
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 10 January 2023 Revised: 12 February 2023 Accepted: 04 March 2023

 332
IJRITCC | March 2023, Available @ http://www.ijritcc.org

Microservices Container Security Orchestration

Framework within Kubernetes and Docker for

Business-Critical Applications within Digital

Transformation
Amarjeet Singh1, Alok Aggarwal2

1,2 School of Computer Science, University of Petroleum and Energy Studies, Dehradun, India

Abstract - Container virtualization technology facilitates the creation of microservices-based systems through continuous

integration. Container-based apps can be deployed more easily when they use orchestration systems like Kubernetes, which

has become the de facto standard. It can be difficult to create effective and precise orchestration systems, nevertheless. The

scheduler, a crucial orchestrator task that allocates physical resources to containers, is the subject of this article. Scheduling

strategies are developed using several Quality-of-Service metrics.

The CI in CI/CD stands for continuous integration. Continuous integration drives the automation in the development and

delivery of the code and developers frequently apply code changes. It’s an automated process that allows multiple developers

to contribute software components to the same project without integration conflicts. CI also triggers the process of testing the

applications automatically upon code commit into the repository. Container virtualization technology facilitates the creation of

microservices-based systems through continuous integration. Container-based apps can be deployed more easily when they use

orchestration systems like Kubernetes, which has become the de facto standard. It can be difficult to create effective and precise

orchestration systems, nevertheless. The scheduler, a crucial orchestrator task that allocates physical resources to containers, is

the subject of this article. Scheduling strategies are developed using several Quality of Service metrics.

Keywords: Microservice, Microservice Security, Kubernetes, Container, Cloud, Distributed Systems, Micro-services

I. INTRODUCTION

Emphasizing collaboration between development and security

teams at an early stage brings numerous advantages over time.

DevSecOps facilitates enhanced operational efficiency across

different departments, resulting in direct improvements. The

implementation of DevSecOps leads to swifter responses from

security teams, earlier identification of code vulnerabilities,

and increased reliability of the products. Primarily, DevSecOps

empowers organizations to deliver more secure products to

consumers at a faster pace. Less gridlock during the application

of late-stage security practices can make a major difference in

freeing up time for DevSecOps engineers to make

improvements during other segments of the product

development cycle. Considering these significant advantages,

it becomes evident why an growing number of companies and

organizations are opting to incorporate DevSecOps principles

into their development processes.

The main focus of the Kubernetes platform is optimization; it

streamlines software developers' tasks by automating

numerous laborious DevOps procedures. What then is the key

to the platform's popularity? Load balancing is provided by

Kubernetes services, which also streamline container

administration across several hosts. They facilitate the easy

scalability, flexibility, portability, and productivity of an

enterprise's software.

Figure: A python script to spin up Kubernetes cluster

The integration of containers and the availability of storage

resources from several cloud providers facilitate development,

testing, and deployment. Compared to virtual machine (VM)

images, container images are easier to produce and contain all

the components needed for a program to run. All of this results

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 10 January 2023 Revised: 12 February 2023 Accepted: 04 March 2023

 333
IJRITCC | March 2023, Available @ http://www.ijritcc.org

in more rapid development and effective release and

deployment schedules. Kubernetes should be implemented as

early in the development lifecycle as possible to enable

developers to test code early and prevent expensive mistakes

later. Applications built with microservices consist of separate

functional components that communicate with one another

through APIs. Out of all version control system existed in

development world, now a days 79% version control systems

are on Git and it’s growing. Many organizations have already

left older version control system and adopted Git as their VCS.

Although there are some migration tools available in the

software industry, their options are somewhat lacking,

especially when it comes to pre-migration checks such as empty

directories, failover capability and reporting as steps of post-

migration.

Figure: A holistic containerization approach with Kubernetes.

Docker containers offer the advantage of eliminating the

requirement for developers to have an identical production

environment setup. Instead, they can utilize their own systems

to run Docker containers on VirtualBox. The versatility of

Docker becomes evident when the same container can be

executed on Amazon EC2 instances. When implementing

upgrades during a product release cycle, Docker facilitates

seamless modification, testing, and application of changes to

existing containers. This flexibility stands out as a key benefit

of using Docker. Similar to conventional deployment and

integration processes, Docker enables the construction, testing,

and release of images deployable across multiple servers. Even

in the case of a new security patch, the procedure remains

consistent – applying the patch, conducting tests, and releasing

it to production.

II. RELATED WORK

According to a poll conducted in 2021, 88% of firms said they

were already utilizing Kubernetes for container orchestration.

Kubernetes is now the industry standard platform for

microservices and container-based task orchestration because

of its core capabilities for abstracting cluster resource

provisioning. Despite the fact that Kubernetes makes

deployment simpler, its distributed ecosystem presents

difficulties with regard to cost control and monitoring cluster

consumption data. This article delves into the intricacies of a

Kubernetes cluster, the difficulties in handling expenses as a

result of these inherent complexities, and optimal approaches to

enhance cost optimization. In the end, an effective application

security program has the potential to position a company more

competitively compared to other market players that neglect to

prioritize application security in their environments.

III. Containerization Aspects

While migrating from a legacy version control system to

distributed version control system, various aspects of the

migration work are explored below within the sort of problems

and their respective solutions. Four migration aspects - Project

structure validation and self-resiliency capabilities, Sensing the

SVN & Git SSH network connectivity using NodeMCU IoT

platform, SVN users and Git author mapping pattern validation,

Remote Git server filing system & space pre-validation - are

covered in this work along with possible solutions.

It lets you use a Docker container as a full-featured development

environment. You can open any folder within (or attached to) a

container, leveraging the complete feature set of Visual Studio

Code. The presence of a devcontainer.json file in your project

guides VS Code on accessing (or generating) a development

container with a clearly defined tool and runtime stack. This

container serves the purpose of running an application or

isolating tools, libraries, and runtimes necessary for working

with a specific codebase.

Workspace files are either mounted from the local file system,

copied, or cloned into the container. Extensions are then

installed and operated within the container, affording them

complete access to the tools, platform, and file system.

Consequently, you have the flexibility to effortlessly transition

your entire development environment by connecting to a

different container.

Figure: Centralized Authentication of API Gateway

Mitigating the risk of a CSRF attack involves implementing

sophisticated validation techniques, particularly for users

interacting with pages on your site, particularly on social media

or community platforms. A key strategy is the use of CSRF

tokens, also known as anti-CSRF tokens, designed to thwart

CSRF attacks. These tokens, often consisting of a unique,

lengthy string of numbers, are distinct to both the user and their

session. This complexity makes it significantly more

challenging for attackers to guess the correct token necessary to

generate a valid request.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 10 January 2023 Revised: 12 February 2023 Accepted: 04 March 2023

 334
IJRITCC | March 2023, Available @ http://www.ijritcc.org

By implementing CSRF tokens in your form submissions and

side-effect URLs, you can better ensure that every form

submission or request is tied to an authenticated user and

shielded from a potential CSRF attack. In cases involving

highly sensitive operations, OWASP notes that you may also

want to consider implementing a user interaction based

protection (either re-authentication/one-time token along) along

with token based mitigation techniques.

Figure: Scheduling the Kubernetes pods in automated fashion

In the past, you would deploy an application to a virtual

machine (VM) and point a DNS server (Domain Name System)

to that VM. Today, among the many other advantages of

Kubernetes, it allows workloads to exist in one cloud or be

easily distributed across many cloud services. Kubernetes

clusters make it easy and fast to migrate containerized apps

from an on-premises infrastructure to a hybrid deployment

across any cloud providers’ public cloud (PaaS) or private cloud

(PaaE) infrastructure without sacrificing any of an application’s

functionality or performance. This allows you to move

workloads into a closed or private system without locking them

in.IBM Cloud, AWS, Google Cloud Platform, and Microsoft

Azure provide easy integrations with Kubernetes based apps.

Figure: A holistic approach using Jenkins to spin up pod

automatically

Multi-Cloud Platforms

One of Docker’s greatest benefits is portability. In recent years,

major cloud computing providers, such as Amazon Web

Services (AWS) and Google Compute Platform (GCP), have

widely embraced Docker's accessibility, providing

individualized support. Docker containers are compatible with

various hosting environments, including Amazon EC2

instances, Google Compute Engine instances, Rackspace

servers, or VirtualBox, as long as the host operating system

supports Docker. This flexibility allows seamless migration of

containers between different environments, ensuring

consistency and functionality. Consequently, Docker provides

a level of abstraction from the underlying infrastructure.

Beyond AWS and GCP, Docker seamlessly integrates with

other Infrastructure as a Service (IaaS) providers like Microsoft

Azure and OpenStack. Furthermore, it is compatible with

various configuration management tools such as Chef, Puppet,

and Ansible, expanding its versatility in different deployment

scenarios.

Consistency

Containers offer developers the ability to create consistent and

reproducible environments that are isolated from one another

and can encompass all necessary dependencies. Since the

container image defines the foundational dependencies, there's

a high assurance that what runs on a developer's machine will

also run consistently across various production environments

and on any host operating system. This results in development

teams spending less time troubleshooting personal

infrastructure issues and more time enhancing applications.

In terms of security and stability, while containers facilitate

communication between services through API calls, service

meshes, and other discovery methods, they also provide

isolation of critical resources. This includes the container's

access to underlying CPU, memory, storage, and network

resources, preventing individual containers from consuming

excessive resources and mitigating potential security risks.

Docker, known for its rapid evolution recognized by Gartner,

ensures that applications running in containers are entirely

segregated and isolated from one another, offering precise

control over traffic flow and management. Each container, from

an architectural perspective, is allocated its own set of resources

spanning processing to network stacks, and no Docker container

can inspect processes running inside another container.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 10 January 2023 Revised: 12 February 2023 Accepted: 04 March 2023

 335
IJRITCC | March 2023, Available @ http://www.ijritcc.org

Figure: A snippet of Pod template

As a means of tightening security, Docker uses host OS

sensitive mount points (e.g., ‘/proc’ and ‘/sys’) as read-only

mount points and uses a copy-on-write filesystem to make sure

containers can’t read each other’s data. It also limits system

calls to your host OS and works well with Selinexor and

AppArmor. Additionally, Docker images that are available on

Docker Hub are digitally signed to ensure authenticity. Since

Docker containers are isolated and resources are limited, even

if one of your applications is hacked, it won’t affect applications

that are running on other Docker containers.

Team Focus

Kubernetes is widely used in industry with 59% of large

organizations using Kubernetes in production [15]. The

flexibility of Kubernetes allows for Functions as a Service

(FaaS), storage orchestration [13] and public-cloud integration

[7], among other things. This adoption and flexibility make

Kubernetes one of the most attractive platforms for edge

deployments on team improvement.

Kubernetes relies on etcd [8], a highly consistent distributed,

key-value store, for truth across control-plane components,

making it a critical factor in the journey of all requests’. various

securities systems proposed for version control migration

Various DevOps systems proposed for version control

migration are discussed below.

• Increased Attack Surface

• The public cloud environment has become a large and

highly attractive attack surface for hackers who exploit

poorly secured cloud ingress ports in order to access and

disrupt workloads and data in the cloud. Malware, zero-day

exploits, account takeovers, and various other malicious

threats have become commonplace in our day-to-day

reality.

• Lack of Visibility and Tracking

• In the IaaS model, the cloud providers have full control

over the infrastructure layer and do not expose it to their

customers. The lack of visibility and control is further

extended in the PaaS and SaaS cloud models. Cloud

customers often cannot effectively identify and quantify

their cloud assets or visualize their cloud environments.

• Ever-Changing Workloads

• Cloud assets are provisioned and decommissioned

dynamically—at scale and at velocity. Traditional security

tools are simply incapable of enforcing protection policies

in such a flexible and dynamic environment with its ever-

changing and ephemeral workloads.

• DevOps, DevSecOps and Automation

• Organizations that have embraced the highly automated

DevOps CI/CD culture must ensure that appropriate

security controls are identified and embedded in code and

templates early in the development cycle. Making

security-related changes after a workload has been

deployed in production can compromise the organization's

security posture and extend the time to market.

Granular Privilege and Key Management: Cloud user

roles are frequently configured with loose permissions,

providing extensive privileges beyond what is necessary

or intended. A prevalent example is assigning database

delete or write permissions to untrained users or those

without a legitimate business need to modify or add

database assets. At the application level, improperly

configured keys and privileges can expose sessions to

security risks.

Figure: Latency in k8 by using Splunk monitoring

• Complex Environments

• Managing security in a consistent way in the hybrid and

multicloud environments favored by enterprises these

days requires methods and tools that work seamlessly

across public cloud providers, private cloud providers, and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 3

Article Received: 10 January 2023 Revised: 12 February 2023 Accepted: 04 March 2023

 336
IJRITCC | March 2023, Available @ http://www.ijritcc.org

on-premises deployments—including branch office edge

protection for geographically distributed organizations.

• Cloud Compliance and Governance

• All the leading cloud providers have aligned themselves

with most of the well-known accreditation programs such

as PCI 3.2, NIST 800-53, HIPAA and GDPR. However,

customers are responsible for ensuring that their workload

and data processes are compliant. Given the poor

visibility as well as the dynamics of the cloud

environment, the compliance audit process becomes close

to mission impossible unless tools are used to achieve

continuous compliance checks and issue real-time alerts

about misconfigurations.

V. RESULTS AND DISCUSSION

In this paper, we’ve highlighted the heavy reliance on

Kubernetes on etcd and what’s causing lower availability and

delay in scheduling. We’ve seen that etcd is a bottleneck to

cluster scalability and impacts scheduling latency and the

availability of the whole system because of its limited

scalability at scale. Based on our results, this supports our core

observation that relying on strong consistency in the datastore

limits Kubernetes performance, scalability and availability. We

propose building a decentralized and eventually consistent store

specifically designed for Kubernetes to address these issues.

This redesign also opens up the possibility of rearchitecting

Kubernetes edge for increased performance, scalability, and

scalability, potentially leading to lower latency, larger scale at

the edge deployments. We hope to inform future work on

orchestration platforms with the goal of

Kubernetes orchestrates the operation of multiple containers in

harmony together. It manages areas like the use of underlying

infrastructure resources for containerized applications such as

the amount of computer, network, and storage resources

required. Orchestration tools like Kubernetes make it easier to

automate and scale container-based workloads for live

production environments.

References

[1] Hou Q., Ma Y., Chen J., and Xu Y., “An Empirical Study on

Inter-Commit Times in SVN,” Int. Conf. on Software Eng. and

Knowledge Eng.,” pp. 132–137, 2014.

[2] O. Arafat, and D. Riehle, “The Commit Size Distribution of

Open Source Software,” Proc. the 42nd Hawaii Int’l Conf. Syst.

Sci. (HICSS’09), USA, pp. 1-8, 2009.

[3] C. Kolassa, D. Riehle, and M. Salim, “A Model of the Commit

Size Distribution of Open Source,” Proc. the 39th Int’l Conf.

Current Trends in Theory and Practice of Comput. Sci.

(SOFSEM’13), Czech Republic, pp. 52–66, 2013.

[4] L. Hattori and M. Lanza, “On the nature of commits,” Proc. the

4th Int’l ERCIM Wksp. Softw. Evol. and Evolvability

(EVOL’08), Italy, pp. 63–71, 2008.

[5] P. Hofmann, and D. Riehle, “Estimating Commit Sizes

Efficiently,” Proc. the 5th IFIP WG 2.13 Int’l Conf. Open

Source Systems (OSS’09), Sweden, pp. 105–115, 2009.

[6] Kolassa C., Riehle, D., and Salim M., “A Model of the Commit

Size Distribution of Open Source,” Proceedings of the 39th

International Conference on Current Trends in Theory and

Practice of Computer Science (SOFSEM’13), Springer-Verlag,

Heidelberg, Baden-Württemberg, p. 5266, Jan. 26-31, 2013.

[7] Arafat O., and Riehle D., “The Commit Size Distribution of

Open Source Software,” Proceedings of the 42nd Hawaii

International Conference on Systems Science (HICSS’09),”

IEEE Computer Society Press, New York, NY, pp. 1-8, Jan. 5-

8, 2009.

[8] R. Purushothaman, and D.E. Perry, “Toward Understanding the

Rhetoric of Small Source Code Changes,” IEEE Transactions on

Software Engineering, vol. 31, no. 6, pp. 511–526, 2005.

[9] A. Singh, V. Singh, A. Aggarwal and S. Aggarwal, "Improving

Business deliveries using Continuous Integration and

Continuous Delivery using Jenkins and an Advanced Version

control system for Microservices-based system," 2022 5th

International Conference on Multimedia, Signal Processing and

Communication Technologies (IMPACT), Aligarh, India, 2022,

pp. 1-4, doi: 10.1109/IMPACT55510.2022.10029149.

[10] A. Alali, H. Kagdi, and J. Maletic, “What’s a Typical Commit?

A Characterization of Open Source Software Repositories,”

Proc. the 16th IEEE Int’l Conf. Program Comprehension

(ICPC’08), Netherlands, pp. 182-191, 2008.

[11] A. Hindle, D. Germán, and R. Holt, “What do large commits tell

us?: a taxonomical study of large commits,” Proc. the 5th Int’l

Working Conf. Mining Softw. Repos. (MSR’08), Germany, pp.

99-108, 2008.

[12] V. Singh, M. Alshehri, A. Aggarwal, O. Alfarraj, P. Sharma et

al., "A holistic, proactive and novel approach for pre, during and

post migration validation from subversion to git," Computers,

Materials & Continua, vol. 66, no.3, pp. 2359–2371, 2021.

[13] Vinay Singh, Alok Aggarwal, Narendra Kumar, A. K. Saini, “A

Novel Approach for Pre-Validation, Auto Resiliency & Alert

Notification for SVN To Git Migration Using Iot

Devices,” PalArch’s Journal of Arch. of Egypt/Egyptology, vol.

17 no. 9, pp. 7131 – 7145, 2020.

[14] Vinay Singh, Alok Aggarwal, Adarsh Kumar, and Shailendra

Sanwal, “The Transition from Centralized (Subversion) VCS to

Decentralized (Git) VCS: A Holistic Approach,” Journal of

Electrical and Electronics Engineering, ISSN: 0974-1704, vol.

12, no. 1, pp. 7-15, 2019.

[15] Ma Y., Wu Y., and Xu Y., “Dynamics of Open-Source Software

Developer’s Commit Behavior: An Empirical Investigation of

Subversion,” Proceedings of the 29th Annual ACM Symposium

on Applied Computing (SAC’14), pp. 1171-1173, doi:

10.1145/2554850.2555079, 2014.

[16] M. Luczak-R¨osch, G. Coskun, A. Paschke, M. Rothe, and R.

Tolksdorf, “Svont-version control of owl ontologies on the

concept level.” GI Jahrestagung (2), vol. 176, pp. 79–84, 2010.

[17] E. Jim´enez-Ruiz, B. C. Grau, I. Horrocks, and R. B. Llavori,

“Contentcvs: A cvs-based collaborative ontology engineering

tool.” in SWAT4LS. Citeseer, 2009.

[18] I. Zaikin and A. Tuzovsky, “Owl2vcs: Tools for distributed

ontology development.” in OWLED. Citeseer, 2013.

http://www.ijritcc.org/

