Triple Even Star Decomposition of Complete Bipartite Graphs

E. Esakkiammal¹ and P. Chithra Devi²

¹Research Scholar [Reg. No. 20111202092003] Department of Mathematics Sri Parasakthi College for Women, Courtallam Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627 012, Tamil Nadu, India.

²Assistant Professor Department of Mathematics Sri Parasakthi College for Women, Courtallam Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627 012, Tamil Nadu, India.

Email: ¹esakki29592@gmail.com; ²chithradevi095@gmail.com

Abstract

Let G be a finite, connected, undirected graph without loops or multiple edges. A decomposition $\{G_2, G_4, \ldots, G_{2k}\}$ of G is said to be an even star decomposition if each G_i is a star and $|E(G_i)| = i$ for all $i = 2, 4, \ldots, 2k$. A graph G is said to have Triple Even Star Decomposition (TESD) if G can be decomposed into 3k stars $\{3S_2, 3S_4, \ldots, 3S_{2k}\}$. In this paper, we characterize Triple Even Star Decomposition of complete bipartite graphs $K_{m,n}$ when m = 2 and m = 3. **Keywords:** Complete bipartite graph, Star, Decomposition.

2010 Mathematics Subject Classification: 05C51, 05C30.

1. Introduction

Let G = (V, E) be a simple, connected graph with p vertices and q edges. A complete bipartite graph with partite sets V_1 and V_2 , where $|V_1| = m$ and $|V_2| = n$, is denoted by $K_{m,n}$. The graph $K_{1,r}$ is called a star and is denoted by S_r . A star with centre i and end vertices 1, 2, ..., n' is denoted by (i; 1', 2', ..., n'). Terms not defined here are used in the sense of [5].

A decomposition of a graph G is a family of edge-disjoint subgraphs $\{G_1, G_2, \ldots, G_k\}$ such that $E(G)=E(G_1) \cup E(G_2) \cup \cdots \cup E(G_k)$. A decomposition $\{G_1, G_2, \ldots, G_k\}$ for all $k \in N$ is said to be a *Continuous Monotonic Decomposition (CMD)* if each G_i is connected and $|E(G_i)| = i$ for all $i \in N$. The concept of CMD was introduced by Joseph and Gnanadhas[6].

A decomposition $\{G_1, G_2, \ldots, G_n\}$ of G said to be an Arithmetic Decomposition (AD) if $|E(G_i)| = a + (i - 1)d$ for all $i = 1, 2, \ldots, n$ and $a, d \in Z^+$. Clearly $q = \frac{n}{2}[2a + (n - 1)d]$. If a = 1 and d = 1, then AD is a CMD. If a = 1 and d = 2 in AD, then it is called an Arithmetic Odd Decomposition (AOD). The concept of Arithmetic Odd Decomposition(AOD) was introduced by Merly and Gnanadhas[1].

The concept of Double Arithmetic Odd Decomposition (DAOD) was introduced by Shali and Asha[8]. The concept of Even Star Decomposition of Complete Bipartite graphs was introduced by Merly and Goldy[2].

In this paper, we give characterization for $K_{m,n}$ when m = 2 and m = 3 which admits Triple Even Star Decomposition (TESD).

2 Triple Even Star Decomposition of K_{2,n}

In this section, we give characterization for K₂,n to be Triple Even Star Decomposable.

Definition 2.1. A graph G is said to admit *Even Star Decomposition (ESD)* if G can be decomposed into k stars $\{S_2, S_4, \ldots, S_{2k}\} \forall k \in N$.

Theorem 2.2. [2] Any graph G admits Even Decomposition $\{G_2, G_4, G_6, ..., G_{2n}\}$, where $G_{2i} = (V_{2i}, E_{2i})$ and $|E(G_{2i})| = 2i$, for all (i = 1, 2, 3, ..., n) if and only if q = n(n + 1) for some $n \in Z^+$.

Theorem 2.3. [3] Any graph G admits Double Even Decomposition $(2G_2, 2G_4, \ldots, 2G_{2n})$ where $G_{2i} = (V_{2i}, E_{2i})$ and $|E(G_{2i})| = 2i$, for all. $(i = 1, 2, \ldots, n)$ if and only if q = 2n(n+1) for some $n \in \mathbb{Z}^+$.

Theorem 2.4.[3] Let *n* be a positive integer with $n \ge 2$. Then $K_{2,n}$ admits Double Even Star Decomposition $\{2S_2, 2S_4, \ldots, 2S_{2k}\}$ [2k-decomposition] with k = s iff $n = s^2 + s$; $s \in N$.

Definition 2.5. A graph G is said to have *Triple Even Star Decomposition(TESD)* if G can be decomposed into 3k stars { $3S_2, 3S_4, ..., 3S_{2k}$ }. It is called as a 3k-decomposition of G.Clearly, number of edges = 3k(k + 1).

Theorem2.6. Any graph G admits Triple Even Decomposition $(3G_2, 3G_4, \ldots, 3G_{2n})$ where $G_{2i} = (V_{2i}, E_{2i})$ and $|E(G_{2i})| = 2i$, for all $(i = 1, 2, \ldots, n)$ if and only if

q = 3n(n+1) for some $n \in \mathbb{Z}^+$.

Proof. Suppose q = 3n(n + 1) for each $n \in \mathbb{Z}^+$. Apply induction on n.

The result is obvious when n = 1 and n = 2. Suppose the result is true

when n = k.

Let G be any connected graph with q = 3k(k+1). Then G can be decomposed into $(3G_2, 3G_4, 3G_6, \dots, 3G_{2k})$. We prove that the result is true for n = k + 1.

Let G' be any connected graph with 3(k+1)[k+1+1] edges.

We prove that G' admits $(3G_{2}, 3G_{4}, ..., 3G_{2k}, 3G_{2(k+1)})$

Thus q(G') = 3[k(k+1) + 2(k+1)] = 3k(k+1) + 6(k+1).

Let G^* and G^{**} be two subgraphs of G with 3k(k+1) and 6(k+1) edges respectively.

By induction hypothesis G^* can be decomposed into 3k subgraphs($3G_2, 3G_4, \ldots, 3G_{2k}$).

Therefore G can be decomposed into $(3G_2, 3G_4, \ldots 3G_{2k})$.

Now $|E(G^{**})| = 6(k+1) = 3(k+1) + 3(k+1)$ which can be decomposed into two subgraphs G^{***} and G^{****} each of 3(k+1) edges.

Hence G admits Triple Even Decomposition.

Conversely, Suppose G admits TED $(3G_2, 3G_4, 3G_6, \ldots, 3G_{2k})$.

Then $q(G) = 3n(n + 1), n \in Z^+$.

Now, let us decompose $K_{m,n}$ when m = 2.

Theorem 2.7. Let *n* be a positive integer with *n* > 2. Then $K_{2,n}$ admits Triple Even Star Decomposition $\{3S_2, 3S_4, \ldots, 3S_{2k}\}$ [3k-decomposition] with k = 2s or k = 2s - 1, $s \in N$ iff $n = 3s(2s \pm 1)$; $s \in N$.

Proof. Let $G = K_{2,n}$ with $n \in N$ and n > 2. Then $|E(K_{2,n})| = 2n$. Assume that $K_{2,n}$ has a TESD { $3S_2, 3S_4, \ldots, 3S_{2k}$ }. Clearly 2n = 3k(k+1) where k denotes the total number of decompositions. Thus, $2n = 3k(k+1) \Rightarrow n = \frac{3k(k+1)}{2}$. Suppose k = 2s, then $\Rightarrow n = \frac{3(2s)(2s+1)}{2} \Rightarrow n = 3s(s+1)$.

Suppose
$$k = 2s - 1$$
, then $\Rightarrow n = \frac{3(2s-1)(2s)}{2} \Rightarrow n = 3s(2s - 1)$.

Therefore $n = 3s(2s \pm 1)$.

Conversely assume that $n = 3s(2s \pm 1)$, $s \in N$. Hence n and s are of same parity. Let $K_{m,n} = (V_1(G), V_2(G))$ where $V_1(G) = \{1, 2, ..., m\}$ and $V_2(G) = \{1, 2, ..., m\}$.

(1)

Consider the matrix (a_{ij})

With $a_{11=} \begin{cases} 4s \ if \ n = 3s(2s+1) \\ 4s - 2 \ if \ n = 3s(2s-1) \end{cases}$

Define $a_{1j} = a_{2j}$,

 $\begin{aligned} a_{2j} &= a_{2(j+1)}, \\ a_{1(j+1)} &= a_{2(j+1)} - 2, \\ a_{1(j+1)} &= a_{1(j+2)}, \\ a_{1(j+2)} &= a_{2(j+2)}, \\ a_{2(j+3)} &= a_{2(j+2)} - 2, \\ a_{2(j+3)} &= a_{1(j+3)}, \\ a_{1(j+3)} &= a_{1(j+4)}, \\ a_{2(j+4)} &= a_{1(j+4)} - 2, \\ a_{2(j+4)} &= a_{2(j+5)}, \\ a_{2(j+5)} &= a_{1(j+5)} ; \ j = 1, 7, 13, \dots, (6t-5). \end{aligned}$ The entry $a_{1\overline{6t}} = 2 + 8\left(\frac{s}{2}\right) - t; \ t = 1, 2, \dots, \frac{s}{2}$ and the consecutive entry, $a_{1\overline{6t+1}} = a_{1\overline{6t}} - 2; \ t = 1, 2, \dots, \left(\frac{s}{2} - 1\right). \end{aligned}$

Case(i): $n = 3s(2s \pm 1)$ where n and s are even

Consider the matrix (a_{ij}) as in (1) with order $\begin{cases} 2 \times 3s & \text{if } n = 3s(2s + 1) \\ 2 \times (3s - 1) \text{if } n = 3s(2s - 1) \end{cases}$

as follows:

Clearly number of entries are $\begin{cases} 6s & \text{if } n = 3s(2s + 1) \\ (6s - 2)\text{if } n = 3s(2s - 1) \end{cases}$ and also sum of each row is n as well as ends in $\begin{cases} 2 & \text{if } n = 3s(2s + 1) \\ 0 & \text{if } n = 3s(2s - 1) \end{cases}$

Thus we have 2s different entries $\begin{cases} 2, 4, 6, \dots, 4s & \text{if } n = 3s(2s + 1) \\ 0, 2, 4, 6, \dots, 4s - 2 & \text{if } n = 3s(2s - 1) \end{cases}$ in the matrix (a_{ij}) with each entry repeated thrice.

Now edges incident with i can be decomposed into 3s stars $S_{a_{i1}}, S_{a_{i2}}, \ldots, S_{a_{i(3s)}}$

for $1 \le j \le 3s$ where

 $S_{a_{ij}} = (i; [a_{i1} + a_{i2} + \ldots + a_{i(j-1)} + 1]', [a_{i1} + a_{i2} + \ldots + a_{i(j-1)} + 2]', \ldots,$ $[a_{i1} + a_{i2} + \ldots + a_{ij}]'); j = 1, 2, \ldots, 3s.$

or now edges incident with i can be decomposed into (3s-1) stars $S_{a_{j1}}, S_{a_{j2}}, \ldots, S_{a_{j(3s-1)}}$ if $a_{ij} \ge 0$ for $1 \le j \le (3s-1)$ where

 $S_{a_{ij}} = (i; [a_{i1} + a_{i2} + \ldots + a_{i(j-1)} + 1]', [a_{i1} + a_{i2} + \ldots + a_{i(j-1)} + 2]', \ldots,$ $[a_{i1} + a_{i2} + \ldots + a_{ij}]'); j = 1, 2, \ldots, (3s - 1)$ Thus $E(K_{2,n}) = E(S_2) \cup E(S_2) \cup E(S_2) \cup E(S_4) \cup E(S_4) \cup E(S_4) \cup \ldots \cup E(S_{4s}) \cup E(S_{4s-2}) \cup E(S_{4s-2}) \cup E(S_{4s-2}) \cup E(S_{4s-2}) \text{ if } a_{11} = 4s - 2.$

Hence $K_{2,n}$ admits Triple Even Star Decomposition $\{3S_2, 3S_4, \dots, 3S_{2k}\}$ with k = 2s when n = 3s(2s + 1) (or) k = 2s - 1 when n = 3s(2s - 1); $s \in N$.

Case(ii): $n = 3s(2s \pm 1)$ where n and s are oddNow, $E(K_{2,n}) = E(K_{2,n-1}) \cup E(K_{1,2})$.

Consider $K_{2,n-1}$. Here (n-1) is even. Consider the matrix (a_{ij}) as in (1) with order $\begin{cases} 2 \times 3s & \text{if } n = 3s(2s + 1) \\ 2 \times (3s - 1) \text{if } n = 3s(2s - 1) \end{cases}$ as follows:

Clearly number of entries are $\begin{cases} 6s & \text{if } n = 3s(2s + 1) \\ (6s - 4)\text{if } n = 3s(2s - 1) \end{cases}$ and also sum of each row is n-1 as well as ends in $\begin{cases} 0 & \text{if } n = 3s(2s + 1) \\ 2 & \text{if } n = 3s(2s - 1) \end{cases}$ But does not contain S_2 . Thus we have $\begin{cases} (2s+1) & \text{if } n = 3s(2s + 1) \\ (2s-1) & \text{if } n = 3s(2s - 1) \end{cases}$ different entries $\begin{cases} 2, 4, 6, \dots, 4s & \text{if } n = 3s(2s + 1) \\ 0, 2, 4, 6, \dots, 4s - 2 & \text{if } n = 3s(2s - 1) \end{cases}$ in two rows. Totally we have $\begin{cases} (2s+1) & \text{if } n = 3s(2s + 1) \\ (2s-1) & \text{if } n = 3s(2s - 1) \end{cases}$ different entries in the matrix (a_{ij}) with each entry repeated thrice. Now edges incident with i can be decomposed into 3s stars $S_{a_{i1}}$, $S_{a_{i2}}$, ..., $S_{a_{i(3_i)}}$ if $a_{ij} \ge 0$ for $1 \le j \le 3s$ where $S_{a_{ii}} = (i; [a_{i1} + a_{i2} + \ldots + a_{i(j-1)} + 1]], [a_{i1} + a_{i2} + \ldots + a_{i(j-1)} + 2]], \ldots,$ $[a_{i1} + a_{i2} + \ldots + a_{ij}]$; $j = 1, 2, \ldots, 3s$ or now edges incident with i can be decomposed into (3s-2) stars $S_{a_{i1}}, S_{a_{i2}}, \dots, S_{a_{i(3s-2)}}$ for $1 \le j \le (3s-2)$ where $S_{a_{ii}} = (i; [a_{i1} + a_{i2} + \ldots + a_{i(j-1)} + 1], [a_{i1} + a_{i2} + \ldots + a_{i(j-1)} + 2], \ldots,$ $[a_{i1} + a_{i2} + \ldots + a_{ij}]$; $j = 1, 2, \ldots, (3s-2)$ Thus $E(K_{2,n}) = E(K_{2,n-1}) \cup E(K_{1,2})$. $E(K_{2,n}) = E(S_2) \cup E(S_2) \cup E(S_4) \cup E(S_4) \cup E(S_4) \cup \dots \cup E(S_{4s}) \cup E($ $E(S_{4s}) \cup E(S_2).$ $E(K_{2,n}) = E(S_2) \cup E(S_2) \cup E(S_2) \cup E(S_4) \cup E(S_4) \cup E(S_4) \cup \dots \cup E(S_{4s}) \cup \dots$ $E(S_{4s} \cup E(S_{4s}))$ Hence $K_{2,n}$ admits Triple Even Star Decomposition $\{3S_2, 3S_4, \ldots, 3S_{4s}\}$ where s and n are odd & n = 3s(2s + 1). Thus $E(K_{2,n}) = E(K_{2,n-1}) \cup E(K_{1,2}).$ $E(K_{2,n}) = E(S_2) \cup E(S_2) \cup E(S_4) \cup E(S_4) \cup E(S_4) \cup \dots \cup E(S_{4s-2}) \cup E(S_{4s E(S_{4s-2}) \cup E(S_2).$ $E(K_{2,n}) = E(S_2) \cup E(S_2) \cup E(S_2) \cup E(S_4) \cup E(S_4) \cup E(S_4) \cup \dots \cup E(S_{4s-2}) \cup \dots$ $E(S_{4s-2}) \cup E(S_{4s-2})$ Hence $K_{2,n}$ admits Triple Even star Decomposition $\{3S_2, 3S_4, \ldots, 3S_{4s-2}\}$

where s and n are odd & n = 3s(2s - 1).

3. Triple Even Star Decomposition of K_{3,n}

In this section, we give characterization for $K_{3,n}$ to be Triple Even StarDecomposable.

Theorem 3.1. Let *n* be any positive integer with n > 3. Then $K_{3,n}$ admits Triple Even Star Decomposition $\{3S_2, 3S_4, \ldots, 3S_{2k}\}$ [3k-decomposition] with k = 3s or k = 3s - 1, $s \in N$ iff $n = 3s(3s \pm 1)$; $s \in N$.

Proof. Let $G = K_{3,n}$ with $n \in N$ and n > 3. Then $|E(K_{3,n})| = 3n$. Assume that $K_{3,n}$ has a TESD $\{3S_2, 3S_4, \ldots, 3S_{2k}\}$. Clearly 3n = 3k(k+1) where k denotes the total number of decompositions. Thus, $3n=3k(k+1) \Rightarrow n = k(k+1)$. Suppose k = 3s, then $\Rightarrow n = 3s(3s+1)$. Suppose k = 3s-1, then

 $\Rightarrow n = (3s - 1)(3s - 1 + 1) \Rightarrow n = 3s(3s - 1).$ Therefore $n = 3s(3s \pm 1).$ Conversely assume that $n = 3s(3s \pm 1), s \in N.$ Let $K_{m,n} = (V_1(G), V_2(G))$ where $V_1(G) = \{1, 2, ..., m\}$ and $V_2(G) = \{1, 2, ..., n'\}.$ Consider the matrix (a_{ij}) with order $\begin{cases} 3 \times 3s & \text{if } n = 3s(3s + 1) \\ 3 \times (3s - 1) & \text{if } n = 3s(3s - 1) \end{cases}$ as follows: Define $a_{1j} = a_{2j} = a_{3j}$ for all j with $a_{11} = \begin{cases} 6s & \text{if } n = 3s(2s + 1) \\ 6s - 2 & \text{if } n = 3s(2s - 1) \end{cases}$ where $\begin{cases} 1 \le j \le 3s & \text{if } n = 3s(3s - 1) \\ 1 \le j \le 3s - 1 & \text{if } n = 3s(3s - 1) \end{cases}$

IJRITCC | December 2023, Available @ http://www.ijritcc.org

 $a_{1(j+1)} = a_{1j} - 2; 2 \le j \le 3s.$

 $\begin{cases} 9s & \text{if } n = 3s(2s + 1) \\ 9s - 3 & \text{if } n = 3s(2s - 1) \end{cases} \text{ and sum of each row is n. Also entry starts}$ Clearly numbers of entries are with $\begin{cases} 9s & \text{if } n = 3s(2s + 1) \\ 9s - 3 & \text{if } n = 3s(2s - 1) \end{cases}$ and ends with minimum entry different 2. Thus have entries we $\begin{cases} 2, 4, 6, \dots, 6s & \text{if } n = 3s(3s + 1) \\ 0, 2, 4, 6, \dots, 6s - 2 & \text{if } n = 3s(3s - 1) \end{cases}$ in the matrix (a_{ij}) with each entry repeated thrice with identical rows. Now edges incident with i can be decomposed into 3s stars $S_{a_{i1}}, S_{a_{i2}}, \dots, S_{a_{i(3s)}}$ or (3s-1) stars $S_{a_{i1}}, S_{a_{i2}}, \dots, S_{a_{i(3s-1)}}$ for $\begin{cases} 1 \le j \le 3s & \text{if } n = 3s(3s+1) \\ 1 \le j \le 3s-1 & \text{if } n = 3s(3s-1) \end{cases}$ where $S_{a_{ii}} = (i; [a_{i1} + a_{i2} + \ldots + a_{i(i-1)} + 1]', [a_{i1} + a_{i2} + \ldots + a_{i(i-1)} + 2]', \ldots,$ $[a_{i1} + a_{i2} + \ldots + a_{ij}]$; $j = 1, 2, \ldots, 3s$ (or) $j = 1, 2, \ldots, 3s-1$ provided n = 3s(3s+1) or n = 3s(3s-1) respectively. Thus $E(K_{3,n}) = E(S_2) \cup E(S_2) \cup E(S_2) \cup E(S_4) \cup E(S_4) \cup E(S_4) \cup \dots \cup E(S_{6s}) \cup \dots$ $E(S_{6s}) \cup E(S_{6s})$ when n = 3s(3s + 1) if $a_{11} = 6s$ UE(G) UE(G) UE(G)Thus $E(K_{3n})$

$$K_{3,n} = E(S_2) \cup E(S_2) \cup E(S_2) \cup E(S_4) \cup E(S_4) \cup E(S_4) \cup \dots \cup E(S_{6s-2}) \cup E(S_{6s-2}) \cup E(S_{6s-2}) \text{ when } n = 3s(3s-1) \text{ if } a_{11} = 6s-2.$$

$$S_{6s-2}$$
) $\cup E(S_{6s-2})$ when $n = 3s(3s-1)$ if $a_{11} = 6s-2$.

Hence $K_{3,n}$ admits Triple Even Star Decomposition $\{3S_2, 23_4, \dots, 3S_{2k}\}$ with k = 3s when n = 3s(3s + 1) or k = (3s - 1)1) when n = 3s(3s - 1); $s \in N$.

REFERENCES

- 1. E. Ebin Raja Merly and N. Gnanadhas, Arithmetic Odd Decomposition of Spider Tree, Asian Journal of Current Engineering and Maths, Vol. 2, No. 2, (2013), 99-101.
- E. Ebin Raja Merly and J. Suthiesh Goldy, Even Star Decomposition of Complete Bipartite Graphs Journal of 2. Mathematics Research, Vol. 8, No. 5, October (2016).
- E. Esakkiammal and P.Chithra Devi, Double Even Star Decomposition of Complete Bipartite Graphs Proceedings of 3. International Conference of Trends and Perspectives in Mathematics and Applied Mathematics, ISBN: 978-93-91342-81-4, January (2023), 162-168.
- E. Esakkiammal and P.Chithra Devi, Double Arithmetic Odd Decomposition of Complete Bipartite Graphs into Star 4. Indian Journal of Discrete Mathematics, (Accepted for publication).
- Frank Harary, Graph Theory, Addison-Wesley Publishing Company, (1972). 5.
- N. Gnanadhas and J. Paulraj Joseph, Continuous Monotonic Decomposition of Cycles, International Journal of 6. Management and Systems, Vol.19, No. 1, (2003), 65-76.
- S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite graphs into paths and cycles, Discrete Math. No. 7. 331 (2014) 98-108. doi:10.1016/j.disc.2014.05.009.
- 8. V. G. Smilin Shali and S. Asha, Double Arithmetic Odd Decomposition [DAOD] of Some Complete 4-Partite Graphs, International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Vol. 9, December (2019).