feb. 2017, doi:10.1109/I-SMAC.2017.8058253.
I. M. Al-Zuabi , A. Jafar and K. Aljoumaa, “Predicting customer’s gender and age depending on mobile phone data,” Journal of Big Data, 2019, doi:10.1186/s40537-019-0180-9.
N. Sneha and T. Gangil, “Analysis of diabetes mellitus for early prediction using optimal features selection,” Journal of Big Data, 2019, doi:10.1186/s40537-019-0175-6.
A. R. Kaufman, P. Kraft and M. Sen, “Improving Supreme Court Forecasting Using Boosted Decision Trees,” Political Analysis, vol. 27, issue 3, Cambridge University Press, Jul. 2019, pp. 381-387, doi:10.1017/pan.2018.59.
I. Purnamasari, F. Handayanna, E. Arisawati, L. S. Dewi, E. G. Sihombing and Rinawati. “The Determination Analysis Of Telecommunications Customers Potential Cross- Selling With Classification Naive Bayes And C4.5,” International Conference on Advanced Information Scientific Development (ICAISD), vol. 1641, Aug. 2020, doi:10.1088/1742-6596/1641/1/012010.
N. B. a-Misu and M. Madaleno, “Assessment of Bankruptcy Risk of Large Companies: European Countries Evolution Analysis,” Journal of Risk and Financial Management, vol. 13, issue 3, 2020, doi:10.3390/jrfm13030058.
A. Tolba and Z. Al-Makhadmeha, “Predictive data analysis approach for securing medical data in smart grid healthcare systems,” Future Generation Computer Systems, vol. 117, Apr. 2021, pp. 87-96, doi:10.1016/j.future.2020.11.008.
P. Punjabi, P. Vaswani and A. Kubal, “Modelling Stock Trading Platforms Leveraging Predictive Analysis Using Learning Algorithms,” IJRAR - International Journal of Research and Analytical Reviews (IJRAR), vol. 8, issue 2, pp. 422-438, Jun. 2021, ssrn:https://ssrn.com/abstract=3868081.
A. Saleh Hussein, R. Salah Khairy, S. M. Mohamed Najeeb, and H. T. Alrikabi, “Credit Card Fraud Detection Using Fuzzy Rough Nearest Neighbor and Sequential Minimal Optimization with Logistic Regression,” International Journal of Interactive Mobile Technologies (iJIM), vol. 15, no. 05, pp. 24–42, Mar. 2021, doi: 10.3991/ijim.v15i05.17173.
S. Sawangarreerak and P. Thanathamathee, “FakeBERT: Detecting and Analyzing Fraudulent Patterns of Financial Statement for Open Innovation Using Discretization and Association Rule Mining,” Journal of Open Innovation: Technology, Market, and Complexity, vol. 7, issue 2, 2021, doi:10.3390/joitmc7020128.
M. Seera, C. P. Lim, A. Kumar, L. Dhamotharan and K. H. Tan, “An intelligent payment card fraud detection system,” Annals of Operations Research, Jun. 2021, doi:10.1007/s10479-021-04149-2.
S. Ayvaz and K. Alpay, “Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time,” Expert Systems with Applications, vol. 173, Jul. 2021, doi:10.1016/j.eswa.2021.114598.
D. Huo, H. R. Chaudhry, “Using machine learning for evaluating global expansion location decisions: An analysis of Chinese manufacturing sector,” Technological Forecasting Social Change, vol. 163, Feb. 2021, doi:10.1016/j.techfore.2020.120436.
M. Kumar, V. M. Shenbagaraman, R. Shaw, and A. Ghosh, “Predictive Data Analysis for Energy Management of a Smart Factory Leading to Sustainability,” Innovations in Electrical and Electronic Engineering. Lecture Notes in Electrical Engineering, vol 661, Jan. 2021, pp. 765-773, doi:10.1007/978-981-15-4692-1_58.
E. Ruschel, E. De F. R. Loures and E. A. P. Santos, “Performance analysis and time prediction in manufacturing systems,” Computers & Industrial Engineering, vol. 151, Jan. 2021, doi:10.1016/j.cie.2020.106972.
C. S. Lee, P. Y. S. Cheang, M. Moslehpour, “Predictive Analytics in Business Analytics: Decision Tree,” Advances in Decision Sciences, vol. 26, issue 1, 2022, pp. 1-30, doi:10.47654/v26y2022i1p1-30.
M. Al-Omari, F. Qutaishat, M. Rawashdeh, S. H. Alajmani and M. Masud, “A Boosted Tree-Based Predictive Model for Business Analytics,” Intelligent Automation Soft Computing, vol.36 , issue 1, 2022, doi:10.32604/iasc.2023.030374.
M.A. Waller and S. E. Fawcett, “Data Science, Predictive Analytics, and Big Data: A Revolution That Will Transform Supply Chain Design and Management”, Journal of Business Logistics, vol. 34, no. 2, Jun 2013, pp. 77-84, doi:10.1111/jbl.12082.
G. Shmueli, and O.R. Koppius, “Predictive analytics in information systems research,” MIS Quarterly, vol.35, no. 3, Sep. 2011, pp. 553-572, doi:10.2307/23042796.
D. E. Brown, A. Abbasi, and R. Y. K. Lau, “Predictive analytics: Predictive modeling at the micro level”, IEEE Intelligent Systems, vol. 30, no. 3, May 2015, pp. 6-8, doi:10.1109/MIS.2015.50.
A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, methods, and analytics”, International Journal of Information Management, vol. 35, no. 2, Apr. 2015, pp. 137-44, doi:10.1016/j.ijinfomgt.2014.10.007.
D. Larson, and V. Chang, “A review and future direction of agile, business intelligence, analytics and data science”, International Journal of Information Management, vol. 36, no. 5, Oct. 2016, pp.700-710, doi:10.1016/j.ijinfomgt.2016.04.013.