Triple Even Star Decomposition of Complete Bipartite Graphs

E. Esakkiammal ${ }^{1}$ and P. Chithra Devi ${ }^{2}$
${ }^{1}$ Research Scholar
[Reg. No. 20111202092003]
Department of Mathematics
Sri Parasakthi College for Women, Courtallam
Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627 012,
Tamil Nadu, India.
${ }^{2}$ Assistant Professor
Department of Mathematics
Sri Parasakthi College for Women, Courtallam
Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627 012,
Tamil Nadu, India.

Email: ${ }^{1}$ esakki29592@gmail.com; ${ }^{2}$ chithradevi095@gmail.com

Abstract

Let G be a finite, connected, undirected graph without loops or multiple edges.A decomposition $\left\{G_{2}, G_{4}, \ldots, G_{2 k}\right\}$ of G is said to be an even star decomposition if each G_{i} is a star and $\left|\boldsymbol{E}\left(G_{i}\right)\right|=\boldsymbol{i}$ for all $\boldsymbol{i}=2,4, \ldots, 2 k$. A graph G is said to have Triple Even Star Decomposition (TESD) if G can be decomposed into $3 k$ stars $\left\{3 S_{2}, 3 S_{4}, \ldots, 3 S_{2 k}\right\}$. In this paper, we characterize Triple Even Star Decomposition of complete bipartite graphs $K_{m, n}$ when $m=2$ and $m=3$. Keywords: Complete bipartite graph, Star, Decomposition. 2010 Mathematics Subject Classification: 05C51, 05C30.

1. Introduction

Let $G=(V, E)$ be a simple, connected graph with p vertices and q edges. A complete bipartite graph with partite sets V_{1} and V_{2}, where $\left|V_{l}\right|=m$ and $\left|V_{2}\right|=n$, is denoted by $K_{m, n}$. The graph $K_{l, r}$ is called a star and is denoted by S_{r}. A star with centre i and end vertices $l^{\prime}, 2^{\prime}, \ldots, n^{\prime}$ is denoted by ($i ; 1^{\prime}, 2^{\prime}, \ldots, n^{\prime}$). Terms not defined here are used in the sense of [5].

A decomposition of a graph G is a family of edge-disjoint subgraphs $\left\{G_{l}, G_{2}, \ldots, G_{k}\right\}$ such that $E(G)=E\left(G_{l}\right) \cup E\left(G_{2}\right) \cup \cdots \cup E\left(G_{k}\right)$. A decomposition $\left\{G_{l}, G_{2}, \ldots, G_{k}\right\}$ for all $k \in N$ is said to be a Continuous Monotonic Decomposition (CMD) if each G_{i} is connected and $\left|\boldsymbol{E}\left(G_{i}\right)\right|=\boldsymbol{i}$ for all $\boldsymbol{i} \in N$. The concept of CMD was introduced by Joseph and Gnanadhas[6].

A decomposition $\left\{G_{l}, G_{2}, \ldots, G_{n}\right\}$ of G said to be an Arithmetic Decomposition (AD) if $\left|\boldsymbol{E}\left(G_{i}\right)\right|=a+(i-1) d$ for all $i=1,2, \ldots, n$ and $a, d \in Z^{+}$. Clearly $q=\frac{n}{2}[2 a+(n-1) d]$. If $a=1$ and $d=1$, then AD is a CMD. If $a=1$ and $d=2$ in AD , then it is called an Arithmetic Odd Decomposition ($A O D$). The concept of Arithmetic Odd Decomposition(AOD) was introduced by Merly and Gnanadhas[1].

The concept of Double Arithmetic Odd Decomposition (DAOD) was introduced by Shali and Asha[8]. The concept of Even Star Decompositionof Complete Bipartite graphs was introduced by Merly and Goldy[2].

In this paper, we give characterization for $K_{m, n}$ when $m=2$ and $m=3$ which admits Triple Even Star Decomposition (TESD).

2 Triple Even Star Decomposition of $K_{2, n}$

In this section, we give characterization for $\mathrm{K}_{2}, \mathrm{n}$ to be Triple Even Star Decomposable.
Definition 2.1. A graph G is said to admit Even Star Decomposition (ESD) if G can be decomposed into k stars $\left\{S_{2}, S_{4}, \ldots, S_{2 k}\right\} \forall k \in N$.

Theorem 2.2. [2] Any graph G admits Even Decomposition $\left\{G_{2}, G_{4}, G_{6}, \ldots, G_{2 n}\right\}$, where $G_{2 i}=\left(V_{2 i}, \boldsymbol{E}_{2 i}\right)$ and $\left|\boldsymbol{E}\left(\boldsymbol{G}_{2 i}\right)\right|=2 \boldsymbol{i}$, for all $(i=1,2,3, \ldots, n)$ if and only if $q=n(n+1)$ for some $n \in Z^{+}$.

Theorem 2.3. [3] Any graph G admits Double Even Decomposition $\left(2 G_{2}, 2 G_{4}, \ldots, 2 G_{2 n}\right)$ where $G_{2 i}=$ $\left(V_{2 i}, \boldsymbol{E}_{2 i}\right)$ and $\left|\boldsymbol{E}\left(\boldsymbol{G}_{2 i}\right)\right|=2 \boldsymbol{i}$, for all. $(i=1,2, \ldots, n)$ if and only if $q=2 n(n+1)$ for some $n \in Z^{+}$.

Theorem 2.4.[3] Let n be a positive integer with $n \geq 2$. Then $K_{2, n}$ admits Double Even Star Decomposition $\left\{2 S_{2}, 2 S_{4}, \ldots, 2 S_{2 k}\right\}$
[2k-decomposition]with $k=s$ iff $n=s^{2}+s ; s \in N$.
Definition 2.5. A graph G is said to have Triple Even Star Decomposition(TESD) if G can be decomposed into $3 k$ stars $\left\{3 S_{2}, 3 S_{4}, \ldots, 3 S_{2 k}\right\}$. It is called as a 3 k -decomposition of G.Clearly, number of edges $=3 k(k+1)$.

Theorem2.6. Any graph G admits Triple Even Decomposition $\quad\left(3 G_{2}, 3 G_{4}, \ldots, 3 G_{2 n}\right)$ where $G_{2 i}=\left(V_{2 i}, \boldsymbol{E}_{2 i}\right)$ and $\left|\boldsymbol{E}\left(G_{2 i}\right)\right|=2 i$, for all $(i=1,2, \ldots, n)$ if and only if
$q=3 n(n+1)$ for some $n \in Z^{+}$.
Proof. Suppose $q=3 n(n+1)$ for each $n \in Z^{+}$.Apply induction on n.
The result is obvious when $n=1$ and $n=2$. Suppose the result is true
when $n=k$.
Let G be any connected graph with $q=3 k(k+1)$. Then G can be decomposedinto ($3 G_{2}, 3 G_{4}, 3 G_{6}, \ldots, 3 G_{2 k}$).
We prove that the result is true for $n=k+1$.
Let G^{\prime} be any connected graph with $3(\mathrm{k}+1)[\mathrm{k}+1+1]$ edges.
We prove that G^{\prime} admits $\left(3 \mathrm{G}_{2}, 3 \mathrm{G}_{4} \ldots \ldots, 3 \mathrm{G}_{2 \mathrm{k}}, 3 \mathrm{G}_{2(\mathrm{k}+1)}\right)$
Thus $q\left(G^{\prime}\right)=3[k(k+1)+2(k+1)]=3 k(k+1)+6(k+1)$.
Let G^{*} and $G^{* *}$ be two subgraphs of G with $3 k(k+1)$ and $6(k+1)$ edgesrespectively.
By induction hypothesis $G^{*} \quad$ can be decomposed into 3 k subgraphs $\left(3 G_{2}, 3 G_{4}, \ldots, 3 G_{2 k}\right)$.
Therefore G can be decomposed into ($3 G_{2}, 3 G_{4}, \ldots 3 G_{2 k}$).
Now $\left|E\left(G^{* *}\right)\right|=6(k+1)=3(k+1)+3(k+1)$ which can be decomposed intotwo subgraphs $G^{* * *}$ and $G^{* * *}$ each of $3(k+1)$ edges.
Hence G admits Triple Even Decomposition.
Conversely, Suppose G admits TED $\left(3 G_{2}, 3 G_{4}, 3 G_{6}, \ldots, 3 G_{2 k}\right)$.
Then $q(G)=3 n(n+1), n \in Z^{+}$.
Now, let us decompose $K_{m, n}$ when $m=2$.
Theorem 2.7. Let n be a positive integer with $n>2$. Then $K_{2, n}$ admits Triple Even Star Decomposition $\left\{3 S_{2}, 3 S_{4}, \ldots, 3 S_{2 k}\right\}[3 \mathrm{k}$-decomposition]with $k=2 s$ or $k=2 s-1, s \in N$ iff $n=3 s(2 s \pm 1)$; $s \in N$.
Proof. Let $G=K_{2, n}$ with $n \in N$ and $n>2$. Then $\left|\boldsymbol{E}\left(\boldsymbol{K}_{2, n}\right)\right|=2 n$. Assume that $K_{2, n}$ has a TESD $\left\{3 S_{2}, 3 S_{4}, \ldots\right.$, $\left.3 S_{2 k}\right\}$. Clearly $2 n=3 k(k+1)$ where k denotes the total number of decompositions.Thus, $2 n=3 k(k+1) \Rightarrow n=$ $\frac{3 k(k+1)}{2}$. Suppose $k=2 s$, then $\Rightarrow n=\frac{3(2 s)(2 s+1)}{2} \Rightarrow n=3 s(s+1)$.
Suppose $k=2 s-1$, then $\Rightarrow n=\frac{3(2 s-1)(2 s)}{2} \Rightarrow n=3 s(2 s-1)$.
Therefore $n=3 s(2 s \pm 1)$.
Conversely assume that $n=3 s(2 s \pm 1), s \in N$. Hence n and s are of same parity. Let $K_{m, n}=\left(V_{1}(G), V_{2}(G)\right)$ where $V_{1}(G)=\{1,2, \ldots, m\}$ and $V_{2}(G)=\left\{1,2, \ldots, n^{\prime}\right\}$.

2
Consider the matrix $\left(a_{i j}\right)$
With $a_{11}=\left\{\begin{array}{c}4 s \text { if } n=3 s(2 s+1) \\ 4 s-2 \text { if } n=3 s(2 s-1)\end{array}\right.$.
Define $a_{1 j}=a_{2 j}$,

$$
\begin{gathered}
a_{2 j}=a_{2(j+1)}, \\
a_{1(j+1)}=a_{2(j+1)}-2, \\
a_{1(j+1)}=a_{1(j+2),} \\
a_{1(j+2)}=a_{2(j+2),}, \\
a_{2(j+3)}=a_{2(j+2)}, \\
a_{2(j+3)}=a_{1(j+3),}, \\
a_{1(j+3)}=a_{1(j+4)}, \\
a_{2(j+4)}=a_{1(j+4)}-2, \\
a_{2(j+4)}=a_{2(j+5),} \\
a_{2(j+5)}=a_{1(j+5)} ; j=1,7,13, \ldots,(6 t-5) .
\end{gathered}
$$

The entry $a_{1 \overline{6 t}}=2+8\left(\frac{s}{2}\right)-t ; \mathfrak{t}=1,2, \ldots, \frac{s}{2}$ and the consecutive entry,

$$
a_{1 \overline{6 t+1}}=a_{1 \overline{6 t}}-2 ; \mathrm{t}=1,2, \ldots,\left(\frac{s}{2}-1\right)
$$

Case(i): $n=3 s(2 s \pm 1)$ where n and s are even
Consider the matrix $\left(a_{i j}\right)$ as in (1) with order $\left\{\begin{array}{l}2 \times 3 s \quad \text { if } n=3 s(2 s+1) \\ 2 \times(3 s-1) \text { if } n=3 s(2 s-1)\end{array}\right.$ as follows:
Clearly number of entries are $\left\{\begin{array}{l}6 s \quad \text { if } n=3 s(2 s+1) \\ (6 s-2) \text { if } n=3 s(2 s-1)\end{array}\right.$ and also sum of each row is n as well as ends in $\left\{\begin{aligned} 2 & \text { if } n=3 s(2 s+1)\end{aligned}\right.$
$\left\{\begin{array}{l}\text { if } n=3 s(2 s-1)\end{array}\right.$
Thus we have $2 s$ different entries $\left\{\begin{array}{ll}2,4,6, \ldots, 4 s \quad \text { if } & n=3 s(2 s+1) \\ 0,2,4,6, \ldots, 4 s-2 & \text { if } n=3 s(2 s-1)\end{array}\right.$ in the matrix ($a_{i j}$) with each entry repeated thrice.
Now edges incident with i can be decomposed into 3 s stars $S_{a_{i 1}}, S_{a_{i 2}}, \ldots, S_{a_{i(3 s)}}$
for $1 \leq j \leq 3 s$ where

$$
\begin{aligned}
S_{a_{i j}}= & \left(i ;\left[a_{i 1}+a_{i 2}+\ldots+a_{i(j-1)}+1\right]^{\prime},\left[a_{i 1}+a_{i 2}+\ldots+a_{i(j-1)}+2\right]^{\prime}, \ldots,\right. \\
& {\left.\left[a_{i 1}+a_{i 2}+\ldots+a_{i j}\right]^{\prime}\right) ; j=1,2, \ldots, 3 s . }
\end{aligned}
$$

or now edges incident with i can be decomposed into (3s-1) stars
$S_{a_{i 1}}, S_{a_{i 2}}, \ldots, S_{a_{i(3 s-1)}}$ if $a_{i j} \geq 0$ for $1 \leq j \leq(3 s-1)$ where
$S_{a_{i j}}=\left(i ;\left[a_{i 1}+a_{i 2}+\ldots+a_{i(j-1)}+1\right]^{\prime},\left[a_{i 1}+a_{i 2}+\ldots+a_{i(j-1)}+2\right]^{\prime}\right.$

$$
\left.\left[a_{i 1}+a_{i 2}+\ldots+a_{i j}\right]^{\prime}\right) ; \boldsymbol{j}=1,2, \ldots,(3 s-1)
$$

Thus $E\left(K_{2, n}\right)=E\left(S_{2}\right) \cup E\left(S_{2}\right) \cup E\left(S_{2}\right) \cup E\left(S_{4}\right) \cup E\left(S_{4}\right) \cup E\left(S_{4}\right) \cup \ldots \cup E\left(S_{4 s}\right) \cup$

$$
E\left(S_{4 s}\right) \cup E\left(S_{4 s}\right) \text { if } a_{11}=4 s
$$

$E\left(K_{2, n}\right)=E\left(S_{2}\right) \cup E\left(S_{2}\right) \cup E\left(S_{2}\right) \cup E\left(S_{4}\right) \cup E\left(S_{4}\right) \cup E\left(S_{4}\right) \cup \ldots \cup$

$$
E\left(S_{4 s-2}\right) \cup E\left(S_{4 s-2}\right) \cup E\left(S_{4 s-2}\right) \text { if } a_{11}=4 s-2 .
$$

Hence $K_{2, n}$ admits Triple Even Star Decomposition $\left\{3 S_{2}, 3 S_{4}, \ldots, 3 S_{2 k}\right\}$ with $k=2 s$ when $n=3 s(2 s+1)$ (or) $k=2 s$ -1 when $n=3 s(2 s-1) ; s \in N$.

Case(ii): $n=3 s(2 s \pm 1)$ where n and s are oddNow, $E\left(K_{2, n}\right)=E\left(K_{2, n-1}\right) \cup$
$E\left(K_{1,2}\right)$.
Consider $\boldsymbol{K}_{2, n-1}$. Here ($\mathrm{n}-1$) is even. Consider the matrix $\left(a_{i j}\right)$ as in (1) with order $\left\{\begin{array}{l}2 \times 3 s \quad \text { if } n=3 s(2 s+1) \\ 2 \times(3 s-1) \text { if } n=3 s(2 s-1)\end{array}\right.$ as follows:

Clearly number of entries are $\left\{\begin{array}{l}6 s \quad \text { if } n=3 s(2 s+1) \\ (6 s-4) \text { if } n=3 s(2 s-1)\end{array}\right.$ and also sum of each row is
$\mathrm{n}-1$ as well as ends in $\left\{\begin{array}{lr}0 & \text { if } n=3 s(2 s+1) \\ 2 & \text { if } n=3 s(2 s-1)\end{array}\right.$. But does not contain S_{2}.
Thus we have $\left\{\begin{array}{ll}(2 s+1) & \text { if } n=3 s(2 s+1) \\ (2 s-1) & \text { if } n=3 s(2 s-1)\end{array}\right.$ different entries $\quad\left\{\begin{array}{r}2,4,6, \ldots, 4 s \quad \text { if } \quad n=3 s(2 s+1) \\ 0,2,4,6, \ldots, 4 s-2\end{array}\right.$ if $n=3 s(2 s-1)$ in two rows. Totally we have $\left\{\begin{array}{cc}(2 s+1) & \text { if } n=3 s(2 s+1) \\ (2 s-1) & \text { if } n=3 s(2 s-1)\end{array}\right.$ different entries in the matrix $\left(a_{i j}\right)$ with each entry repeated thrice. Now edges incident with i can be decomposed into 3 s stars $S_{a_{i 1}}, S_{a_{i 2}}, \ldots, S_{a_{i(3 s)}}$ if
$a_{i j} \geq 0$ for $1 \leq j \leq 3 s$ where

$$
\begin{aligned}
S_{a_{i j}}= & \left(i ;\left[a_{i 1}+a_{i 2}+\ldots+a_{i(j-1)}+1\right]^{\prime},\left[a_{i 1}+a_{i 2}+\ldots+a_{i(j-1)}+2\right]^{\prime}, \ldots,\right. \\
& {\left.\left[a_{i 1}+a_{i 2}+\ldots+a_{i j}\right]^{\prime}\right) ; j=1,2, \ldots, 3 s }
\end{aligned}
$$

or now edges incident with i can be decomposed into (3s-2) stars
$S_{a_{i 1}}, S_{a_{i 2}}, \ldots, S_{a_{i(3 s-2)}}$ for $1 \leq j \leq(3 s-2)$ where

$$
\begin{aligned}
S_{a_{i j}}= & \left(i ;\left[a_{i 1}+a_{i 2}+\ldots+a_{i(j-1)}+1\right],\left[a_{i 1}+a_{i 2}+\ldots+a_{i(j-1)}+2\right], \ldots,\right. \\
& {\left.\left[a_{i 1}+a_{i 2}+\ldots+a_{i j}\right]\right) ; j=1,2, \ldots,(3 s-2) }
\end{aligned}
$$

Thus $E\left(K_{2, n}\right)=E\left(K_{2, n-1}\right) \cup E\left(K_{1,2}\right)$.

$$
\begin{aligned}
E\left(K_{2, n}\right)= & E\left(S_{2}\right) \cup E\left(S_{2}\right) \cup E\left(S_{4}\right) \cup E\left(S_{4}\right) \cup E\left(S_{4}\right) \cup \ldots \cup E\left(S_{4 s}\right) \cup E\left(S_{4 s}\right) \cup \\
& E\left(S_{4 s}\right) \cup E\left(S_{2}\right) . \\
E\left(K_{2, n}\right)= & E\left(S_{2}\right) \cup E\left(S_{2}\right) \cup E\left(S_{2}\right) \cup E\left(S_{4}\right) \cup E\left(S_{4}\right) \cup E\left(S_{4}\right) \cup \ldots \cup E\left(S_{4 s}\right) \cup \\
& E\left(S_{4 s} \cup E\left(S_{4 s}\right)\right.
\end{aligned}
$$

Hence $K_{2, n}$ admits Triple Even Star Decomposition $\left\{3 S_{2}, 3 S_{4}, \ldots, 3 S_{4 s}\right\}$ wheres and n are odd \& $n=3 s(2 s+1)$.
Thus $E\left(K_{2, n}\right)=E\left(K_{2, n-1}\right) \cup E\left(K_{1,2}\right)$.

$$
\begin{aligned}
E\left(K_{2, n}\right)= & E\left(S_{2}\right) \cup E\left(S_{2}\right) \cup E\left(S_{4}\right) \cup E\left(S_{4}\right) \cup E\left(S_{4}\right) \cup \ldots \cup E\left(S_{4 s-2}\right) \cup E\left(S_{4 s-2}\right) \cup \\
& E\left(S_{4 s-2}\right) \cup E\left(S_{2}\right) . \\
E\left(K_{2, n}\right)= & E\left(S_{2}\right) \cup E\left(S_{2}\right) \cup E\left(S_{2}\right) \cup E\left(S_{4}\right) \cup E\left(S_{4}\right) \cup E\left(S_{4}\right) \cup \ldots \cup E\left(S_{4 s-2}\right) \cup \\
& E\left(S_{4 s-2}\right) \cup E\left(S_{4 s-2}\right)
\end{aligned}
$$

Hence $K_{2, n}$ admits Triple Even star Decomposition $\left\{3 S_{2}, 3 S_{4}, \ldots, 3 S_{4 s-2}\right\}$
where s and n are odd \& $n=3 s(2 s-1)$.

3. Triple Even Star Decomposition of $K_{3, n}$

In this section, we give characterization for $K_{3, n}$ to be Triple Even StarDecomposable.
Theorem 3.1. Let n be any positive integer with $n>3$. Then $K_{3, n}$ admits Triple Even Star Decomposition $\left\{3 S_{2}, 3 S_{4}, \ldots, 3 S_{2 k}\right\}$ [3k-decomposition]with $\quad k=3 s$ or $k=3 s-1, s \in N$ iff $n=3 s(3 s \pm 1) ; s$ $\in N$.

Proof. Let $G=\boldsymbol{K}_{3, n}$ with $n \in N$ and $n>3$. Then $\left|\boldsymbol{E}\left(\boldsymbol{K}_{3, n}\right)\right|=3 n$. Assume that $K_{3, n}$ has a TESD $\left\{3 S_{2}, 3 S_{4}, \ldots, 3 S_{2 k}\right\}$. Clearly $3 n=3 k(k+1)$ where k denotes the total number of decompositions. Thus, $3 n=3 k(k+1) \Rightarrow n=k(k+1)$. Suppose $k=3 s$, then $\Rightarrow n=3 s(3 s+1)$. Suppose $k=3 s-1$, then
$\Rightarrow n=(3 s-1)(3 s-1+1) \Rightarrow n=3 s(3 s-1)$. Therefore $n=3 s(3 s \pm 1)$.
Conversely assume that $n=3 s(3 s \pm 1), s \in N$.
Let $\quad K_{m, n}=\left(V_{1}(G), V_{2}(G)\right) \quad$ where $\quad V_{1}(G)=\{1,2, \ldots, m\} \quad$ and
$V_{2}(G)=\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$.
Consider the matrix $\left(a_{i j}\right)$ with order $\left\{\begin{array}{l}3 \times 3 s \quad \text { if } n=3 s(3 s+1) \\ 3 \times(3 s-1) \text { if } n=3 s(3 s-1)\end{array}\right.$ as follows:
Define $a_{1 j}=a_{2 j}=a_{3 j}$ for all j with $a_{11}=\left\{6 s\right.$ if $n=3 s(2 s+1) \quad a_{3(j+1)}=a_{3 j}-2 \quad$ where
$\{1 \leq j \leq 3 s$ if $n=3 s(3 s+1)$
$\{1 \leq j \leq 3 s-1$ if $n=3 s(3 s-1)$
$\mathrm{a}_{1(\mathrm{j}+1)}=\mathrm{a}_{1 \mathrm{j}}-2 ; 2 \leq j \leq 3 s$.

Clearly numbers of entries are $\quad\left\{\begin{array}{c}9 s \text { if } n=3 s(2 s+1) \\ 9 s-3 \text { if } n=3 s(2 s-1)\end{array}\right.$ and sum of each row is n. Also entry starts with $\left\{\begin{array}{c}9 s \text { if } n=3 s(2 s+1) \\ 9 s-3 \text { if } n=3 s(2 s-1)\end{array}\right.$ and ends with minimum entry 2. Thus we have different entries $\left\{\begin{array}{l}2,4,6, \ldots, 6 s \quad \text { if } \quad n=3 s(3 s+1) \\ 0,2,4,6, \ldots, 6 s-2\end{array} \quad\right.$ if $n=3 s(3 s-1)$ in the matrix $\left(a_{i j}\right)$ with each entry repeated thrice with identical rows.

Now edgesincident with i can be decomposed into $3 s$ stars

$$
\begin{gathered}
S_{a_{i 1}}, S_{a_{i 2}}, \ldots, S_{a_{i(3 s)}} \text { or }(3 s-1) \text { stars } S_{a_{i 1}}, S_{a_{i 2}}, \ldots, S_{a_{i(3 s-1)}} \text { for }\left\{\begin{array}{c}
1 \leq j \leq 3 s \text { if } n=3 s(3 s+1) \\
1 \leq j \leq 3 s-1 \text { if } n=3 s(3 s-1)
\end{array}\right. \text { where } \\
S_{a_{i j}}=\left(i ;\left[a_{i 1}+a_{i 2}+\ldots+a_{i(j-1)}+1\right]^{\prime},\left[a_{i 1}+a_{i 2}+\ldots+a_{i(j-1)}+2\right]^{\prime}, \ldots,\right. \\
\left.\left[a_{i 1}+a_{i 2}+\ldots+a_{i j}\right]^{\prime}\right) ; j=1,2, \ldots, 3 s \text { (or) } j=1,2, \ldots, 3 s-1 \text { provided }
\end{gathered}
$$

$n=3 s(3 s+1)$ or $\mathrm{n}=3 \mathrm{~s}(3 \mathrm{~s}-1)$ respectively.
Thus $E\left(K_{3, n}\right)=E\left(S_{2}\right) \cup E\left(S_{2}\right) \cup E\left(S_{2}\right) \cup E\left(S_{4}\right) \cup E\left(S_{4}\right) \cup E\left(S_{4}\right) \cup . . \cup E\left(S_{6 s}\right) \cup$

$$
E\left(S_{6 s}\right) \cup E\left(S_{6 s}\right) \text { when } n=3 s(3 s+1) \text { if } a_{11}=6 s
$$

Thus $E\left(K_{3, n}\right)=E\left(S_{2}\right) \cup E\left(S_{2}\right) \cup E\left(S_{2}\right) \cup E\left(S_{4}\right) \cup E\left(S_{4}\right) \cup E\left(S_{4}\right) \cup . . \cup E\left(S_{6 s-2}\right) \cup$

$$
E\left(S_{6 s-2}\right) \cup E\left(S_{6 s-2}\right) \text { when } n=3 s(3 s-1) \text { if } a_{11}=6 s-2
$$

Hence $K_{3, n}$ admits Triple Even Star Decomposition $\left\{3 S_{2}, 23_{4}, \ldots, 3 S_{2 k}\right\}$ with $k=3 s$ when $n=3 s(3 s+1)$ or $k=(3 s-$ 1) when $n=3 s(3 s-1) ; s \in N$.

REFERENCES

1. E. Ebin Raja Merly and N. Gnanadhas, Arithmetic Odd Decomposition of Spider Tree, Asian Journal of Current Engineering and Maths, Vol. 2, No. 2, (2013), 99-101.
2. E. Ebin Raja Merly and J. Suthiesh Goldy, Even Star Decomposition of Complete Bipartite Graphs Journal of Mathematics Research, Vol. 8, No. 5, October (2016).
3. E. Esakkiammal and P.Chithra Devi, Double Even Star Decomposition of Complete Bipartite Graphs Proceedings of International Conference of Trends and Perspectives in Mathematics and Applied Mathematics, ISBN: 978-93-91342-81- 4, January (2023), 162-168.
4. E. Esakkiammal and P.Chithra Devi, Double Arithmetic Odd Decomposition of Complete Bipartite Graphs into Star Indian Journal of Discrete Mathematics, (Accepted for publication).
5. Frank Harary, Graph Theory, Addison-Wesley Publishing Company, (1972).
6. N. Gnanadhas and J. Paulraj Joseph, Continuous Monotonic Decomposition of Cycles, International Journal of Management and Systems, Vol.19, No. 1, (2003), 65-76.
7. S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite graphs into paths and cycles, Discrete Math. No. 331 (2014) 98-108. doi:10.1016/j.disc.2014.05.009.
8. V. G. Smilin Shali and S. Asha, Double Arithmetic Odd Decomposition [DAOD] of Some Complete 4-Partite Graphs, International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Vol. 9, December (2019).
