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Abstract 

Let G be a finite, connected, undirected graph without loops or multiple edges. A decomposition {G2, G4, . . . , G2k} of G is 

said to be an even star decomposition if each Gi  is a star and |E(Gi)| = i for all i = 2, 4, . . . , 2k.     A graph G is said to 

have Triple Even Star Decomposition (TESD) if G can be decomposed into 3k stars {3S2, 3S4, . . . , 3S2k}. In this paper, 

we characterize Triple Even Star Decomposition of complete bipartite graphs 

Km,n when m = 2 and m = 3. 
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1. Introduction 

Let G = (V, E) be a simple, connected graph with p vertices and q edges.  A complete bipartite graph with 

partite sets V1 and V2, where |V1| = m and |V2| = n, is denoted by Km,n. The graph K1,r is called a star and is 

denoted by Sr. A star with centre i and end vertices 1’, 2’, . . . , n’ is denoted by  (i; 1’ , 2’ , . . . , n’). Terms not defined here 

are used in the sense of [5]. 

     A decomposition  of  a  graph  G  is  a  family  of  edge-disjoint  subgraphs {G1, G2, . . . , Gk}  such   that   

E(G)=E(G1) ∪ E(G2) ∪ · · · ∪ E(Gk).   A decomposition {G1, G2, . . . , Gk} for all k ∈ N is said to be a Continuous 

Monotonic Decomposition (CMD)  if each Gi  is connected  and |E(Gi)| = i for all      i ∈ N . The concept of CMD was 

introduced by Joseph and Gnanadhas[6]. 

A decomposition {G1, G2, . . . , Gn} of G said to be an Arithmetic Decomposition  (AD)  if  |E(Gi)|  =  a + (i − 1)d  

for  all  i  =  1, 2, . . . , n and a, d  ∈ Z+.  Clearly q  = 
𝑛

2
 [2a + (n − 1)d].  If  a  =  1  and  d  =  1,  then  AD is a CMD. 

If a = 1 and d = 2 in AD, then it is called an Arithmetic Odd Decomposition (AOD). The concept of 

Arithmetic Odd Decomposition (AOD) was introduced by Merly and Gnanadhas[1]. 

The concept of Double Arithmetic Odd Decomposition (DAOD) was introduced by Shali and Asha[8]. The concept 

of Even Star Decomposition of Complete Bipartite graphs was introduced by Merly and Goldy[2]. 

In this paper, we give characterization for Km,n when m = 2 and m = 3 which admits Triple Even Star 

Decomposition (TESD). 
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2 Triple Even Star Decomposition of K2,n 

In this section, we give characterization for K2,n to be Triple Even Star Decomposable. 

Definition 2.1. A graph G is said to admit Even Star Decomposition (ESD) if G can be decomposed into k 

stars {S2, S4, . . . , S2k} ∀ k ∈ N . 

Theorem 2.2. [2] Any graph G admits Even Decomposition {G2, G4, G6, . . . , G2n},  where  G2i   =   (V2i, E2i)  

and  |E(G2i)|  =   2i,  for  all (i = 1, 2, 3, . . . , n) if and only if q = n(n + 1) for some n ∈ Z+. 

Theorem 2.3. [3]  Any  graph  G  admits  Double  Even  Decomposition (2G2, 2G4, . . . , 2G2n)  where  G2i   =   

(V2i, E2i)  and  |E(G2i)|  =   2i,  for  all.   (i = 1, 2, . . . , n) if and only if q = 2n(n + 1) for some n ∈ Z+. 

Theorem 2.4.[3] Let n be a  positive  integer  with  n  ≥ 2.  Then K2,n admits Double Even Star Decomposition 

{2S2, 2S4, . . . , 2S2k}                                                             [2k-decomposition] with  k = s iff n = s2 + s ; s ∈ N . 

Definition 2.5. A graph G is said to have Triple Even Star Decomposition (TESD) if G can be decomposed 

into 3k stars    {3S2, 3S4, . . . , 3S2k}. It is called as a 3k-decomposition of G. Clearly, number of edges = 3k(k + 1). 

Theorem2.6. Any graph G admits Triple Even Decomposition    (3G2, 3G4, . . . ,3G2n) where G2i = (V2i, E2i) and 

|E(G2i)| = 2i, for all  (i = 1, 2, . . . , n) if and only if  

q = 3n(n + 1) for some n ∈ Z+. 

Proof. Suppose q = 3n(n + 1) for each n ∈Z+. Apply induction on n. 

The result is obvious when n = 1 and n =2. Suppose the result is true 

when n = k. 

Let G be any connected graph with q = 3k(k +1). Then G can be decomposed into (3G2, 3G4, 3G6, . . . , 3G2k). 

We prove that the result is true for n = k + 1. 

 Let G’ be any connected graph with 3(k+1)[k+1+1] edges. 

We prove that G’ admits (3G2,3G4…….,3G2k,3G2(k+1)) 

Thus q(G’ ) = 3[k(k + 1) + 2(k + 1)] = 3k(k + 1) + 6(k + 1). 

Let G∗ and G∗∗ be two subgraphs of G
 
with 3k(k + 1) and 6(k + 1) edges respectively. 

By   induction   hypothesis   G∗ can be decomposed into 3k subgraphs (3G2, 3G4, . . . , 3G2k). 

Therefore G can be decomposed into (3G2, 3G4, . . . 3G2k). 

Now |E(G∗∗)| = 6(k + 1) = 3(k + 1) + 3(k + 1) which can be decomposed into two subgraphs G∗∗∗ and G∗∗∗∗ 

each of 3(k + 1) edges. 

Hence G admits Triple Even Decomposition. 

Conversely, Suppose G admits TED (3G2, 3G4, 3G6, . . . , 3G2k). 

Then q(G) = 3n(n + 1), n ∈ Z+.  

Now, let us decompose Km,n when m = 2. 

Theorem 2.7.  Let n  be  a  positive  integer  with  n > 2. Then K2,n admits Triple Even Star 

Decomposition {3S2, 3S4, . . . , 3S2k} [3k-decomposition] with k = 2s or k = 2s − 1, s ∈ N iff n = 3s(2s ± 1); s ∈ N . 

Proof. Let G = K2,n  with n ∈ N  and n > 2. Then |E(K2,n)| = 2n. Assume that K2,n  has  a  TESD  {3S2, 3S4, . . . , 

3S2k}. Clearly 2n = 3k(k + 1)  where  k denotes the total number of decompositions.Thus, 2n = 3k(k + 1)⇒𝑛 =

 
3𝑘(𝑘+1)

2
.   Suppose k = 2s, then ⇒𝑛 =  

3(2𝑠)(2𝑠+1)

2
⇒ n = 3s(s + 1).  

Suppose k = 2s − 1, then ⇒ 𝑛 = 
3(2𝑠−1)(2𝑠)

2
⇒ n = 3s(2s - 1).  

Therefore n = 3s(2s ± 1). 

Conversely assume that n = 3s(2s ± 1), s   ∈ N . Hence n and s are of same     parity.  Let  Km,n  = (V1(G), V2(G))  

where  V1(G)={1, 2, . . . , m} and V2(G)={1
′ 
, 2

′ 
, . . . , n′}. 

 

Consider t he  matrix (aij) (1) 

 

 With 𝑎11=  {
4𝑠  𝑖𝑓 𝑛 =  3𝑠(2𝑠 + 1)

4𝑠 − 2 𝑖𝑓 𝑛 = 3𝑠(2𝑠 − 1)
. 

Define    a1j = a2j, 
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 a2j = a2(j+1), 

         a
1(j+1) 

= a
2(j+1) 

-2,  

                                                                        a
1(j+1) 

= a
1(j+2), 

   a1(j+2) = a2(j+2),  

   a
2(j+3) = a

2(j+2) − 2,  

                         a
2(j+3) = a

1(j+3)
, 

   a
1(j+3) = a

1(j+4)
,  

   a
2(j+4) = a

1(j+4) − 2,  

                          a
2(j+4) = a

2(j+5)
, 

    a2(j+5) = a1(j+5) ; j = 1, 7, 13, . . . , (6t − 5). 

The entry 𝑎16𝑡 = 2 + 8 (
𝑠

2
) − 𝑡; t = 1, 2, …,

𝑠

2
 and the consecutive entry,    

      𝑎16𝑡+1 =  𝑎16𝑡 − 2; t = 1, 2, …,(
𝑠

2
− 1). 

 

Case(i): n = 3s(2s ± 1) where n and s are even 

 Consider the matrix (aij) as in (1) with order {
2 ×  3𝑠          if 𝑛 =  3𝑠(2𝑠 +  1)
2 × (3𝑠 − 1)if 𝑛 =  3𝑠(2𝑠 −  1)

 

as follows: 

Clearly number of entries are {
6𝑠          if 𝑛 =  3𝑠(2𝑠 +  1)
(6𝑠 − 2)if 𝑛 =  3𝑠(2𝑠 −  1)

 and also sum of each row is n as well as ends in 

{
2          if 𝑛 =  3𝑠(2𝑠 +  1)
0         if 𝑛 =  3𝑠(2𝑠 −  1)

. 

Thus we have 2s different entries {
2, 4, 6, . . . , 4𝑠          if       𝑛 =  3𝑠(2𝑠 +  1)
 0, 2, 4, 6, . . . , 4𝑠 − 2        if 𝑛 =  3𝑠(2𝑠 −  1)

 in the matrix (aij) with each entry repeated 

thrice. 

Now edges incident with i can be decomposed into 3s stars Sai1 , Sai2 , . . . , Sai(3s)
 

for 1 ≤ j ≤ 3s where 

Saij = (i; [ai1 + ai2 + . . . + ai(j−1) + 1]’ , [ai1 + ai2 + . . . + ai(j−1) + 2]’ , . . . , 

[ai1 + ai2 + . . . + aij ]’ ); j = 1, 2, . . . , 3s. 

 

or now  edges  incident  with  i  can  be  decomposed  into  (3s-1)  stars 

Sai1 , Sai2 , . . . , Sai(3s−1) if aij ≥ 0 for 1 ≤ j ≤ (3s − 1) where 

   

Saij = (i; [ai1 + ai2 + . . . + ai(j−1) + 1]’ , [ai1 + ai2 + . . . + ai(j−1) + 2]’ , . . . , 

 [ai1 + ai2 + . . . + aij ]’ ); j = 1, 2, . . . , (3s − 1) 

Thus E(K2,n) = E(S2)∪E(S2) ∪E(S2) ∪E(S4) ∪E(S4) ∪E(S4) ∪. . . ∪E(S4s) ∪ 

 E(S4s) ∪ E(S4s) if a11 = 4s 

E(K2,n) = E(S2) ∪ E(S2) ∪ E(S2) ∪ E(S4) ∪ E(S4) ∪ E(S4) ∪ . . . ∪ 

E(S4s−2) ∪ E(S4s−2) ∪ E(S4s−2) if a11 = 4s − 2. 

Hence K2,n admits Triple Even Star Decomposition {3S2, 3S4, . . . , 3S2k} with k = 2s when n = 3s(2s + 1) (or) k = 2s 

− 1 when n = 3s(2s − 1); s ∈ N . 

 

Case(ii): n = 3s(2s ± 1) where n and s are odd Now, E(K2,n) = E(K2,n−1) ∪ 

E(K1,2). 

Consider  K2,n−1.  Here  (n-1)  is  even.  Consider  the  matrix  (aij)  as  in  (1)  with order{
2 ×  3𝑠          if 𝑛 =  3𝑠(2𝑠 +  1)
2 × (3𝑠 − 1)if 𝑛 =  3𝑠(2𝑠 −  1)

  as 

follows: 
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 Clearly number of entries are {
6𝑠          if 𝑛 =  3𝑠(2𝑠 +  1)
(6𝑠 − 4)if 𝑛 =  3𝑠(2𝑠 −  1)

 and also sum of each row is 

n-1 as well as ends in {
0         if 𝑛 =  3𝑠(2𝑠 +  1)
2          if 𝑛 =  3𝑠(2𝑠 −  1)

. But does not contain S2. 

Thus we have {
(2s + 1)         if 𝑛 =  3𝑠(2𝑠 +  1)
(2s − 1)          if 𝑛 =  3𝑠(2𝑠 −  1)

  different entries 
   

{
2, 4, 6, . . . , 4𝑠          if       𝑛 =  3𝑠(2𝑠 +  1)
 0, 2, 4, 6, . . . , 4𝑠 − 2    if 𝑛 =  3𝑠(2𝑠 −  1)

 in two 

rows. Totally we have {
(2s + 1)         if 𝑛 =  3𝑠(2𝑠 +  1)
(2s − 1)          if 𝑛 =  3𝑠(2𝑠 −  1)

 different entries in the matrix (aij) with each entry repeated thrice. 

Now edges incident with i can be decomposed into 3s stars Sai1 , Sai2 , . . . , Sai(3s) if  

aij ≥ 0 for 1 ≤ j ≤ 3s where    
Saij = (i; [ai1 + ai2 + . . . + ai(j−1) + 1]’ , [ai1 + ai2 + . . . + ai(j−1) + 2]’ , . . . , 

                    [ai1 + ai2 + . . . + aij ]’); j = 1, 2, . . . , 3s 

or now  edges  incident  with  i  can  be  decomposed  into  (3s-2)  stars 

Sai1 , Sai2 , . . . , Sa
i(3s−2) 

for 1 ≤ j ≤ (3s − 2) where 

Saij = (i; [ai1 + ai2 + . . . + ai(j−1) + 1] , [ai1 + ai2 + . . . + ai(j−1) + 2] , . . . , 

               [ai1 + ai2 + . . . + aij ] ); j = 1, 2, . . . , (3s − 2) 

Thus E(K2,n) = E(K2,n−1) ∪ E(K1,2). 

E(K2,n) = E(S2) ∪ E(S2) ∪ E(S4) ∪ E(S4) ∪ E(S4) ∪ . . . ∪ E(S4s) ∪ E(S4s) ∪ 

                E(S4s) ∪ E(S2). 

E(K2,n) = E(S2) ∪ E(S2) ∪ E(S2) ∪ E(S4) ∪ E(S4) ∪ E(S4) ∪ . . . ∪E(S4s) ∪ 

E(S4s∪ E(S4s) 

Hence K2,n admits Triple Even Star Decomposition {3S2, 3S4, . . . , 3S4s} where s and n are odd & n = 3s(2s + 1). 

Thus E(K2,n) = E(K2,n−1) ∪ E(K1,2). 

E(K2,n)  = E(S2) ∪ E(S2) ∪ E(S4) ∪ E(S4) ∪ E(S4) ∪ . . . ∪E(S4s−2) ∪ E(S4s−2) ∪ 

                 E(S4s−2) ∪ E(S2). 

E(K2,n) = E(S2) ∪E(S2) ∪ E(S2) ∪ E(S4) ∪ E(S4) ∪ E(S4) ∪ . . . ∪ E(S4s−2) ∪ 

                E(S4s−2) ∪ E(S4s−2) 

Hence K2,n admits Triple Even star Decomposition {3S2, 3S4, . . . , 3S4s−2}                                          

where s and n are odd & n = 3s(2s − 1). 

 

3.  Triple Even Star Decomposition of K3,n 

In this section, we give characterization for K3,n to be Triple Even Star Decomposable. 

Theorem 3.1. Let n be any positive integer with n > 3. Then  K3,n admits Triple Even Star 

Decomposition {3S2, 3S4, . . . , 3S2k} [3k-decomposition] with        k = 3s or k = 3s − 1, s ∈ N iff n = 3s(3s ± 1); s 

∈ N . 

Proof.    Let G = K3,n  with n ∈ N  and n > 3. Then |E(K3,n)| = 3n. Assume that K3,n  has  a  TESD  

{3S2, 3S4, . . . , 3S2k}. Clearly 3n = 3k(k + 1)  where       k denotes the total number of decompositions. Thus, 

3n=3k(k +1) ⇒ n = k(k + 1). Suppose k = 3s, then ⇒ n = 3s(3s + 1). Suppose k = 3s − 1, then     

 ⇒ n = (3s − 1)(3s − 1 + 1) ⇒ n = 3s(3s − 1). Therefore n = 3s(3s ± 1).  

Conversely assume that n = 3s(3s ± 1), s ∈ N . 

Let    Km,n  =   (V1(G), V2(G))    where    V1(G) = {1, 2, . . . , m}   and 

V2(G) = {1’, 2’ , . . . , n’ }. 

   Consider the matrix (aij) with order {
3 ×  3𝑠            if  𝑛 =  3𝑠(3𝑠 +  1)

3 × (3𝑠 − 1) if  𝑛 =  3𝑠(3𝑠 −  1)
 as follows: 

   Define a1j = a2j = a3j for all j with a11 = {
6𝑠   if 𝑛 =  3𝑠(2𝑠 +  1)

6𝑠 − 2  if 𝑛 =  3𝑠(2𝑠 −  1)

 a3(j+1) =a3j − 2     where 

{
1 ≤  𝑗 ≤  3𝑠   if  𝑛 =  3𝑠(3𝑠 +  1)

1 ≤  𝑗 ≤  3𝑠 − 1   if  𝑛 =  3𝑠(3𝑠 −  1)   

a1(j+1) = a1j−2;  2 ≤  𝑗 ≤  3𝑠.  
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Clearly numbers of entries are          {
9𝑠   if 𝑛 =  3𝑠(2𝑠 +  1)

9𝑠 − 3  if 𝑛 =  3𝑠(2𝑠 −  1)
 and sum of each row is n. Also entry starts 

with {
9𝑠   if 𝑛 =  3𝑠(2𝑠 +  1)

9𝑠 − 3  if 𝑛 =  3𝑠(2𝑠 −  1)
 and ends with minimum entry 2. Thus we have different entries 

{
2, 4, 6, . . . , 6𝑠          if       𝑛 =  3𝑠(3𝑠 +  1)

 0, 2, 4, 6, . . . , 6𝑠 − 2        if 𝑛 =  3𝑠(3𝑠 −  1)
 in the matrix (aij) with each entry repeated thrice with identical rows.

 Now edges incident with i can be decomposed into 3s stars  

Sai1 , Sai2 , . . . , Sai(3s) or (3s− 1) stars Sai1 , Sai2 , . . . , Sai(3s−1)  for {
1 ≤  𝑗 ≤  3𝑠   if  𝑛 =  3𝑠(3𝑠 +  1)

1 ≤  𝑗 ≤  3𝑠 − 1   if  𝑛 =  3𝑠(3𝑠 −  1)
 where 

Saij 
= (i; [ai1 + ai2 + . . . + ai(j−1) + 1]’ , [ai1 + ai2 + . . . + ai(j−1) + 2]’ , . . . , 

[ai1 + ai2 + . . . + aij ]’ ); j = 1, 2, . . . , 3s (or) j = 1, 2, . . . , 3s − 1 provided 

n = 3s(3s + 1) or n =3s(3s-1) respectively. 

Thus E(K3,n) = E(S2)∪E(S2) ∪E(S2) ∪E(S4) ∪E(S4) ∪E(S4) ∪. . . ∪E(S6s) ∪ 

  E(S6s) ∪ E(S6s) when n = 3s(3s + 1) if a11 = 6s 

Thus E(K3,n)  =  E(S2) ∪E(S2) ∪E(S2) ∪E(S4) ∪E(S4) ∪E(S4) ∪. . . ∪E(S6s−2) ∪ 

   E(S6s−2) ∪ E(S6s−2) when n = 3s(3s − 1) if a11 = 6s – 2. 

Hence K3,n admits Triple Even Star Decomposition {3S2, 234, . . . , 3S2k} with k = 3s when n = 3s(3s + 1) or k = (3s − 

1) when n = 3s(3s − 1); s ∈ N. 
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