A Medical Analysis for Colorectal Lymphomas using 3D MRI Images and Deep Residual Boltzmann CNN Mechanism

Main Article Content

Manu M R
T Poongodi


In this technological world the healthcare is very crucial and difficult to spend time for the wellbeing. The lifestyle disease can transform in to the life threating disease and lead to critical stages. Colorectal lymphomas are the 3rd most malignancy death in the entire world. The estimation of the volume of lymphomas is often used by Magnetic Resonance Imaging during medical diagnosis, particularly in advanced stages. The research study can be classified in multiple stages. In the initial stages, an automated method is used to calculated the volume of the colorectal lymphomas using 3D MRI images. The process begins with feature extraction using Iterative Multilinear Component Analysis and Multiscale Phase level set segmentation based on CNN model. Then, a logical frustum model is utilized for 3D simulation of colon lymphoma for rendering the medical data. The next stages is focused on tackling the matter of segmentation and classification of abnormality and normality of lymph nodes. A semi supervised fuzzy logic algorithm for clustering is used for segmentation, whereas bee herd optimization algorithm with scale down for employed to intensify corresponding classifier rate of detection. Finally, classification is performed using Deep residual Boltzmann CNN. Our proposed methodology gives a better results and diagnosis prediction for lymphomas for an accuracy 97.7%, sensitivity 95.7% and specify as 95.8% which is superior than the traditional approach.

Article Details

How to Cite
R, M. M. ., & Poongodi, T. . (2023). A Medical Analysis for Colorectal Lymphomas using 3D MRI Images and Deep Residual Boltzmann CNN Mechanism . International Journal on Recent and Innovation Trends in Computing and Communication, 11(5), 30–41. https://doi.org/10.17762/ijritcc.v11i5.6522


Manu M R ,T Poongodi,2022 ‘Prediction of the tumour response lymph node based on deep residual Boltzmann convolution nueral network ‘,Vol.(20) No 8

Manu M R ,T Poongodi,2022,’ Predicting the Correlation colorectal lymphoma using convolution neural networks’, Published in: 2022 3rd International Conference on Computation, Automation and Knowledge Management (ICCAKM), ISBN:978-1-6654-5320-2

Manu M. R et. al Automated Colorectal Lymphoma volume calculation using 3D MRI Images (Turkish Journal of Computer and Mathematics Education Vol.12 No.6 (2021), 4240-4251.

Abdelsamea, M.M., Pitiot, A., Grineviciute, R.B., Besusparis, J., Laurinavicius, A. and Ilyas, M 2019, 'A cascade-learning approach for automated segmentation of tumour epithelium in colorectal cancer', Expert Systems with Applications, vol.118, pp.539-552.

Altini, N., Marvulli, T.M., Caputo, M., Mattioli, E., Prencipe, B., Cascarano, G.D., Brunetti, A., Tommasi, S., Bevilacqua, V., Summa, S.D. and Zito, F.A 2021, 'Multi-class Tissue Classification in Colorectal Cancer with Handcrafted and Deep Features', In International Conference on Intelligent Computing, Springer, pp. 512-525).

Babu, T., Singh, T., Gupta, D. and Hameed, S 2021, 'Colon cancer prediction on histological images using deep learning features and Bayesian optimized SVM', Journal of Intelligent & Fuzzy Systems, Preprint, pp.1-12.

Berger-Kulemann, V., Schima, W., Baroud, S., Koelblinger, C., Kaczirek, K., Gruenberger, T., Schindl, M., Maresch, J., Weber, M. and Ba-Ssalamah, A 2012. 'Gadoxetic acid-enhanced 3.0 T MR imaging versus multidetector-row CT in the detection of colorectal metastases in fatty liver using intraoperative ultrasound and histopathology as a standard of reference', European Journal of Surgical Oncology EJSO, vol. 38 no.8, pp.670-676.

Bibault, J.E., Giraud, P., Housset, M., Durdux, C., Taieb, J., Berger, A., Coriat, R., Chaussade, S., Dousset, B., Nordlinger, B. and Burgun, A 2018, 'Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer', Scientific reports, vol. 8 no. 1, pp.1-8.

Blanes-Vidal, V., Baatrup, G. and Nadimi, E.S 2019, 'Addressing priority challenges in the detection and assessment of colorectal polyps from capsule endoscopy and colonoscopy in colorectal cancer screening using machine learning'. Acta Oncologica, vol. 58 sup1, pp.S29-S36.

Borkowski, A.A., Wilson, C.P., Borkowski, S.A., Thomas, L.B., Deland, L.A. and Mastorides, S.M 2018, 'Apple machine learning algorithms successfully detect colon cancer but fail to predict KRAS mutation status'. arXiv preprint arXiv, vol. 1812.04660.

Bychkov, D., Linder, N., Turkki, R., Nordling, S., Kovanen, P.E., Verrill, C., Walliander, M., Lundin, M., Haglund, C. and Lundin, J 2018, 'Deep learning based tissue analysis predicts outcome in colorectal cancer', Scientific reports, vol. 8, no. 1, pp.1-11.

Bychkov, D., Turkki, R., Haglund, C., Linder, N. and Lundin, J 2016, 'Deep learning for tissue microarray image-based outcome prediction in patients with colorectal cancer', International Society for Optics and Photonics, vol. 9791, p. 979115.

Câr?ân?, E.T., Gheonea, D.I. and S?ftoiu, A 2016. 'Advances in endoscopic ultrasound imaging of colorectal diseases', World journal of gastroenterology, vol. 22, no. 5, p.1756.

Caruso, S., Bazan, V., Rolfo, C., Insalaco, L., Fanale, D., Bronte, G., Corsini, L.R., Rizzo, S., Cicero, G. and Russo, A 2012. 'MicroRNAs in colorectal cancer stem cells: new regulators of cancer stemness?'. Oncogenesis, vol. 1, no. 11, pp.e32-e32.

Chen, L.D., Liang, J.Y., Wu, H., Wang, Z., Li, S.R., Li, W., Zhang, X.H., Chen, J.H., Ye, J.N., Li, X. and Xie, X.Y 2018. 'Multiparametric radiomics improve prediction of lymph node metastasis of rectal cancer compared with conventional radiomics', Life sciences, vol. 208, pp.55-63.

Cho, S.B. and Won, H.H 2003, 'Machine learning in DNA microarray analysis for cancer classification', In Proceedings of the First Asia-Pacific Bioinformatics Conference on Bioinformatics 2003, vol. 19, pp. 189-198.

Choi, Y.R., Kim, J.H., Park, S.J., Hur, B.Y. and Han, J.K 2017. 'Therapeutic response assessment using 3D ultrasound for hepatic metastasis from colorectal cancer: application of a personalized', 3D-printed tumor model using CT images, Plos one, vol. 12, no 8, p.e0182596.

Coenegrachts, K., Bols, A., Haspeslagh, M. and Rigauts, H 2012, 'Prediction and monitoring of treatment effect using T1-weighted dynamic contrast-enhanced magnetic resonance imaging in colorectal liver metastases: potential of whole tumour ROI and selective ROI analysis', European journal of radiology, vol. 81, no. 12, pp.3870-3876.

Dawson, I.M.P., Cornes, J.S. and Morson, B.C 1961, 'Primary malignant lymphoid tumours of the intestinal tract', Report of 37 cases with a study of factors influencing prognosis, British Journal of Surgery, vol. 49, no. 213, pp.80-89.

de Wit, M., Kant, H., Piersma, S.R., Pham, T.V., Mongera, S., van Berkel, M.P., Boven, E., Pontén, F., Meijer, G.A., Jimenez, C.R. and Fijneman, R.J 2014, 'Colorectal cancer candidate biomarkers identified by tissue secretome proteome profiling', Journal of proteomics, vol. 99, pp.26-39.

Ding, L., Liu, G., Zhang, X., Liu, S., Li, S., Zhang, Z., Guo, Y. and Lu, Y 2020. 'A deep learning nomogram kit for predicting metastatic lymph nodes in rectal cancer', Cancer Medicine, vol. 9, no. 23, pp.8809-8820.

Fan, N.J., Kang, R., Ge, X.Y., Li, M., Liu, Y., Chen, H.M. and Gao, C.F 2014, 'Identification alpha-2-HS-glycoprotein precursor and tubulin beta chain as serology diagnosis biomarker of colorectal cancer', Diagnostic pathology, vol. 9, no. 1, pp.1-11.

Fan, X.J., Wan, X.B., Huang, Y., Cai, H.M., Fu, X.H., Yang, Z.L., Chen, D.K., Song, S.X., Wu, P.H., Liu, Q. and Wang, L 2012. 'Epithelial–mesenchymal transition biomarkers and support vector machine guided model in preoperatively predicting regional lymph node metastasis for rectal cancer', British journal of cancer, vol. 106, no. 11, pp.1735-1741.

Fouladi, D.F., Zarghampour, M., Pandey, P., Pandey, A., Varzaneh, F.N., Ghasabeh, M.A., Khoshpouri, P. and Kamel, I.R 2020, Baseline 3D-ADC outperforms 2D-ADC in predicting response to treatment in patients with colorectal liver metastases, European radiology, vol. 30, no 1, pp.291-300.

Guachi, L., Guachi, R., Bini, F. and Marinozzi, F 2019. 'Automatic colorectal segmentation with convolutional neural network', Computer-Aided Design and Applications, vol. 16, no. 5, pp.836-845.

Gupta, P., Chiang, S.F., Sahoo, P.K., Mohapatra, S.K., You, J.F., Onthoni, D.D., Hung, H.Y., Chiang, J.M., Huang, Y. and Tsai, W.S 2019, 'Prediction of colon cancer stages and survival period with machine learning approach. Cancers', vol. 11, no. 12, pp. 2007.

Horaira, M.A., Ahmed, M.S., Kabir, M.H., Mollah, M.N.H. and Shah, M.A.R 2018, 'Colon cancer prediction from gene expression profiles using kernel based support vector machine', International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), pp. 1-4.

Huang, Y.J., Dou, Q., Wang, Z.X., Liu, L.Z., Wang, L.S., Chen, H., Heng, P.A. and Xu, R.H 2018, 'HL-FCN: Hybrid loss guided FCN for colorectal cancer segmentation' IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 195-198.

Ichikawa, T., Erturk, S.M., Motosugi, U., Sou, H., Iino, H., Araki, T. and Fujii, H 2006. ' High-B-value diffusion-weighted MRI in colorectal cancer'. American Journal of Roentgenology, vol. 187, no. 1, pp.181-184.

Irving, B., Cifor, A., Papie?, B.W., Franklin, J., Anderson, E.M., Brady, M. and Schnabel, J.A 2014, 'Automated colorectal tumour segmentation in DCE-MRI using supervoxel neighbourhood contrast characteristics', In International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, pp. 609-616.

Jian, J., Xiong, F., Xia, W., Zhang, R., Gu, J., Wu, X., Meng, X. and Gao, X 2018, 'Fully convolutional networks (FCNs)-based segmentation method for colorectal tumors on T2-weighted magnetic resonance images', Australasian physical & engineering sciences in medicine, vol. 41, no. 2, pp.393-401.

Jin, Z 2021, 'Expert consensus on the colorectal cancer annotation of CT and MRI'. Chinese Journal of Academic Radiology, pp.1-9.

Joshi, N., Bond, S. and Brady, M 2010. 'The segmentation of colorectal MRI images', Medical image analysis, vol. 14, no. 4, pp.494-509.

Kang, J. and Gwak, J 2019, 'Ensemble of instance segmentation models for polyp segmentation in colonoscopy images'. IEEE Access, vol. 7, pp.26440-26447.

Kekelidze, M., D’Errico, L., Pansini, M., Tyndall, A. and Hohmann, J 2013, 'Colorectal cancer: current imaging methods and future perspectives for the diagnosis, staging and therapeutic response evaluation', World journal of gastroenterology, vol. 19, no. 46, pp. 8502.

Kwak, M.S., Lee, H.H., Yang, J.M., Cha, J.M., Jeon, J.W., Yoon, J.Y. and Kim, H.I 2021, 'Deep Convolutional Neural Network-Based Lymph Node Metastasis Prediction for Colon Cancer Using Histopathological Images', Frontiers in Oncology, vol. 10, pp.3053.

Laimer, G., Jaschke, N., Schullian, P., Putzer, D., Eberle, G., Solbiati, M., Solbiati, L., Goldberg, S.N. and Bale, R 2021, 'Volumetric assessment of the periablational safety margin after thermal ablation of colorectal liver metastases', European radiology, pp.1-11.

Li, H., Boimel, P., Janopaul-Naylor, J., Zhong, H., Xiao, Y., Ben-Josef, E. and Fan, Y 2019, 'Deep convolutional neural networks for imaging data based survival analysis of rectal cancer', IEEE 16th International Symposium on Biomedical Imaging, IEEE, pp. 846-849.

Li, Q., Yang, G., Chen, Z., Huang, B., Chen, L., Xu, D., Zhou, X., Zhong, S., Zhang, H. and Wang, T 2017, 'Colorectal polyp segmentation using a fully convolutional neural network', 10th international congress on image and signal processing, biomedical engineering and informatics, IEEE, pp. 1-5.

Li, Y., Eresen, A., Shangguan, J., Yang, J., Lu, Y., Chen, D., Wang, J., Velichko, Y., Yaghmai, V. and Zhang, Z 2019, 'Establishment of a new non-invasive imaging prediction model for liver metastasis in colon cancer', American journal of cancer research, vol. 9, no. 11, p.2482.

Liu, X., Guo, S., Zhang, H., He, K., Mu, S., Guo, Y. and Li, X 2019, 'Accurate colorectal tumor segmentation for CT scans based on the label assignment generative adversarial network', Medical physics, vol. 46, no.8, pp.3532-3542.

Liu, Y., Aickelin, U., Feyereisl, J. and Durrant, L.G 2013, 'Wavelet feature extraction and genetic algorithm for biomarker detection in colorectal cancer data', Knowledge-Based Systems, vol. 37, pp.502-514.

Manu, M.R. and Balamurugan, B., 2021, Tautomated Colorectal Lymphoma Volume Calculation Using 3d Mri Images, Turkish Journal of Computer and Mathematics Education, vol. 12, no. 6, pp.4240-4251.

Marcan, M., Pavliha, D., Music, M.M., Fuckan, I., Magjarevic, R. and Miklavcic, D 2014, 'Segmentation of hepatic vessels from MRI images for planning of electroporation-based treatments in the liver', Radiology and oncology, vol. 48, no. 3, pp.267.

Marcuello, M., Vymetalkova, V., Neves, R.P., Duran-Sanchon, S., Vedeld, H.M., Tham, E., van Dalum, G., Flügen, G., Garcia-Barberan, V., Fijneman, R.J. and Castells, A 2019, 'Circulating biomarkers for early detection and clinical management of colorectal cancer', Molecular Aspects of Medicine, vol. 69, pp.107-122.

Mark, E.B., Poulsen, J.L., Haase, A.M., Frøkjær, J.B., Schlageter, V., Scott, S.M., Krogh, K. and Drewes, A.M 2017, 'Assessment of colorectal length using the electromagnetic capsule tracking system', a comparative validation study in healthy subjects, Colorectal Disease, vol. 19, no. 9, pp.O350-O357.

Meier and Wildermuth 2002, 'Feasibility and potential of MR-colonography for evaluating colorectal cancer', Swiss surgery, vol. 8, no. 1, pp.21-24.

Mozdiak, E., Wicaksono, A.N., Covington, J.A. and Arasaradnam, R.P 2019. 'Colorectal cancer and adenoma screening using urinary volatile organic compound (VOC) detection: early results from a single-centre bowel screening population (UK BCSP)', Techniques in coloproctology, vol. 23, no. 4, pp.343-351.

Muhi, A., Ichikawa, T., Motosugi, U., Sou, H., Nakajima, H., Sano, K., Sano, M., Kato, S., Kitamura, T., Fatima, Z. and Fukushima, K 2011, 'Diagnosis of colorectal hepatic metastases: Comparison of contrast?enhanced CT, contrast?enhanced US, superparamagnetic iron oxide?enhanced MRI, and gadoxetic acid?enhanced MRI', Journal of Magnetic Resonance Imaging, vol. 34, no. 2, pp.326-335.

Naik, A. and Edla, D.R 2021, 'Lung nodule classification on computed tomography images using deep learning', Wireless Personal Communications, vol. 116, no. 1, pp.655-690.

Nelikanti, A., Prasad, N.L. and Goud, N.M., 2014, 'Colorectal Cancer MRI Image Segmentation Using Image Processing Techniques', International Journal on Computer Science and Engineering, vol. 6, no. 7, pp.280.

Ngan, T.T., Lan, L.T.H., Tuan, T.M., Son, L.H., Tuan, L.M. and Minh, N.H 2020, 'Colorectal cancer diagnosis with complex fuzzy inference system', Springer, pp. 11-20.

Nguyen, Q. and Lee, S.W 2018, 'Colorectal segmentation using multiple encoder-decoder network in colonoscopy images', IEEE first international conference on artificial intelligence and knowledge engineering (AIKE) pp. 208-211.

Okugawa, Y., Grady, W.M. and Goel, A 2015, 'Epigenetic alterations in colorectal cancer: emerging biomarkers', Gastroenterology, vol. 149, no. 5, pp.1204-1225.

Panic, J., Defeudis, A., Mazzetti, S., Rosati, S., Giannetto, G., Vassallo, L., Regge, D., Balestra, G. and Giannini, V 2020, 'A convolutional neural network based system for colorectal cancer segmentation on MRI images', 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, pp. 1675-1678.

Pei, Q., Yi, X., Chen, C., Pang, P., Fu, Y., Lei, G., Chen, C., Tan, F., Gong, G., Li, Q. and Zai, H 2021, 'Pre-treatment CT-based radiomics nomogram for predicting microsatellite instability status in colorectal cancer', European Radiology, pp.1-11.

Quantin, C., Benzenine, E., Hägi, M., Auverlot, B., Abrahamowicz, M., Cottenet, J., Fournier, E., Binquet, C., Compain, D., Monnet, E. and Bouvier, A.M 2012, Estimation of national colorectal-cancer incidence using claims databases, Journal of cancer epidemiology.

Rabeneck, L., Rumble, R.B., Thompson, F., Mills, M., Oleschuk, C., Whibley, A., Messersmith, H. and Lewis, N 2012, 'Fecal immunochemical tests compared with guaiac fecal occult blood tests for population-based colorectal cancer screening', Canadian Journal of Gastroenterology, vol. 26, no. 3, pp.131-147.

Rappeport, E.D., Loft, A., Berthelsen, A.K., Von Der Recke, P., Noergaard Larsen, P., Mellon Mogensen, A., Wettergren, A., Rasmussen, A., Hillingsoe, J., Kirkegaard, P. and Thomsen, C 2007, 'Contrast-enhanced FDG-PET/CT vs. SPIO-enhanced MRI vs. FDG-PET vs. CT in patients with liver metastases from colorectal cancer: a prospective study with intraoperative confirmation', Acta radiologica, vol. 48, no. 4, pp.369-378.

Salmi, N. and Rustam, Z 2019, 'Naïve Bayes classifier models for predicting the colon cancer', Materials Science and Engineering, IOP Publishing, vol. 546, no. 5, pp. 052068.

Sarwinda, D., Paradisa, R.H., Bustamam, A. and Anggia, P 2021. 'Deep Learning in Image Classification using Residual Network (ResNet) Variants for Detection of Colorectal Cancer', Procedia Computer Science, vol. 179, pp.423-431.

Schmidt, G.P., Baur-Melnyk, A., Haug, A., Utzschneider, S., Becker, C.R., Tiling, R., Reiser, M.F. and Hermann, K.A 2009. 'Whole-body MRI at 1.5 T and 3 T compared with FDG-PET-CT for the detection of tumour recurrence in patients with colorectal cancer', European radiology, vol. 19, no. 6, pp.1366-1378.

Shaban, M., Awan, R., Fraz, M.M., Azam, A., Tsang, Y.W., Snead, D. and Rajpoot, N.M 2020. 'Context-aware convolutional neural network for grading of colorectal cancer histology images'. IEEE transactions on medical imaging, vol. 39, no. 7, pp.2395-2405.

Shayesteh, S., Nazari, M., Salahshour, A., Sandoughdaran, S., Hajianfar, G., Khateri, M., Yaghobi Joybari, A., Jozian, F., Fatehi Feyzabad, S.H., Arabi, H. and Shiri, I 2021, 'Treatment response prediction using MRI?based pre?, post?, and delta?radiomic features and machine learning algorithms in colorectal cancer', Medical physics.

Shin, N.Y., Kim, M.J., Lim, J.S., Park, M.S., Chung, Y.E., Choi, J.Y., Kim, K.W. and Park, Y.N 2012, 'Accuracy of gadoxetic acid-enhanced magnetic resonance imaging for the diagnosis of sinusoidal obstruction syndrome in patients with chemotherapy-treated colorectal liver metastases', European radiology, vol. 22, no. 4, pp.864-871.

Soomro, M.H., Coppotelli, M., Conforto, S., Schmid, M., Giunta, G., Del Secco, L., Neri, E., Caruso, D., Rengo, M. and Laghi, A 2019, 'Automated segmentation of colorectal tumor in 3D MRI using 3D multiscale densely connected convolutional neural network', Journal of healthcare engineering.

Sui, D., Zhang, K., Liu, W., Chen, J., Ma, X. and Tian, Z 2021, 'CST: A Multitask Learning Framework for Colorectal Cancer Region Mining Based on Transformer', BioMed Research International, 2021.

Takamatsu, M., Yamamoto, N., Kawachi, H., Chino, A., Saito, S., Ueno, M., Ishikawa, Y., Takazawa, Y. and Takeuchi, K 2019, 'Prediction of early colorectal cancer metastasis by machine learning using digital slide images', Computer methods and programs in biomedicine, vol. 178, pp.155-161.

Tse, D.M.L., Joshi, N., Anderson, E.M., Brady, M. and Gleeson, F.V., 2012, 'A computer-aided algorithm to quantitatively predict lymph node status on MRI in rectal cancer', The British journal of radiology, vol. 85, no. 1017, pp.1272-1278.

Vatandoost, N., Ghanbari, J., Mojaver, M., Avan, A., Ghayour-Mobarhan, M., Nedaeinia, R. and Salehi, R 2016, Early detection of colorectal cancer: from conventional methods to novel biomarkers. Journal of cancer research and clinical oncology, vol. 142, no. 2, pp.341-351.

Wang, P. and Chung, A.C 2020, 'DoubleU-Net: Colorectal Cancer Diagnosis and Gland Instance Segmentation with Text-Guided Feature Control', In European Conference on Computer Vision, Springer, pp. 338-354.

Wickstrøm, K., Kampffmeyer, M. and Jenssen, R 2020. 'Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps', Medical image analysis, vol. 60, pp.101619.

Wild, N., Andres, H., Rollinger, W., Krause, F., Dilba, P., Tacke, M. and Karl, J 2010, 'A combination of serum markers for the early detection of colorectal cancer', Clinical Cancer Research, vol. 16, no. 24, pp.6111-6121.

Xu, J., Luo, X., Wang, G., Gilmore, H. and Madabhushi, A 2016, 'A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images', Neurocomputing, vol. 191, pp.214-223.

Xu, L., Walker, B., Liang, P.I., Tong, Y., Xu, C., Su, Y.C. and Karsan, A 2020. 'Colorectal cancer detection based on deep learning', Journal of Pathology Informatics, vol. 11.

Xu, Y., Ju, L., Tong, J., Zhou, C.M. and Yang, J.J 2020, 'Machine learning algorithms for predicting the recurrence of stage IV colorectal cancer after tumor resection', Scientific reports, vol. 10, no. 1, pp.1-9.

Yao, Y., Gou, S., Tian, R., Zhang, X. and He, S 2021, 'Automated Classification and Segmentation in Colorectal Images Based on Self-Paced Transfer Network', BioMed Research International, 2021.

Yiu, A.J. and Yiu, C.Y 2016, 'Biomarkers in colorectal cancer', Anticancer research, vol. 36, no. 3, pp.1093-1102.

Zhang, J.K., He, Y.R., Sobh, N. and Popescu, G 2020, 'Label-free colorectal cancer screening using deep learning and spatial light interference microscopy (SLIM)', APL Photonics, vol. 5, no. 4, pp.040805.

Zhang, L., Zheng, C., Li, T., Xing, L., Zeng, H., Li, T., Yang, H., Cao, J., Chen, B. and Zhou, Z 2017. 'Building up a robust risk mathematical platform to predict colorectal cancer', Complexity.

Zhang, Q., Liu, Y., Han, H., Shi, J. and Wang, W 2018, 'Artificial intelligence based diagnosis for cervical lymph node malignancy using the point-wise gated Boltzmann machine', IEEE Access,vol. 6, pp.60605-60612.

Zhang, X.Y., Wang, L., Zhu, H.T., Li, Z.W., Ye, M., Li, X.T., Shi, Y.J., Zhu, H.C. and Sun, Y.S 2020, 'Predicting rectal cancer response to neoadjuvant chemoradiotherapy using deep learning of diffusion kurtosis MRI', Radiology, vol. 296, no.1, pp.56-64.

Zhang, Y., Chen, J.H., Chang, K.T., Park, V.Y., Kim, M.J., Chan, S., Chang, P., Chow, D., Luk, A., Kwong, T. and Su, M.Y 2019, 'Automatic breast and fibroglandular tissue segmentation in breast MRI using deep learning by a fully-convolutional residual neural network U-net', Academic radiology, vol. 26, no. 11, pp.1526-1535.

Zheng, X., Yao, Z., Huang, Y., Yu, Y., Wang, Y., Liu, Y., Mao, R., Li, F., Xiao, Y., Wang, Y. and Hu, Y 2020, 'Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer', Nature communications, vol. 11, no.1, pp.1-9.