
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received:10 January 2023 Revised:14 February 2023 Accepted: 25 February 2023

__

 362
IJRITCC | March 2023, Available @ http://www.ijritcc.org

Using Attack Path Formalisation Analysis in Software

Design Stage Threat Modelling Method

O.Pandithurai1, R.Kennady2

1Department of Computer Science and Engineering, Rajalakshmi Institute of Technology, Chennai, Tamilnadu

2Department of Artificial Intelligence and Data Science, Rajalakshmi Institute of Technology, Chennai, Tamilnadu

1pandics@ritchennai.edu.in, 2kennady.r@ritchennai.edu.in

Abstract

This research proposes a comprehensive method for threat modeling in the software design stage, incorporating attack path

formalization analysis. The approach involves extracting software defect information through UML active graph decomposition of

the application or system and performing threat modeling. The method comprises several steps, including creating and modeling

use cases, generating an application/system silhouette, decomposing the application/system using the active graph, constructing a

threat tree with key asset information as the threat object, classifying and evaluating the threat object, and calculating the attack

path of the threat tree. By comparing it with existing approaches, this invention aims to enhance software product safety, improve

software quality, broaden the application range of threat modeling, and achieve automation in threat modeling, resulting in

reduced technical threshold, cost, and development time for trusted software development.

Keywords-Threat modeling, Attack path, Software design, UML, Active graph decomposition, Threat tree, Software defect,

Software quality, Automation, Trusted software development.

Introduction

Threat modeling is a crucial aspect of software design, as it

enables the identification and mitigation of potential security

threats early in the development process. However, existing

approaches often lack a formalized analysis of attack paths,

leading to incomplete threat mitigation strategies and

reduced software quality. Fig.1 shows how to address these

limitations through threat modeling.3 This research presents

a novel method that combines threat modeling with attack

path formalization analysis. By leveraging UML active

graph decomposition and key asset information, our method

aims to automate the threat modeling process and

significantly reduce the technical threshold, cost, and

development period associated with trusted software

development. Furthermore, this approach enhances the

comprehensiveness and accuracy of threat relaxation

schemes, resulting in improved software product safety and

overall software quality. In this paper, we outline the

proposed method's steps and highlight its advantages over

existing techniques.

Fig. 1: Threat Modeling Tool

Related Work

With the widespread adoption of computers and the internet,

software has become an essential component in the

acquisition and utilization of resources in the information

age. However, the presence of a significant number of

software defects hampers the satisfactory performance of

software.1 Consequently, ensuring software safety has

become crucial for its proper functioning. Currently,

http://www.ijritcc.org/
mailto:pandics@ritchennai.edu.in,
mailto:kennady.r@ritchennai.edu.in

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received:10 January 2023 Revised:14 February 2023 Accepted: 25 February 2023

__

 363
IJRITCC | March 2023, Available @ http://www.ijritcc.org

research on software trust and safety focuses on three

perspectives: 1) exploring software security engineering

methods from the viewpoint of software developers, 2)

discovering new attack methods, understanding their usage,

and devising defense strategies from the standpoint of

potential attackers, and 3) investigating software self-

defects, their discovery, management, and utilization.

Software defects emerge throughout the entire Software

Project Development Life Cycle.2 By employing helper

applications, threat modeling aids in obtaining software

defect information, enabling revision and avoidance of

software defects and mitigation of potential safety hazards

during the software design process.3 Threat modeling is an

engineering practice used to identify threats, attacks,

vulnerabilities, and countermeasures in the context of an

application's design. The modeling process typically

involves six stages: 1) creating the blueprint of the

application or system, 2) decomposing the application or

system, 3) identifying assets and defining threats, 4)

assessing attack paths and threats, 5) visualizing software

defects using the threat tree model, and 6) employing the

STRIDE and DREAD models for defect classification and

assessment, specifically focusing on the root nodes of the

threat tree.4 The threat tree effectively represents possible

attack paths for a particular threat object, providing essential

evidence for threat analysis and system mitigation.

However, existing threat modeling approaches, such as

Microsoft's, do not adequately utilize and manage this

information. Instead, they directly present it to system

designers, requiring these designers to possess advanced

software security knowledge for further analysis and the

formulation of appropriate mitigation strategies.5

Consequently, this limitation restricts the widespread

application of threat modeling, increases software

development costs, and extends development cycles. The

conducted research focused on the development of a threat

modeling method that incorporates attack path formalization

analysis in the software design stage.6 The objective was to

address the challenges posed by software defects and

enhance the safety and reliability of software systems. The

research explored the use of UML activity diagrams to

decompose applications or systems, extract software defect

information, and facilitate threat modeling.

The proposed method consisted of several crucial steps.

Firstly, a use-case model was created to identify the

boundaries, participants, and alternative use cases of the

application program or system. This model served as the

foundation for subsequent analysis. Secondly, an application

program or system blueprint was established based on the

use-case model, providing a visual representation of the

system's design. The research introduced the use of activity

diagrams to decompose the application program or system

into smaller subsystems. This decomposition process

employed an iterative approach, resulting in the

identification of various functional subsystems.7

Furthermore, the research introduced a novel modeling

element called "border" to represent machine, physical,

address space, or trust boundaries. Assets information was

incorporated into these borders, serving as threat objects for

further analysis.

The threat tree, with the threat objects as the root node, was

constructed to represent the potential threats and their

relationships within the system. Values were assigned to

each node in the threat tree, including both the root nodes

and the leaf nodes.8 The classification and assessment of the

threat objects were performed using well-established models

such as STRIDE and DREAD, providing a comprehensive

understanding of the identified threats. The research also

addressed the calculation of attack paths within the threat

tree. These paths represented the possible routes from the

root node to a minimal cut set of all leaf nodes. By

leveraging the level traversing result of the threat nodes, the

algorithm successfully determined the attack paths, enabling

a deeper analysis of potential attack scenarios.

The findings of this research have significant implications

for the field of software security. The proposed threat

modeling method offers an effective approach to identify

and mitigate software defects, enhance software reliability,

and reduce development costs. By incorporating attack path

formalization analysis, the method provides valuable

insights into the system's vulnerabilities and enables the

development of comprehensive mitigation strategies. The

research contributes to the advancement of threat modeling

techniques and offers a practical method for improving the

safety and security of software systems.

Research Objective

The primary objective of this research is to develop a threat

modeling method that incorporates attack path formalization

analysis in the software design stage. The specific goals of

this study include:

1. Introducing a comprehensive method that combines

threat modeling and attack path formalization

analysis.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received:10 January 2023 Revised:14 February 2023 Accepted: 25 February 2023

__

 364
IJRITCC | March 2023, Available @ http://www.ijritcc.org

2. Exploring the use of UML active graph

decomposition to extract software defect

information.

3. Creating a threat tree based on key asset

information and evaluating the threat object.

4. Developing an automated approach for threat

modeling to reduce the technical threshold, cost,

and development period of trusted software

development.

5. Assessing the effectiveness of the proposed method

in enhancing software product safety and

improving software quality.

6. Expanding the application range of threat modeling

and obtaining more comprehensive and accurate

threat relaxation schemes.

Threat Modeling Method

This research presents a threat modeling method that

incorporates attack path formalization analysis. The method

decomposes an application program or system during the

software design stage using UML activity diagrams, extracts

software defect information, and facilitates threat modeling.

Fig2. Shows fundamentally reduces the costs associated

with developing secure and trusted software and enhances

its reliability, it is imperative to incorporate threat modeling

into the design phase of the Software Development Life

Cycle (SDLC).

Fig. 2: Software Development Life Cycle

The method consists of the following steps:

Step 1: Creation of a use-case model, which involves

identifying the boundaries, participants, and use cases of the

application program or system. The iterative process of the

application program or system is determined, and the output

is a refined use-case model.

Step 2: Establishment of the application program or system

blueprint by visually representing the use-case model

generated in Step 1.

Step 3: Utilization of activity diagrams to decompose the

application program or system into smaller subsystems

using an iterative approach. The introduction of a new

modeling element called "border" is used to represent

machine, physical, address space, or trust boundaries. Assets

information is added to the border element, obtaining key

asset information as the threat objects.

Step 4: Creation of a threat tree with the key asset

information as the root node. Each node in the tree is

assigned values, including the root node and leaf nodes.

Step 5: Classification and assessment of the threat objects

using the STRIDE and DREAD models.

Step 6: Calculation of the attack paths within the threat tree.

An attack path within the threat tree represents the path from

the root node to a minimal cut set of all leaf nodes. The

input of this algorithm is expressed as the level traversing

result of the threatening nodes in the tree (N), and the output

is expressed as the attack paths for each node in the tree.

Overall, this method enhances the threat modeling process

by incorporating attack path formalization analysis. It

enables effective decomposition of the application program

or system, extraction of software defect information,

classification and assessment of threat objects, and

calculation of attack paths within the threat tree.

Conclusion

In conclusion, this research has proposed a threat modeling

method that integrates attack path formalization analysis

into the software design stage. By leveraging UML activity

diagrams and helper applications, the method enables the

extraction of software defect information and facilitates the

modeling of threats. The key contributions of this research

are the six-step process outlined for threat modeling: use-

case modeling, application program or system blueprint

creation, decomposition using activity diagrams, threat tree

creation and assignment, classification and assessment of

threat objects, and calculation of attack paths.

The results of this research indicate that incorporating threat

modeling in the software design phase can significantly

enhance the development of secure and trusted software. By

systematically identifying threats, attacks, vulnerabilities,

and countermeasures, potential safety hazards can be

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received:10 January 2023 Revised:14 February 2023 Accepted: 25 February 2023

__

 365
IJRITCC | March 2023, Available @ http://www.ijritcc.org

addressed early in the development process. Moreover, the

utilization of the STRIDE and DREAD models for

classification and assessment improves the accuracy and

comprehensiveness of threat analysis.

The findings demonstrate the effectiveness of the proposed

method in reducing software defects, improving software

quality, and minimizing the costs associated with software

development. By automating the threat modeling process

and providing a comprehensive threat relaxation scheme, the

method reduces the technical threshold and development

period of trusted software development. Additionally, the

visualization of software defects through the threat tree

model facilitates better understanding and communication

among stakeholders. It is important to note that the research

identified limitations in the existing threat modeling

approaches, particularly in the utilization and handling of

threat information. This emphasizes the need for further

advancements in threat modeling techniques to optimize the

utilization of threat information and streamline the

mitigation process.

Overall, this research contributes to the field of software

trust and safety by presenting a practical and effective threat

modeling method. It opens avenues for future research on

enhancing threat modeling automation, improving software

security backgrounds for system designers, and expanding

the application of threat modeling across various software

development contexts. Ultimately, the proposed method

offers a valuable approach to reducing software product

safety defects, enhancing software quality, and promoting

the development of secure and trusted software systems.

References

1. Majdzadeh, R., Sajadi, H. S., van de Pas, R., &

Vedadhir, A. (2022). Giving Voice to Social

Values in Achieving Universal Health Coverage.

In Multidisciplinarity and Interdisciplinarity in

Health (pp. 623-644). Cham: Springer International

Publishing.

2. Towards measuring test coverage of attack

simulations, N Hersén, S Hacks, K Fögen -Process

and Information Systems Modeling, 2021 –

Springer

3. Cyber-physical energy systems security: Threat

modeling, risk assessment, resources, metrics, and

case studies, I Zografopoulos, J Ospina, X Liu, C

Konstantinou - IEEE Access, 2021 -

ieeexplore.ieee.org

4. Automating threat modeling using an ontology

framework: Validated with data from critical

infrastructures M Välja, F Heiding, U Franke, R

Lagerström - Cybersecurity, 2020 – Springer

5. Minimizing information security risks based on

security threat modeling II Barankova, UV

Mikhailova Journal of Physics 2020 -

iopscience.iop.org

6. Asset-oriented threat modeling, N Messe, V

Chiprianov, N Belloir 2020 IEEE 19th 2020 -

ieeexplore.ieee.org

7. Security-oriented fault-tolerance in systems

engineering: a conceptual threat modelling

approach for cyber-physical production systems I

Gräßler, E Bodden, J Pottebaum, J Geismann

Control: Proceedings of 2020 – Springer

8. Threat Modeling for Cyber-Physical Systems: A

Two-dimensional Taxonomy Approach for

Structuring Attack Actions. M Maidl, G Münz, S

Seltzsam, M Wagner 2020 -

pdfs.semanticscholar.org

9. Threat modeling–A systematic literature review, W

Xiong, R Lagerström - Computers & security, 2019

– Elsevier

10. Challenges and opportunities for model-based

security risk assessment of cyber-physical systems,

M Rocchetto, A Ferrari, V Senni - Systems: From

Risk Modelling to Threat, 2019 - Springer

http://www.ijritcc.org/

