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Abstract: Wireless Sensor Networks (WSNs) are crucial in various fields, including monitoring the environment, surveillance, and 

healthcare. They rely on localization services for accurate data transfer and optimal network performance. Traditional WSN 

techniques struggle to adapt to dynamic environmental changes beyond the intended task scope. A synergy between Software-

Defined Networking (SDN) and WSN has been suggested to address this issue. This research paper presents proposed approach for 

machine learning-based localization in Software Defined Wireless Sensor Networks (SDWSNs) using Particle Swarm Optimization 

(PSO) technique and the Weighted Dijkstra algorithm. PSO technique is used for clustering, the weighted Dijkstra algorithm (WDA) 

for finding the shortest path and sending data packets, and machine learning algorithms like AdaBoost and Naïve Bayes for data 

classification. The effectiveness of the proposed approach is measured using energy consumption, throughput, network lifespan, 

and packet delivery ratio, outperforming existing models like OEERP, LEACH, DRINA, and BCDCA. The machine learning 

algorithms' performance is also evaluated, with Naïve Bayes achieving the highest accuracy of 78.24% and AdaBoost 98.90%. 

Keywords: Software Defined Wireless Sensor Networks, Localization, Clustering, Particle Swarm Optimization, Weighted Dijkstra 

Algorithm, Machine Learning Algorithms. 

1. Introduction 

Wireless sensor networks (WSNs) are crucial in the IoT 

future for providing connection, control, security, and 

awareness of assets of varying sizes, locations, and 

connectivity types. By accurately correlated sensor data with 

location, WSNs improve network resource utilization and 

interpretation accuracy, making them essential for various 

applications [1-2]. WSN is a collection of sensor node 

deployments for specific applications, allowing for self-

organization and task-specific network models. Sensor nodes 

operate on constrained batteries, affecting energy efficiency. In 

hazardous areas, battery replacement is challenging [3]. 

We found the motivation to ensure balanced energy 

consumption between sensor nodes and Base Stations (BS) 

using clustering protocols in the research papers that published 

in this journal [4]. 

WSNs face challenges like limited energy supply, fault 

tolerance, scalability, production costs, hardware constraints, 

topology maintenance, transmission media, and power 

consumption. To address all these challenges, it was proposed 

to use Software Defined Networking (SDN) paradigm which 

simplifies network management and configuration by 

presenting high-level abstractions for networking concepts. The 

network is divided into data, control, and application planes, 

with controllers having a global view and selecting appropriate 

allocation algorithms for network lifetime, processing power, or 

data exchange [5-6]. 

      The SDWSN paradigm addresses management complexity 

in current WSN deployments by adding new functionalities and 

centralizing network intelligence in an SDWSN controller. 

This approach is crucial for large WSNs with thousands of 

sensor nodes, allowing sensor nodes to function as forwarding 

devices [7]. 

This paper provides the following contributions for this 

research work: 

1. The study proposes a new approach for localization in 

SDWSN, combining Particle Swarm optimization (PSO) 

with the Weighted Dijkstra algorithm, to address limitations 

in accuracy, scalability, and energy efficiency in finding 

accurate locations. 

2. To apply machine learning algorithms, specifically Naïve 

Bayes and AdaBoost , for data classification in SDWSN. 

The research illustrates how accurate classification may be 

performed using these techniques, which in turn leads to 

enhanced decision-making and improved network 

performance. 

The remainder of the paper is structured as follows. In the 

subsequent section, we provide a concise literature review on 

localization in SDWSN. In Section 3 we discuss existing gaps 

in the related literature. Section 4 depicts explanation on 

developed scheme and proposed flowchart. The proposed 

methodologies and their resulting performance analysis are 

presented in Section 5. Finally, Section 6 concludes this paper 

with a discussion of future research. 
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2. Literature survey 

      The control plane in SDWSN networking architecture 

offers a thorough perspective of the network, which makes it 

perfect for localization and resolving location estimation 

equations. However, because this area is new, there hasn't been 

much effort done in it, and implementations and uses differ [8]. 

      The traditional distance estimation methods can be used 

during localization in a SDWSN, but their implementations and 

use will be varied, like Y. Zhu et al. [9] proposed a localization 

node selection algorithm using the Cramer-Rao lower bound 

and SDN controller knowledge, aiming for energy satisfaction 

and significant improvement in localization performance, The 

authors found a 45% increase in node accuracy allocation using 

this method that requires 22 anchor nodes for localization of 50 

unknown nodes. In [10] Y. Zhu et al. introduced an anchor 

scheduling scheme for localization in wireless sensor networks 

(WSNs). They proposed a centralized scheme based on 

software-defined networking (SDN) to minimize active 

anchors and prolong network lifetime. Simulations show this 

scheme reduces active anchors, ensures desired number of 

anchors, and reduce energy usage; but the plan can slightly 

reduce localization accuracy, after that Y. Zhu et al. [11] 

developed an improved localization algorithm for software-

defined sensor networks (SDSNs) using a node-selection 

strategy under network power constraints. This algorithm uses 

the Software-Defined Networking (SDN) technique for 

centralized control and uses the Cramer-Rao lower bound (A-

CRLB) value to evaluate each node's contribution to 

localization accuracy. The algorithm is applied to both 

cooperative and noncooperative localization scenarios, proving 

efficient and effective in improving selection convergence 

speed and localisation accuracy. In [12] Y. Zhu et al. suggested 

a node scheduling scheme for localization in heterogeneous 

SD-WSNs. The scheme uses the software-defined networking 

paradigm and calculates anchor state using a flow table via 

sensor OpenFlow. Simulations show that the scheme reduces 

active nodes while ensuring an expected number of anchors and 

reduces energy consumption with slight positioning accuracy. 

In [13] Y. Zhu et al. introduced a node selection algorithm and 

an NLOS mitigation algorithm to improve the cooperative 

localization algorithm. The node selection algorithm selects 

informative reference nodes for agents, reducing energy 

consumption. The NLOS mitigation algorithm penalizes NLOS 

errors based on link quality, enhancing localization accuracy in 

severe NLOS environments, however, the suggested node-

selection algorithm only takes into account static NLOS 

scenarios when choosing the reference nodes. In [14] O. P. 

Cloete et al. compared and implemented three localization 

algorithms using IT-SDN in a contiki-os environment: 

Trilateration, Maximum likelihood estimation, and Linear 

Least Square Localization. The simulation results shows that 

these algorithms moving localization calculation from the data-

plane to the control-plane doesn’t improve performance. 

Furthermore, the experiment led to unnecessary energy 

consumption. 

 

 

3. Problem statement 

SDWSNs are networks of sensors used to gather data from 

a given region. SDWSN applications which includes " 

monitoring of environmental, tracking of target, and disaster 

management" rely on these nodes' precise positioning. 

Traditional localization approaches, such as triangulation and 

trilateration, are imprecise, inefficient, and inefficient in terms 

of scalability and energy efficiency. 

The challenge is to develop a machine learning-based 

localization technique for SDWSNs that can overcome these 

constraints while still offering accurate and efficient node 

localization. The objective is to use the power of SDN and ML 

approaches to increase localization accuracy, minimize energy 

consumption, and deal with the dynamic nature of SDWSNs. 

Existing localization approaches based on range measurements 

or signal intensity frequently degrade in accuracy owing to 

environmental variables such as multipath fading, signal 

attenuation, and interference. Overcoming these challenges and 

achieving high localization accuracy is essential. Data plane in 

SDWSNs is typically powered by batteries, and energy 

efficiency is crucial to prolong the network lifetime. 

Localization techniques should minimize energy consumption 

by reducing the number of control messages, optimizing sensor 

node movement, or using energy-aware algorithms. WSNs can 

contain a large number of sensor nodes, so localization 

algorithms must be scalable enough to manage networks with 

hundreds or thousands of nodes. The computational and 

communication overheads should be minimized to enable 

efficient localization in large-scale SDWSNs deployments. 

They are often deployed in dynamic environments where nodes 

can move or be added/removed over time. Localization 

algorithms should adapt to changing environments and give 

real-time node position updates. 

4. Existing gaps 

Various research gaps in the present work are described in 

this section. They are as follows: 

• Most studies use simulations or limited experimental 

datasets, and more research is needed to validate proposed 

algorithms in real-world SDWSNs deployments. 

Experiments in diverse environments with noise, obstacles, 

and mobility patterns could provide more realistic insights. 

• Labeled training data is crucial for ML model development, 

but it can be laborious and expensive. Further research is 

needed to improve localization accuracy and reduce training 

data quantity. 

• Energy consumption is a crucial factor in Wireless Sensor 

Networks (WSNs) due to limited sensor node resources. 

Further research is needed to design energy-efficient models, 

optimize feature extraction and selection, and improve 

inference methods. 

• Most reviewed articles assume sensor nodes are inert or 

anchor nodes are controlled. However, real-world scenarios 

may involve dynamic movement. Future research should 
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focus on developing localization algorithms using machine 

learning to adapt to these environments. 

5. Research methodology 

5.1 Proposed system model 

SDN technology is used in the suggested approach, as seen 

in Figure 1, to determine each node's precise location and 

network routing. In the base station (BS) is the controller that 

determines the network's overall routing. It is sufficient for 

sensor nodes to send the BS the topological data. The energy 

usage and processing overhead in the sensor node are decreased 

by this technology. 

 

(a) 

 

 
(b) 

Figure. 1 System model: (a) Overview of an SDWSN 

framework and (b) architecture details  

 

 

5.2 Proposed methodology 

      The proposed study works to find an effective rout to obtain 

the best location  and improve network performance by making 

location calculations take place in the SDN and finding for the 

process of proper data transmission. The propose model is 

designed using the optimization technique based on machine 

learning. Initially, we have generated the simulation data. In the 

sensing area, we are generating 50 random nodes in the area of 

200*200 square meter. After generating the nodes, PSO 

(Particle Swarm Optimization) technique is used for clustering. 

This algorithm assigned the nodes to the clusters and determine 

the cluster centers depends on cluster radius, also draw the 

cluster circles. So, we can visualize the clusters and can 

understand the cluster distribution within the sensing area. Then, 

perform the cluster head selection in which final cluster heads 

are determined using gravitational force estimation. 

        After performing the cluster head selection, Weighted 

Dijkstra algorithm is applied to find the shortest path for packet 

transmission and generates data from routing and data 

transmission to calculate network lifetime, energy consumption, 

PDR, and throughput. Machine learning-based algorithms like 

naïve bayes and AdaBoost algorithm are applied for 

classification, and performance metrics are calculated to assess 

accuracy, sensitivity, specificity, and Kappa. 

5.3 Proposed approaches 

5.3.1 Particle Swarm Optimization (PSO) 

  PSO is a “stochastic optimization” method that simulates 

social activity like fish schooling or bird flocking. Particle 

swarms (also known as people) in PSO systems move rapidly 

around the search area. A solution to the optimization problem 

is represented by each particle. A particle's current position is 

affected by its best previous experiences and the best past 

experiences of nearby particles. The gbest PSO is a technique 

for finding the ideal position within a particle's range for the 

whole Swarm. This approach is frequently referred to as the best 

PSO when employing more compact localizations. A fitness 

function that varies based on the optimization problem evaluates 

the performance of each particle [15]. 

The following traits characterize each swarm particle: xid 
represents the particle's current position, vid its current velocity, 
and pid its best-ever position. Particle i  is greatest location is the 
finest location it has ever been to. The best vector from each 
neighbor can be remembered using either lbest or gbest. Each 
local version particle remembers the optimal vector lbest 
achieved by its topological companions [16]. The optimal vector 
gbest for the global version is decided by the collective 
intelligence of all swarm members. Therefore, the gbest model 
includes the lbest model. The velocity and position are updated 
using Eq. (1) and (2) 

𝑣𝑖𝑑 = 𝑤𝑣𝑖𝑑 + 𝑐1𝑟𝑎𝑛𝑑()(𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐1𝑅𝑎𝑛𝑑()(𝑝𝑔𝑑 − 𝑥𝑖𝑑)                                                          

(1) 

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑                                                               (2) 
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      Where c1 and c2 represent two cognitive coefficients, rand () 

and Rand () represent two random real values.there are  various 

communication topologies for particle interaction. The ideal 

solution is reached by switching to a star topology in which all 

particles are in constant contact with one another. The star 

topology outshines any alternative. Using inertia w, we are able 

to strike a balance between probing new areas and capitalizing 

on known ones in the search space. The dynamic reduction of 

inertia during travel promotes a state of balance between the 

search space's exploration and utilization [17-18]. 

Algorithm 1: PSO for clustering 

Input: Set of 𝑛1, 𝑛2, 𝑛3, 𝑛4…,𝑛𝑛. 
Output: cluster head (CH) for the swarm. 

Step 1: Determine the maximum number of iterations. 

Step 2: Randomly initialize the position of N particles Xi 

when. 

Step 3:  Pick the parameter values: W, (C1and C2) and (r1 

and r2) 

Step 4: For Iteration in range (max_iter):   

    For each particle in range (N):   

a. Compute new velocity of particle using 

Eq. (1) 

b. Compute new position of the particle using 

its new velocity as shown in Eq. (2) 

c. If position is not in range [min, max] then 

clip it: 

       if xi < min: 

 xi = minx 

       else if xi > max: 

xi = max 

d. Update new best of this particle and new 

best of Swarm 

                           Pbest,i=xi     if fi better fpbest  

                          gbest,i=pbest,i if fpbest,i better fgbest   

Step 5: determine the cluster head (CH) for the swarm, when 

CH=gbest,i . 

 

 

5.2.2 Weighted Dijkstra Algorithm 

The Weighted Dijkstra Algorithm (WDA) is an extension of 

Dijkstra's algorithm that takes into account the weights or costs 

associated with the edges of a graphite is used to determine the 

shortest path among a source nodes and every other node in a 

weighted graph [19]. Here's an explanation of the Weighted 

Dijkstra Algorithm: 

 

Algorithm 2: WDA for shortest path 

Input: clustered nodes 

Output: shortest path connecting each source node to all other 

nodes. 

Step 1:  Install the distance values of all nodes as infinity, 

except for the source node, which is set to 0. 

Step 2: Create an empty set of visited nodes. 

Step 3: While there are unvisited nodes: 

• Choose the nodes with the minimum distance from the 

source among the unvisited nodes. This node becomes 

the current node. 

• Mark the current node as visited. 

• For each neighbour of the current node: 

o  Add the source's distance to the current node's 

edge weight to estimate the neighbour’s 

distance. 

o Update the neighbour’s distance if the tentative 

distance is less. 

Step 4: Once all nodes are visited, or the destination node is 

reached, the algorithm terminates. 

 

5.2.3 Machine learning Algorithms 

In this research, there are two machine learning algorithms 

used for classification, which are Naïve Bayes and AdaBoost. 

5.2.3.2 Naïve Bayes Classifier 

     It's an approach to classification predicated on the Bayes 

Theorem and the idea that predictors are unrelated to one 

another. Naive Bayes classifiers function on the premise that 

each feature included in a class is independent of the other.  The 

field of text categorization is where Naïve Bayes dominates. The 

conditional probability of an occurrence is used for aggregation 

and classification. The Naïve Bayes classifier is based on the 

Bayes theorem as shown in the following equation: 

 

 

 

 

 

      Where 𝑃(𝑐|𝑥)  represent Posterior Probability, 𝑃(𝑥|𝑐)  is 

Likelihood, 𝑃(𝑐) is Class Prior Probability, 𝑃(𝑥) is Predictor 

Prior Probability. Finally, c and x are hypothesis and data 

vectors respectively. To make a classification decision, the 

Naive Bayes algorithm find P(c/x) for each c ∈ C. The class 

with the highest probability is the final classification, which 

forms the output of the classifier [20]. 

 

Algorithm 3: Naïve Bayes classifier 

Input: Training dataset. 

Output: Predicted class for the test document. 

Step 1: First, Read the training dataset T. 

Step 2: Compute each class's predictor variable mean and 

standard deviation. 

Step 3: Repeat the Gauss density equation to determine the 

probability of class fi given each predictor variable f1, f2, 

f3..., fn.   

Step 4: Determine the probabilities associated with each 

group. 

Step 5: Get the greatest likelihood. 

 
5.2.3.2 AdaBoost classifier 

𝑃(𝑐|𝑥) =
𝑃(𝑥|𝑐)𝑃(𝑐)

𝑃(𝑥)
 

𝑃(𝑐|𝑋) = 𝑃(𝑥1|𝑐) × 𝑃(𝑥2|𝑐) × …× 𝑃(𝑥𝑛|𝑐) ×

𝑃(𝑐)                                                                             (3) 
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      AdaBoost is an ensemble learning technique that uses an 

iterative procedure to improve weak classifiers by learning from 

their errors. It is also known as "Meta-learning" and uses 

sequential ensemble, unlike random forest's parallel ensemble. 

AdaBoost combines multiple weak classifiers into one, 

generating a powerful classifier with superior accuracy. It is an 

adaptive classifier that enhances performance, but may lead to 

overfitting in some cases. It is most effective when used to 

improve decision trees and base estimators, addressing binary 

classification challenges due to noise and outliers. AdaBoost's 

central concept is to accurately predict out-of-the-ordinary 

observations by adjusting classifier weights and training each 

iteration's data sample [21-22]. 

 

Algorithm 4: AdaBoost classifier 

Input:  

• Training dataset with labeled examples 

• Weak classifier algorithm 

Output: Return ensemble of weak classifiers and their 

weights. 

Step 1: AdaBoost randomly selects a training subset. 

Step 2: Selects a new AdaBoost ML training model set based 

on the performance of its predictions during the preceding 

training iteration. 

Step 3: It allocates more weight to incorrectly categorized 

data so that there is a high probability of classification in 

the subsequent iteration. 

Step 4: Each iteration's weight for the trained classifier is 

determined by the classifier's performance in the previous 

iteration. We will priorities the best-performing classifier. 

Step 5: This procedure repeats itself until either all training 

data is fitted error-free, or the maximum number of 

estimators is achieved. 

Step 6: To classify, "vote" on all the learning  

 

6. Results and analysis 

The performance of the proposed localization techniques 

was evaluated here. We start by describing a simulated system 

model in two dimensions, and then we talk about how to scale 

this model up to deal with localization issues in higher 

dimensions. We conclude with a review of the performance 

findings. The 50 sensor nodes in our baseline simulated network 

were spread out over a 200 by 200 meter area. All simulations 

used a completely random distribution of sensor nodes. Below, 

we have provided the simulation parameters in tabular form, 

which is as follows: 

Table 1: simulation settings/parameters 

Parameters Value 

Cluster Radius 30 meters 

Sensing Range 36 meters 

Size of Packet 512 Bytes 

Number of Nodes 50 

Transmission Power 0.02 Joule 

Receiving Power 0.01 Joule 

Initial Energy 200 Joule 

6.1 Experimental results 

This section presents the experimental findings after 

employing various methods such as the PSO technique, 

Weighted Dijkstra algorithm, and ML algorithms, i.e., 

AdaBoost and Naïve Bayes. 

6.1.1 Results of the Optimization Routes 

This section provides the results visualization results of the 

optimization routes. To find the routes, we have used PSO 

(Particle Swarm Optimization), and the Weighted Dijkstra 

algorithm. After applying these algorithms, some transmission 

results are found, which are represented below.  

 

Figure 2:Nodes Spread in 200*200 Area. 

The above figure of nodes dispersed throughout a 200x200 

square area illustrates the distribution or placement of nodes in 

a two-dimensional environment. We can see in this figure there 

are a total of 50 nodes given, which is represented by green 

color. The 200x200 area is a square region measuring 200 units 

by 200 units. The spread or distribution of nodes within a 

200x200 area reveals information about the network or system's 

density and coverage. It enables us to determine how densely or 

sparsely the nodes are dispersed throughout the space. Overall, 

the figure of nodes dispersed in a 200x200 area gives a visual 

depiction of the spatial distribution of nodes and is a useful tool 

for analyzing and understanding the deployment of a network or 

system in a specific region. 

http://www.ijritcc.org/
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Figure 3: Nodes in localization range 

Fig. 3 illustrates the nodes in the localization range in the 

context of WSNs and represents the spatial distribution of nodes 

within the localization range, considering specific parameters 

such as the cluster radius, sensing range, number of nodes, 

packet size, initial energy, transmission power, and receiving 

power. As shown in the previous figure, these nodes are 

represented by the same color, but in this figure, we can see that 

every node is represented by different colors. In this figure, it is 

clearly shown that the different clusters' circles are marked. In a 

clustered WSN arrangement, the cluster radius is the shortest 

distance between any two nodes in a cluster. Each cluster's size 

determines its node count. This particular cluster has a radius of 

30 meters. The maximum distance over which a node can detect 

and receive signals from other nodes in the network is known as 

its sensing range. The result specifies the radius within which a 

node may send and receive data and communications. Here, a 

sensing range of 36 meters is specified. The number of nodes is 

already discussed in the previous figure description. In this 

scenario, there are 50 nodes. And the packet size of this is 

specified as 512 bytes. The size of a packet is the amount of data 

that may be sent in a single transmission, measured in bytes. 

Larger packet sizes necessitate more energy for transmission 

and may hinder network performance. In addition, the term 

"initial energy" refers to the amount of energy that is available 

to each node in the network at the start of a simulation or 

deployment. It reveals the node's energy reserves for running 

processes. The initial energy is set to 200 joules. In this scenario, 

0.02 joules are shown as the transmission power. Data 

transmission power is the amount of energy needed to convey 

information over a certain distance between two nodes. The 

node's signal strength and its ability to communicate with other 

devices are diminished. Moreover, A node's power usage while 

receiving data from other nodes is represented by the term 

"receiving power." It normally uses less power than 

transmission. Here, 0.01 joules of receiving power is specified. 

The figure is useful for evaluating the efficiency of the provided 

WSN network in terms of coverage, energy consumption, and 

communication. 

 

 

Figure 4: Different Data Transmission Plots 

http://www.ijritcc.org/
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Figure 4 shows the different data transmission plots to find 

the shortest routes. The shortest path is found using the 

Weighted Dijkstra algorithm in these plots. We can see in these 

plots; the shortest path is marked by a line. More detail about 

these graphs is already described in the previous graph 

description, such as cluster radius, sensing range, number of 

nodes, etc.  

 
Figure 5: Collected data. 

 

       The above figure shows the collected data in the tabular 

form. This data is generated after applying the above given 

process in which PSO and Weighted Dijkstra algorithm is 

included. 

6.1.2 Results of the Machine Learning Algorithms 

       This section presents the simulation results after applying 

the ML approaches such as AdaBoost and Naïve Bayes. There 

are some graphs and tables presented in this section, and obtain 

the classification results in terms of the performance metrics, 

which are classification accuracy, sensitivity, and specificity.  

 

Figure 6: Confusion Matrix of the Naïve Bayes Classifier 

The confusion matrix of the naive Bayes classifier, which 

illustrates the binary classification, is depicted in Fig.6. The x-

axis of this matrix represents the target class, while the y-axis 

represents the output class. Here, we provide two data classes: 

attack and non-attack. This confusion matrix provides values for 

11540 true negatives (TN), 680 false negatives (FN), 638 true 

positives (TP), and 2706 false positives (FP). 78.24% is the total 

accuracy of the Naïve Bayes classifier.  

Table 2: Performance results of the Naïve Bayes classifier 

Model Accuracy Sensitivity Specificity Kappa 

Naïve 

Bayes 

78.24 94.43 19.07 0.173 

Table 2, provides the naive Bayes classifier's performance 

findings. From this table, the naïve Bayes classifier obtained the 

highest 78.24% of accuracy, 94.43% of sensitivity, 19.07% of 

specificity, and 0.173 Kappa, respectively.  

 

Figure 7: Bar plot of the performance results for Naïve Bayes 

classifier 

Fig. 7 demonstrates a bar graph of the performance results 

for the Naïve Bayes classifier. In this graph, the values of three 

performance metrics are shown with different colors. 

Performance evaluation criteria are shown along the x-axis, 

while the proportion of values is shown along the y-axis. The 

red color bar is shown the accuracy parameter, which is 78.24%; 

the green color bar is shown the sensitivity parameter, which is 

94.43%; and the blue color bar is shown the specificity 

parameter, which is 19.07%, respectively. It is clearly shown 

that the sensitivity has the highest value than the other 

parameter.  
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Figure 8: Confusion Matrix of the AdaBoost Classifier 

Fig.8 shows a confusion matrix of the AdaBoost classifier, 

which shows the binary classification. The target class is 

indicated by the x-axis in this matrix, while the output class is 

represented by the y-axis. Here two data classes are given, 

which are attack and non-attack. From this confusion matrix, 

12216 true negatives (TN), 166 false positives (FP), 3178 true 

positives (TP), and four false negatives (FN) values are given. 

The overall accuracy of the AdaBoost classifier is 98.91%.  

Table 3: Performance results of the AdaBoost classifier 

Model Accuracy Sensitivity Specificity Kappa 

Adaptive 

Boost 

98.90 99.96 95.03 0.967 

     The performance results of the AdaBoost classifier are given 

in Table 3. From this table, the AdaBoost classifier obtained the 

highest 98.90% of accuracy, 99.96% of sensitivity, 95.03% of 

specificity, and 0.967 Kappa, respectively. 

 

Figure 9: Bar plot of the performance results for AdaBoost 

classifier 

      Fig.9 demonstrates a bar graph of the performance results 

for AdaBoost classifier. In this graph, the values of three 

performance metrics are shown with different colours. The x-

axis shows the performance evaluation parameters, and y-axis 

shows the number of values in percentage. The red colour bar 

shows the accuracy parameter which is 98.90%, the green 

colour bar is shown the sensitivity parameter which is 99.96%, 

and the blue colour bar is shown the specificity parameter 

which is 95.03%, respectively. It is clearly shown that 

sensitivity has a higher value than the other parameter. 

6.2 Comparative analysis 

This section compares the outcomes, and the comparison 

graphs and tables are shown below. 

Table 4: Comparative Results of the Total Energy 

Consumption at Different Time Slots 

Models 50 100 150 200 250 300 

Proposed  8.8 17.6 26.4 35.2 44.0 52.9 

OEERP 10 19 30 37 47 55 

LEACH 20 42 65 90 110 135 

DRINA 5 10 27 47 85 120 

BCDCP 12 17 28 30 40 50 

 

 

Figure 10: Total Energy Consumption at Different Time Slots 

Fig.10 demonstrates the total energy consumption at 

different time slots of proposed and other existing routing 

protocols such as OEERP, LEACH, DRINA, and BCDCA. 

Time, in milliseconds, is plotted along the x-axis, and total 

energy consumption, in joules, along the y-axis. All models are 

represented by different colors. Our proposed model is 

represented by the blue color. At different time slots, the 

proposed approach consumed energy faster than the other 

methods.  
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Table 5: Comparative Results of the Throughput at Different 

Time Slots 

 

Figure 11: Throughput at different time slots 

Table (5) and Fig.11 demonstrate the throughput at different 

time slots of proposed and other existing routing protocols such 

as OEERP, LEACH, DRINA, and BCDCA. In this figure, x-

axis represents the time in milliseconds, and y-axis depicts the 

throughput value. The all models are represented by different 

colours. Our proposed model is represented by the blue colour. 

It is clearly shown that the proposed model has the highest 

throughput than the others. But obtained minimum time to 

consume the energy compared to the other protocols at different 

time slots. DRINA protocol is also performed well like the 

proposed protocol. 

Table 6: Comparative results of the PDR at different time 

slots 

Models 50 100 150 200 250 300 

Proposed  100 99.285 99.285 99.285 99.285 99 

OEERP 60                         62 61 61 60 61 

LEACH 63 63 63 63 62 63 

DRINA 90 97 98 85 75 65 

BCDCP 20 35 36 37 37 38 

 

 

 

Figure 12: Packet Delivery Ratio at different time slots 

Fig.12 demonstrates the packet delivery ratio (PDR) at different 

time slots of proposed and other existing routing protocols such 

as OEERP, LEACH, DRINA, and BCDCA. The x-axis in this 

graph depicts time in milliseconds, and the y-axis shows the 

PDR. The all models are represented by different colours. The 

proposed model is represented by the blue colour. According to 

this figure, the proposed protocol has the highest PDR value 

compared to the other protocols. 

Table 7: Comparative results of the network lifetime at 

different time slots 

Models 50 100 150 200 250 300 

Propose

d  

10964.9

1 

5482.4

5 

3916.0

4 

3132.8

3 

2741.2

2 

2284.

3 

OEERP 7000                       3000                       2000                       1800                       1200                        1000                        

LEACH 2800                       1500                       1000                       1000                       800                       500                        

DRINA 8500              6500            3300             1500             1000                       600                       

BCDCP 4800 3000 2100 1800 1300 1000 

 

 

Figure 13: Overall network Lifetime at different time slots 

At various time intervals, Fig. 13 shows the overall network 

lifetime of proposed and other current routing protocols such as 

OEERP, LEACH, DRINA, and BCDCA. In this graph, the x-

axis shows time in milliseconds and the y-axis depicts network 
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lifetime in milliseconds. The all models are represented by 

different colours. The proposed protocol is represented by the 

blue colour. According to this figure, the proposed protocol has 

maximum network lifetime than the other protocols. 

7. Conclusion and future work 

This research concludes by discussing the critical need for 

accurate location in Wireless Sensor Networks (WSNs) based 

on SDN and proposed an approach that makes use of machine 

learning algorithms. The study acknowledges the dynamic 

nature of the environments in which WSNs operate and 

emphasizes the importance of adapting to changing conditions 

without requiring a substantial redesign. Using the Particle 

Swarm Optimization (PSO) technique for clustering, the 

Weighted Dijkstra algorithm for determining the shortest path, 

and machine learning algorithms like Naive Bayes and 

AdaBoost for data classification, the proposed methodology 

offers a comprehensive solution for localization in SDWSNs. A 

performance evaluation demonstrates that the proposed 

approach outperforms the state-of-the-art rivals. "throughput, 

energy consumption, packet delivery ratio, and network 

lifetime" are only few of the performance parameters that have 

been demonstrated to improve using the suggested strategy. 

Also, the study's machine learning algorithms performed well, 

with Naive Bayes attaining a 78.24% accuracy rate with a 

sensitivity and specificity of 94.43% and 19.07%, and AdaBoost 

achieving a remarkable 98.90% accuracy rate with a sensitivity 

and specificity of 99.96% and 95.03%, respectively.. These 

results demonstrate the efficiency of incorporating ML 

techniques into the localization procedure in SDN. In 

conclusion, our study aids the development of localization 

methods based on machine learning for SDWSNs. The proposed 

method provides useful insights and implementable solutions 

for optimizing resource utilization, prolonging network lifetime, 

and enhancing overall WSN performance by tackling the issues 

of accurate localization and using machine learning methods. 

Further research might look at how well the proposed 

approach scales in large-scale SDWSN deployments. To further 

improve localization's accuracy and efficiency, researchers 

should investigate further machine learning methods and 

optimization strategies. Also, future study might benefit from 

taking energy efficiency into account by focusing on methods to 

reduce power use without sacrificing localization accuracy. 
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