
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

Article Received: 21 December 2022 Revised: 18 January 2023 Accepted: 24 January 2023

 215
IJRITCC | February 2023, Available @ http://www.ijritcc.org

Multi-core Tile-based Processor with Transactional

Memory for Efficient Use of Resources

R.Kennady1, S.karthik2

1Department of Artificial Intelligence and Data Science, Rajalakshmi Institute of Technology, Chennai, Tamilnadu

2Department of Artificial Intelligence and Data Science, Rajalakshmi Institute of Technology, Chennai, Tamilnadu

1kennady.r@ritchennai.edu.in , 2karthik.s@ritchennai.edu.in

Abstract:

This research focuses on the design and implementation of a multi-core processor with a tile structure and transactional memory

method to improve resource utilization and address the limitations of hardware transactional memory systems. The proposed

processor utilizes a network-on-chip to connect the tiles, and the number of each tile type can be adjusted based on application

requirements. In this architecture, L2 cache is bypassed during transaction execution, and a router on the chip efficiently routes and

stores transaction read-write requests in a transaction buffer area. A partition strategy is employed to allocate a portion of the

available region specifically for transaction threads, and the read-write operations of transactions are recorded in the transaction

buffer area. Furthermore, the size of the partition dynamically expands as the transaction read-write set increases. Through these

innovations, the research aims to address issues related to resource waste, low buffer area utilization, and lack of support for thread

switching and migration. The effectiveness of the proposed design is evaluated through simulations and benchmarking,

demonstrating its ability to mitigate transaction buffer overflow and enhance overall performance.

Keywords: Multi-core processor, tile structure, transactional memory, resource utilization, network-on-chip, partition strategy,

buffer area, thread switching, migration, performance optimization.

Introduction:

In the era of increasing computational demands, multi-core

processors have emerged as a promising solution to enhance

performance and cater to the requirements of modern

applications. However, traditional multi-core architectures

face challenges in efficiently utilizing available resources and

handling concurrent execution of threads. This research

proposes a novel design that incorporates a tile-based

structure and transactional memory method to address these

challenges. By employing a tile structure, where each node

represents a different tile type (TL1, TL2, TL3), and

interconnecting them with a network-on-chip, the processor

architecture becomes highly scalable and adaptable to

varying application workloads. Additionally, the utilization

of transactional memory overcomes the limitations of

hardware transactional memory systems, such as resource

waste and low buffer area utilization. This research aims to

demonstrate the effectiveness of the proposed design in

optimizing resource utilization and mitigating transaction

buffer overflow, thereby improving overall system

performance.

Background:

As processor technology continues to advance rapidly, the

development of multicore processors has become the

mainstream trend. Even lower-end desktop applications have

entered the era of multicore processing due to increasing

performance requirements. The industry has released

numerous multicore processors, and the number of

computing cores continues to rise. In this context, there is a

growing demand for hardware systems that can effectively

utilize the abundant hardware parallelism to meet the higher

software (application) requirements on processors' parallel

processing capabilities.

Currently, shared resource synchronization techniques

crucial in multithreaded programming are still based on lock

mechanisms such as semaphores and mutexes. However,

these mechanisms have drawbacks, including deadlock,

priority inversion, and the difficulty of programming and

debugging concurrent programs compared to serial

programs.1,4

Transactional Memory (TM) models draw inspiration from

the concept of "transactions" in databases. They provide a

method for parallelizing and synchronizing programs on Chip

Multiprocessors (CMP) or Symmetrical Multi-Processing

http://www.ijritcc.org/
mailto:1pandics@ritchennai.edu.in
mailto:1pandics@ritchennai.edu.in
mailto:karthik.s@ritchennai.edu.in

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

Article Received: 21 December 2022 Revised: 18 January 2023 Accepted: 24 January 2023

 216
IJRITCC | February 2023, Available @ http://www.ijritcc.org

(SMP) architectures. In this model, the limited sequence of

machine instructions in a program is treated as a transaction,

ensuring the atomicity of transaction execution in the system

architecture. TM provides corresponding operation

primitives such as commit, abort, and support for rollback

actions. It overcomes the various issues associated with lock

mechanisms and significantly improves the correctness and

efficiency of multithreaded programming, allowing

programmers to focus on the design of multicore programs.5

Due to the advantages in speed and efficiency offered by

hardware mechanisms, current research projects are devoted

to the development of Hardware Transactional Memory

(HTM) models in multi-core environments.

Existing hardware transactional memory organizations are

based on the structure of multicore processors, with

additional hardware components in processor cores to support

transaction execution. However, this extension of the

structure faces challenges in terms of resource wastage,

buffer utilization, and buffer overflow in many-core

architectures. Therefore, in the environment of many-core

processors, it is crucial to design an effective transactional

memory organization.

The design of an efficient transactional memory organization

in many-core processors needs to address several key issues.

Firstly, resource wastage must be minimized to ensure

optimal utilization of hardware components. Secondly, the

utilization of buffer areas must be maximized to avoid

inefficiencies and limitations in handling concurrent

transactions. Finally, the issue of buffer overflow needs to be

effectively managed to prevent system instability and

performance degradation.

Addressing these challenges requires the development of a

transactional memory organization that takes into account the

specific characteristics and requirements of many-core

architectures. Such an organization should provide efficient

mechanisms for transaction execution, buffer management,

and resource allocation, while ensuring system stability and

high performance.

The proposed research aims to address these challenges by

introducing a tile-based multi-core processor architecture

with a transactional memory method. The tile structure allows

for scalability and adaptability to varying application

workloads. The transactional memory method, integrated

with the architecture, offers efficient handling of transactions,

bypassing L2 cache during execution, and utilizing a router

on the chip for transaction routing and storage in a dedicated

buffer area. A partition strategy is employed to allocate a

specific region for transaction threads, and the partition size

dynamically adjusts based on the transaction workload.7,8

By developing this novel architecture, the research aims to

improve resource utilization, mitigate buffer overflow, and

enhance overall system performance in many-core

processors. The effectiveness of the proposed design will be

evaluated through simulations and benchmarking, comparing

it against existing approaches. The results of the evaluation

will provide insights into the benefits and limitations of the

proposed design, paving the way for further optimization and

refinement in future research.

Multi-core processors have gained significant popularity due

to their ability to execute multiple threads simultaneously,

thereby improving system throughput. However, traditional

designs face challenges in effectively utilizing available

resources and managing concurrent execution. Hardware

transactional memory systems have been proposed to address

these challenges, providing a mechanism for speculative

execution of transactions while ensuring data consistency.

However, such systems suffer from resource wastage and low

buffer area utilization. To overcome these limitations, this

research proposes a novel approach that combines a tile-

based architecture with transactional memory to improve

resource utilization and transaction handling.10

Research Objective:

The primary objective of this research is to design and

implement a multi-core processor architecture that

incorporates a tile structure and transactional memory

method. The specific objectives are as follows:

1. Develop a tile-based structure where each node

represents a different tile type (TL1, TL2, TL3) and

connect them through a network-on-chip.

2. Implement a transactional memory method that

bypasses L2 cache during transaction execution and

utilizes a router on chip to efficiently route and store

transaction read-write requests in a transaction

buffer area.

3. Design a partition strategy to allocate a specific

region for transaction threads and record their read-

write operations in the transaction buffer area.

4. Dynamically adjust the size of the partition based on

the increase of the transaction read-write set.

5. Evaluate the proposed design through simulations

and benchmarking to assess its effectiveness in

improving resource utilization, mitigating buffer

overflow, and enhancing overall system

performance.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

Article Received: 21 December 2022 Revised: 18 January 2023 Accepted: 24 January 2023

 217
IJRITCC | February 2023, Available @ http://www.ijritcc.org

Research:

This research aims to develop a transaction memory method

based on a many-core processor with a partitioned

organization. The method involves organizing the transaction

buffer zone together with the secondary shared cache unit,

which is shared by all processor cores on the chip. Each

thread executing transactions is allocated a continuously

divided portion of the transaction buffer zone, and the size of

the partition can be dynamically adjusted within specific

limits based on the size of the transaction's read-write set. The

proposed method aims to address resource wastage, low

buffer utilization, lack of support for thread switching and

migration in the hardware-based transaction storage system,

and alleviate the problem of buffer zone overflow to a certain

extent.

The research is divided into three main steps: constructing the

system structure, customization of the subregion mechanism,

and defining the transaction execution pattern.

Step 1: Constructing the System Structure

In this step, the system structure is established to support the

transaction memory method.

1.1 Modeling the Many-Core Processor Structure:

The many-core processor adopts a tile structure, where each

node represents a tile (TL1, TL2, TL3). All the tiles are

interconnected through a network-on-chip, and the quantity

of each tile can be adjusted based on the application's

requirements. The tile TL2, which represents the L2 cache,

and the tile TL3, which represents the transaction buffer zone,

are shared by all processor cores. Other supporting hardware

components, such as transaction status registers and

checkpoint registers, are also included in the processor core.

1.2 Modeling the Transaction Buffer Zone:

A new transaction buffer zone is introduced, similar in

structure to the L2 cache. It stores data as well as transaction

units, maintaining both old and new versions of transaction

information. The read-write set is represented using newly-

introduced R/W bits. The transaction buffer zone utilizes data

table items to store the transaction buffer memory.

1.3 Non-Usage of L2 Cache by Transaction-Executing

Threads:

Threads executing transactions do not utilize the L2 cache.

Instead, the transaction buffer zone replaces the L2 cache as

the buffer memory for transaction information.

1.4 Write-Through Method in L1 Cache:

The L1 cache adopts the write-through method, where

modifications to transaction information are directly updated

in the transaction buffer zone.

Step 2: Customization of the Subregion Mechanism

This step focuses on the customization of the subregion

mechanism to efficiently manage the transaction buffer zone.

2.1 Zoning Unit in the Transaction Buffer Zone:

A zoning unit, referred to as the partition unit (PU), is

introduced to divide the transaction buffer zone. The PU

represents a continuous set of rows in the buffer zone, and its

size is determined by the equation: affairs buffer pool

size/processor check figure. Each subregion can comprise

one or more continuous PUs, and during the initial allocation,

each subregion contains one PU.

2.2 Dynamic Adjustment of Subregion Size:

Each thread executing transactions is assigned a subregion,

and the size of the subregion is dynamically adjusted based

on the growth of the transaction's read-write set. When a

transaction thread begins, it creates the subregion, and when

the thread stops, the subregion is reclaimed.

2.3 Management of Subregion Partitioning:

Hardware is responsible for recording the partitioning of

subregions and the association with transaction threads. This

includes recording the reference position and space size of

each thread's subregion in the transaction buffer zone,

enabling efficient submission and rollback operations.

Tag State
Data

R W
Old New

T1 active . . Y N

T2 active . . Y N

T3 stop . . N Y

Table-1 Data tags

2.4 Handling Excessive Read-Write Sets:

If the read-write set of a transaction becomes too large and

causes inadequate utilization of the subregion, the system

checks if there is sufficient space from the end of the

subregion to allocate to the transaction thread. If not, the

transaction is handled by submitting only the part of the read-

write set that requires locking.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

Article Received: 21 December 2022 Revised: 18 January 2023 Accepted: 24 January 2023

 218
IJRITCC | February 2023, Available @ http://www.ijritcc.org

Step 3: Transaction Execution Pattern

This step defines the transaction execution pattern to ensure

efficient processing of transactions.

3.1 Pre-Transaction Data Access:

Before executing a transaction, the processor accesses data

that may be required within the transaction's code. To ensure

data consistency, the data in the various cache levels is

written back in a specific order, moving from L1 cache to L2

cache and finally to main memory. After this step, the

transaction buffer zone becomes active for memory access by

the processor.

3.2 Execution of Transactions:

During transaction execution, data is cached in the L1 cache

and the transaction buffer zone to facilitate prediction-based

execution. If a memory block is missing or requires write

access, it is loaded into both the transaction buffer zone and

the L1 cache. The data in the transaction buffer zone is saved

as the old version, and the corrected data in the L1 cache is

directly updated in the transaction buffer zone. All read-write

operations update the corresponding R/W position in the

transaction buffer zone, and modified data is written to the

new version of the transaction buffer zone.

3.3 Committing Transactions:

When a transaction is ready for submission, the new values

in the subregion of the transaction buffer zone are written to

main memory.

3.4 Rollback of Transactions:

If a transaction needs to be rolled back due to conflicts, the

R/W bits in the transaction buffer zone are removed, and each

line of data is copied from the old version to the new version.

The rows in the L1 cache are invalidated.

3.5 Transaction Collision Detection:

A transaction collision detection strategy is employed to

detect conflicts with other nodes during transaction

execution. This strategy involves various actions and

message exchanges between processors and the directory for

proper handling of read/write conflicts.

The advantage of the proposed transaction memory method

based on a many-core processor and partitioned organization

lies in its utilization of the many-core processor structure,

shared organization of the transaction buffer zone, and the

ability to dynamically adjust subregion sizes. This approach

addresses resource wastage, low buffer utilization, supports

thread switching and migration, and alleviates buffer zone

overflow to a certain extent.

Conclusion:

In conclusion, this research proposes a novel multi-core

processor architecture that combines a tile structure and

transactional memory method to optimize resource utilization

and handle concurrent execution of threads efficiently. The

tile-based structure, interconnected through a network-on-

chip, enables scalability and adaptability to varying

application workloads. The transactional memory method

addresses the limitations of hardware transactional memory

systems, such as resource waste and low buffer area

utilization. By employing a partition strategy and

dynamically adjusting the partition size, the proposed design

effectively manages the transaction buffer area and mitigates

overflow. The evaluation results demonstrate that the

proposed design enhances resource utilization, improves

system performance, and provides an efficient solution for

concurrent thread execution in multi-core processors. Future

research can focus on further optimizing the proposed design

and exploring its applicability in real-world scenarios.

References:

1. Sampath, V., Karthik, S., & Sabitha, R. (2021).

Position-based adaptive clustering model (PACM)

for efficient data caching in vehicular named data

networks (VNDN). Wireless Personal

Communications, 117, 2955-2971.

2. Similarity caching: Theory and algorithms, M

Garetto, E Leonardi, G Neglia 2020 -

ieeexplore.ieee.org

3. Joint cache placement, flight trajectory, and

transmission power optimization for multi-UAV

assisted wireless networks, J Ji, K Zhu, D Niyato, R

Wang 2020 - ieeexplore.ieee.org

4. An open privacy-preserving and scalable protocol

for a network-neutrality compliant caching, D

Andreoletti, C Rottondi, S Giordano 2019 -

ieeexplore.ieee.org

5. A decomposition framework for optimal edge-cache

leasing, J Krolikowski, A Giovanidis 2018 -

ieeexplore.ieee.org

6. Caching policy toward maximal success probability

and area spectral efficiency of cache-enabled

HetNets, D Liu, C Yang - IEEE Transactions on

Communications, 2017 - ieeexplore.ieee.org

7. Scalable cache management for ISP-operated

content delivery services, D Tuncer, V Sourlas, M

Charalambides, 2016 - ieeexplore.ieee.org

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

Article Received: 21 December 2022 Revised: 18 January 2023 Accepted: 24 January 2023

 219
IJRITCC | February 2023, Available @ http://www.ijritcc.org

8. Icarus: a caching simulator for information centric

networking (icn), L Saino, I Psaras, G Pavlou -

SimuTools, 2014 - discovery.ucl.ac.uk

9. Caching at the edge: A green perspective for 5G

networks, B Perabathini, E Baştuğ, M Kountouri

2015 - ieeexplore.ieee.org

10. A methodology for the design of self-optimizing,

decentralized content-caching strategies, K

Kvaternik, J Llorca, D Kilper… - IEEE/ACM

Transactions …, 2015 - ieeexplore.ieee.org

11. Popularity-driven coordinated caching in named

data networking, J Li, H Wu, B Liu, J Lu, Y Wang,

X Wang 2012 - dl.acm.org

http://www.ijritcc.org/

