
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 4

Article Received:10 February 2023 Revised:20 March 2023 Accepted:30 March 2023

__

 405
IJRITCC | April 2023, Available @ http://www.ijritcc.org

Task Load and Work Property-Based Virtual Machine

Dispatching Algorithm

R.Kennady1, O.Pandithurai2

1Department of Artificial Intelligence and Data Science, Rajalakshmi Institute of Technology, Chennai, Tamilnadu
2Department of Computer Science and Engineering, Rajalakshmi Institute of Technology, Chennai, Tamilnadu

1kennady.r@ritchennai.edu.in,2pandics@ritchennai.edu.in

Abstract:This research proposes a virtual machine dispatching algorithm that takes into account the task load and work property

of a virtual machine. The algorithm utilizes an interruption monitoring module to assess the interruption frequency of the virtual

machine and determine whether it belongs to a CPU-dense or I/O-dense type. Additionally, a CPU monitoring module tracks the

current CPU utilization rate to monitor the task load. By considering the historical information within a specified time range, the

algorithm calculates a dispatching time segment for the virtual machine and notifies the dispatcher to update the time segment.

The dispatcher module adjusts the credit value dispatcher based on inputs from the monitoring and CPU modules. It applies

different dispatching time segments to virtual machines with varying work properties, aiming to reduce I/O request delays,

provide sufficient time for I/O request handling, and minimize additional overhead. Notably, the modifications occur within the

virtual machine monitor, ensuring practicality and adaptability.

Keywords: Virtual machine, Dispatching algorithm, Task load, Work property, Interruption monitoring, CPU monitoring, Time

segment, I/O request delay, Additional overhead, Virtual machine monitor.

Introduction:

In the field of virtualization, efficient management and

scheduling of virtual machines (VMs) are essential to

optimize resource utilization and ensure smooth system

operations. The dispatching algorithm plays a crucial role in

assigning tasks to VMs. However, existing dispatching

algorithms often neglect the dynamic nature of workload

characteristics and fail to consider the work property of

VMs, leading to suboptimal performance and increased I/O

request delays. To address these challenges, this research

proposes a novel virtual machine dispatching algorithm

based on the task load and work property of VMs. By

integrating an interruption monitoring module and a CPU

monitoring module, the algorithm aims to improve

dispatching decisions and reduce I/O request delays. The

algorithm calculates dispatching time segments for VMs,

taking into account the current task load and historical

information. The dispatcher module modifies the credit

value dispatcher, enabling the application of different

dispatching time segments based on the work properties of

VMs.

Background:

Virtualization technology has revolutionized computing

environments by allowing multiple VMs to run concurrently

on a physical machine. Dispatching algorithms play a vital

role in efficiently allocating resources and managing VMs.

However, traditional algorithms often overlook the dynamic

nature of workloads and the specific characteristics of VMs,

leading to imbalanced resource utilization and increased I/O

request delays.

Intel Virtualization Technology has been in existence for

over 50 years in various forms. The abstract nature of

virtualization allows for the logical representation of

available resources without being restricted by physical

conditions. Intel Virtualization Technology adds a

virtualization layer to systems, enabling the abstraction of

lower-level physical resources into virtual resources for use

by applications in the upper strata. This technology allows

for the creation of multiple virtual resources from a single

physical resource and the integration of multiple physical

resources into a virtual resource.

The Virtual Machine Monitor (VMM) is a critical

component of Intel Virtualization Technology. Positioned

between the hardware layer and the virtual machine, it

operates at the highest privilege level. The primary function

of the VMM is to abstract the underlying hardware

resources and transform them into virtual resources to be

used by the virtual machines in the upper layers. The VMM

http://www.ijritcc.org/
mailto:1kennady.r@ritchennai.edu.in,
mailto:2pandics@ritchennai.edu.in

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 4

Article Received:10 February 2023 Revised:20 March 2023 Accepted:30 March 2023

__

 406
IJRITCC | April 2023, Available @ http://www.ijritcc.org

is responsible for managing the virtual environment and the

allocation of physical resources.4,5

The current industry mainstream virtual machine monitors

include Xen, KVM, VirtualBox, Hyper-V, and VMware.

Among these, Xen has gained significant popularity and

holds a prominent position in both practical applications and

academic research. The default dispatching algorithm in

Xen is the credit value dispatching algorithm, also known as

the Credit Scheduler. In this algorithm, time is assigned as

credit values, and each virtual CPU (VCPU) is assigned a

credit value for each distribution period. As a VCPU runs

for a certain period, the corresponding credit value is

deducted. If the credit value drops below zero within a

dispatching cycle, the VCPU is rescheduled.1,2

The introduction of the virtual machine monitor introduces

new challenges and changes the way problems were

traditionally solved in legacy operating systems. One crucial

issue is the problem of I/O operating lag. In a legacy

operating system, when an I/O request occurs, the operating

system can detect the request and dispatch it to the

appropriate recipient, allowing it to interrupt the current

operation and process the I/O request promptly. However, in

a virtualized environment, all I/O requests are received by

the VMM, which then transmits them to the corresponding

virtual machine. The operating system cannot identify the

recipient of a specific I/O request, leading to delays. When

multiple virtual machines share a physical CPU, a virtual

machine has to wait for its turn to process its I/O request

after other virtual machines have utilized their allocated

CPU time. In scenarios where many virtual machines share

the same physical CPU, the delay can become significant,

rendering it unacceptable for virtual machines with high I/O

intensity.

Traditional schedulers prioritize fairness in scheduling,

treating I/O tasks and CPU tasks together. However, this

approach can result in inefficient I/O task processing. To

address the I/O inefficiency problem, researchers have

proposed various optimization methods that discriminate

between I/O tasks and CPU tasks. However, these methods

often classify virtual machines into two categories: pure I/O

operations and pure CPU calculations. They do not consider

distributing enough CPU time to process I/O requests for

virtual machines with mixed characteristics, which can

impact the efficiency of I/O tasks. Additionally, some

previous research only allows manual specification of

virtual machine types at system startup, which poses

limitations when the workload of a virtual machine

dynamically changes from I/O-intensive to CPU-intensive.

In such cases, the scheduler cannot adjust the scheduling

time segment, leading to persistent delays in I/O

response.10,11

In summary, traditional schedulers face challenges with

significant I/O operating lag. Although existing methods

have been proposed to reduce the delays to some extent,

they lack the ability to dynamically adapt to changes in

virtual machine workload characteristics and provide

sufficient time to process I/O requests. This limitation

ultimately affects the performance of I/O requests.

Consequently, there is a need for the development of a

scheduling algorithm that considers the work characteristics

and task load of virtual machines to address these issues.

Research Objective:

The main objective of this research is to develop a virtual

machine dispatching algorithm that considers the task load

and work property of VMs. The algorithm aims to optimize

the dispatching decisions by reducing I/O request delays,

providing sufficient time for I/O request handling, and

minimizing additional overhead. The proposed algorithm

integrates interruption monitoring, CPU monitoring, and

dispatcher modules to achieve these objectives. By

modifying the three modules within the virtual machine

monitor, the algorithm ensures good applicability and

adaptability in various virtualization environments.

Research:

The objective of this invention is to provide a scheduling

virtual machine algorithm based on the current

characteristics and task load of virtual machines. This

algorithm aims to ensure that I/O requests are responded to

in a timely manner while providing enough CPU time for

processing I/O requests. It also aims to balance the timeslice

size to maximize I/O performance while minimizing

overhead for CPU-intensive virtual machines.

To achieve this objective, the invention proposes a

scheduling virtual machine algorithm consisting of three

modules: an interruption monitoring module, a CPU monitor

module, and a scheduler module.

The interruption monitoring module operates within the

virtual machine monitor and captures interrupt requests

received by virtual machines through the event channel. By

analyzing the information carried by these interrupt

requests, such as domainU send requests, domainU receives

requests, domain0 sends replies, and domain0 receives

replies, the module monitors the interruption frequency of

all virtual machines. This information is used to determine

whether each virtual machine has a CPU-intensive or I/O-

intensive workload.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 4

Article Received:10 February 2023 Revised:20 March 2023 Accepted:30 March 2023

__

 407
IJRITCC | April 2023, Available @ http://www.ijritcc.org

The CPU monitor module operates within the virtual

machine monitor and monitors the CPU utilization of virtual

machines. It calculates the CPU usage and determines the

required scheduling timeslice for each virtual machine based

on its CPU usage. To ensure stability and reduce

performance fluctuations, the CPU monitor module maps

CPU busy percentages from 0% to 100% to timeslice

intervals ranging from 1ms to 20ms. The timeslice size is

modified only when the CPU usage remains within a certain

range for several consecutive cycles. The module utilizes an

aging algorithm that incorporates historical information

within a specific time frame to calculate the CPU usage

(Table 1)

Time Stamp CPU Usage (%) CPU Temperature (°C) CPU Frequency (GHz)

0:00:00 10 45 2.3

0:05:00 20 50 2.6

0:10:00 30 55 2.7

0:15:00 40 60 2.9

0:20:00 50 65 3.1

0:25:00 60 70 3.29

0:30:00 70 75 3.48

Table 1: CPU Usage

The scheduler module is a modification of the CREDIT

scheduler and incorporates data structures to store feedback

from the interruption monitoring module and the CPU

monitor module. It maintains two queues: an A queue and a

B queue. Based on the feedback from the interruption

monitoring module, virtual machines with different

workload characteristics are placed in different queues.

Virtual machines with CPU-intensive workloads are placed

in the A queue, while virtual machines with I/O-intensive

workloads are placed in the B queue. The scheduler selects

the next virtual machine to run from either the B queue or

the A queue in a specific order:

1. The scheduler first selects the next virtual machine

from the head of the B queue. After scheduling, the

virtual machine is inserted at the tail of the B queue.

2. This step is repeated until all virtual machines in the B

queue have been scheduled at least once or the B queue

becomes empty.

3. The scheduler then selects the next virtual machine

from the head of the A queue.

4. Steps 1 to 3 are repeated until all virtual machines have

utilized their allocated timeslices for the current cycle.

5. After each virtual machine is selected to run, the

scheduling function updates the domain structure using

information from the interruption monitoring module

and the CPU monitor module. Based on this

information, the scheduling function applies different

scheduling strategies to virtual machines with different

characteristics. The timeslice size is determined based

on the information from the CPU monitor module, and

a timer is set accordingly to perform the scheduling of

virtual machines.

The proposed scheduling virtual machine algorithm

based on virtual machine characteristics and task load

offers several technical advantages:

1. The interruption monitoring module captures all events

through the event channel, including communication

events between domain0 and domainU. It calculates

the interruption frequency of each virtual machine,

providing the basis for distinguishing between CPU-

intensive and I/O-intensive virtual machines. This

module provides information about the current

characteristics of virtual machines, enabling the

scheduler to apply different dispatching algorithms

based on the type of workload. CPU-intensive virtual

machines utilize the default Credit scheduler, while

I/O-intensive virtual machines use the algorithm

proposed by the invention.

2. The CPU monitor module accumulates the number of

times a virtual machine is busy within a specific time

frame. It calculates the CPU usage by dividing the

busy ratio by the total activation count. The timeslice

required for the scheduling algorithm used by I/O-

intensive virtual machines is calculated based on the

CPU usage determined by the module. To ensure

stability and avoid abrupt changes in timeslice size, the

module employs linear mapping and an aging

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 4

Article Received:10 February 2023 Revised:20 March 2023 Accepted:30 March 2023

__

 408
IJRITCC | April 2023, Available @ http://www.ijritcc.org

algorithm that considers historical information,

resulting in more accurate calculations.

3. The scheduler module modifies the original Credit

scheduler and maintains fairness within a scheduling

cycle. It allows CPU-intensive virtual machines to run

larger timeslices while enabling I/O-intensive virtual

machines to run multiple smaller timeslices. Priority is

given to scheduling I/O-intensive virtual machines,

reducing the delay in I/O response. The timeslice for

I/O-intensive virtual machines is calculated by the

CPU monitor module, ensuring sufficient time for

processing I/O requests and further enhancing I/O

performance. All virtual machines within a scheduling

cycle receive equal timeslices, ensuring fairness in

scheduling.

The proposed algorithm is implemented within the

virtual machine monitor and does not require

modifications to the client computer's code. It is

independent of the specific client operating system,

making it applicable to all client operating systems

with strong adaptability.

The implementation of the modules within the virtual

machine monitor results in minimal overhead and does

not significantly impact the performance of CPU-

intensive virtual machines. The algorithm allocates

shorter timeslices for I/O-intensive virtual machines

and utilizes the default timeslice for CPU-intensive

virtual machines. This approach minimizes the

performance impact on CPU-intensive virtual

machines and reduces system overhead.

In conclusion, the proposed scheduling virtual machine

algorithm based on virtual machine characteristics and

task load addresses the limitations of previous

methods. It ensures timely response to I/O requests,

provides sufficient CPU time for I/O processing,

balances timeslice sizes, maximizes I/O performance,

and minimizes overhead for CPU-intensive virtual

machines. The algorithm offers technical

advancements through its modules: interruption

monitoring, CPU monitoring, and scheduler

modifications. It provides a more efficient and

adaptable solution for scheduling virtual machines in

various workload scenarios.

Conclusion:

In conclusion, this research presents a novel virtual machine

dispatching algorithm that considers both the task load and

work property of VMs. By integrating interruption

monitoring, CPU monitoring, and dispatcher modules, the

algorithm improves dispatching decisions and reduces I/O

request delays. The algorithm calculates dispatching time

segments based on the current task load and historical

information, providing sufficient time for I/O request

handling while minimizing additional overhead. The

modifications within the virtual machine monitor ensure

practicality and adaptability in different virtualization

environments. Future work can focus on further optimizing

the algorithm and conducting extensive performance

evaluations to validate its effectiveness in real-world

scenarios.

References:

1. Dimitrov, N., & Göçmen, T. (2022). Virtual sensors

for wind turbines with machine learning‐based time

series models. Wind Energy, 25(9), 1626-1645.

2. A container-based technique to improve virtual

machine migration in cloud computing, A Bhardwaj, C

Rama Krishna - IETE Journal of Research, 2022 -

Taylor & Francis

3. Increasing Flexibility of Cloud FPGA Virtualization, J

Ruan, Y Chang, K Zhang, K Shi, 2022 -

ieeexplore.ieee.org

4. Operating systems and hypervisors for network

functions: A survey of enabling technologies and

research studies, AS Thyagaturu, P Shantharama, A

Nasrallah, 2022 - ieeexplore.ieee.org

5. Direct-Virtio: A New Direct Virtualized I/O

Framework for NVMe SSDs, S Kim, H Park, J Choi -

Electronics, 2021 - mdpi.com

6. Bao: A lightweight static partitioning hypervisor for

modern multi-core embedded systems, J Martins, A

Tavares, M Solieri 2020 - drops.dagstuhl.de

7. Optimizing nested virtualization performance using

direct virtual hardware, JT Lim, J Nieh - 2020 -

dl.acm.org

8. Protecting cloud virtual machines from hypervisor and

host operating system exploits, SW Li, JS Koh, J Nieh

- 2019 - usenix.org

9. XIVE: External interrupt virtualization for the cloud

infrastructure, F Auernhammer, RL Arndt 2018 -

ieeexplore.ieee.org

10. ARM virtualization: performance and architectural

implications, C Dall, SW Li, JT Lim, J Nieh 2016 -

dl.acm.org

11. Embedded hypervisor xvisor: A comparative analysis,

A Patel, M Daftedar, M Shala 2015 -

ieeexplore.ieee.org :

http://www.ijritcc.org/

