
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

Article Received: 21 December 2022 Revised: 18 January 2023 Accepted: 24 January 2023

 210
IJRITCC | February 2023, Available @ http://www.ijritcc.org

Technique and Instrument for Effective CPU and

GPU Access Request Arbitration Using On-Chip

Cache

O.Pandithurai1, S.karthik2

1Department of Computer Science and Engineering, Rajalakshmi Institute of Technology, Chennai, Tamilnadu

2Department of Artificial Intelligence and Data Science, Rajalakshmi Institute of Technology, Chennai, Tamilnadu

1pandics@ritchennai.edu.in, 2karthik.s@ritchennai.edu.in

Abstract:

This research paper presents a novel on-chip cache procedure and device that effectively handles access requests from both CPUs

and GPUs. The proposed procedure involves classification caching based on the access request type, arbitrating different types of

access requests for caching, and optimizing access time for CPU requests through cache while bypassing cache for GPU requests.

The device includes CPU and GPU request queues, a moderator, and cache performance elements. By considering the distinct access

characteristics of CPUs and GPUs simultaneously, this approach offers high performance, simple hardware implementation, and

minimal cost.

Keywords: CPU, GPU, on-chip cache, access request, classification caching, arbitration, performance optimization.

Introduction:

Modern computing systems rely on both central processing

units (CPUs) and graphics processing units (GPUs) for

executing diverse workloads. CPUs excel at general-purpose

tasks, while GPUs are specialized for graphics-intensive

computations. Efficiently managing the access requests from

these two processing units is critical for optimizing system

performance. This research introduces an on-chip cache

procedure and device that addresses the challenges associated

with handling CPU and GPU access requests simultaneously.

Background:

With the rapid development of super large-scale integration

and embedded technology, the transistor resources available

on a single chip have significantly increased, leading to the

emergence of System-on-Chip (SoC) technology. SoC chips

represent the most integrated form of multiple functional

components, encompassing various IP kernels. They offer

comprehensive functionality, allowing for the integration of

almost all the features of an embedded information

processing system, such as mobile phones and PDAs, onto a

single chip. This integration enables information gathering,

input, storage, processing, and output on a single chip.1,2

Modern embedded systems, including mobile phones and

game consoles, place high demands on multimedia processor

performance, particularly for graphics, images, and videos.

As a result, Graphics Processing Units (GPUs) are often

integrated into SoC chips. In such chips, which integrate two

different processing units, namely CPUs and GPUs, it

becomes necessary for them to share and utilize on-chip

resources, such as cache and storage control.

However, the limited on-chip memory bandwidth often fails

to meet the high bandwidth requirements of both CPUs and

GPUs simultaneously, impacting the performance of both

processing units. Moreover, CPUs and GPUs exhibit different

memory access characteristics, which also pose distinct

requirements for on-chip cache. CPU access requests are

typically latency-sensitive, requiring quick service, while

GPU access requests are bandwidth-sensitive, necessitating

high-bandwidth service to ensure real-time image

processing.1,2

Consequently, the shared utilization mode of on-chip cache

has a certain impact on the performance of both CPUs and

GPUs, as it becomes challenging to meet the low latency

demands of CPUs and the high bandwidth requirements of

GPUs simultaneously. As the integration of CPUs and GPUs

on SoC chips continues to increase, the issue of memory

http://www.ijritcc.org/
mailto:1pandics@ritchennai.edu.in
mailto:karthik.s@ritchennai.edu.in

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

Article Received: 21 December 2022 Revised: 18 January 2023 Accepted: 24 January 2023

 211
IJRITCC | February 2023, Available @ http://www.ijritcc.org

access contention between the two processing units becomes

a pressing technical problem that needs urgent resolution.4,5

In summary, the integration of CPUs and GPUs on SoC chips

presents challenges related to memory access contention. The

limited on-chip memory bandwidth affects the performance

of both processing units, and the divergent memory access

characteristics of CPUs and GPUs impose distinct

requirements on on-chip cache. Addressing these challenges

and optimizing the management of access requests from

CPUs and GPUs in an efficient and effective manner is

crucial for achieving high-performance computing on SoC

chips.4,6

Traditional cache designs primarily cater to CPU access

requests, leading to suboptimal performance when GPUs are

involved. GPUs often exhibit different access patterns and

prioritize large-scale memory operations, making the

traditional cache management approach less effective. To

overcome these limitations, a novel on-chip cache procedure

is proposed, which takes into account the unique access

characteristics of both CPUs and GPUs.7,10

Research Objective:

The primary objective of this research is to develop an on-

chip cache procedure and device that effectively handles CPU

and GPU access requests by incorporating classification

caching and arbitration mechanisms. The research aims to

optimize CPU access time through cache while ensuring

efficient memory operations for GPU requests. The

procedure is designed to achieve high performance,

simplicity in hardware implementation, and minimal cost.

The proposed procedure involves classifying access requests

based on the originating CPU or GPU, arbitrating different

types of access requests for caching, and optimizing CPU

access request time through cache. For CPU requests, data is

read from or written to cache, whereas GPU requests bypass

the cache and directly access external memory storage, except

for cache hits during write operations. The device consists of

CPU and GPU request queues, a moderator for access

arbitration, and cache performance elements as shown in

below table.

Aspect CPU GPU

Purpose
General-purpose

processing

Parallel processing

for graphics and

compute-intensive

tasks

Architecture

Fewer cores,

optimized for

sequential tasks

More cores,

optimized for

parallel tasks

Clock Speed
High clock speeds

(GHz range)

Moderate clock

speeds (GHz range)

Instruction Set

Complex

instruction set

architecture (CISC)

Reduced instruction

set architecture

(RISC)

Cache Larger cache sizes Smaller cache sizes

Memory Access
Lower memory

bandwidth

Higher memory

bandwidth

Floating-Point

Precision

Support for higher

precision (e.g., 64-

bit floating point)

Support for lower

precision (e.g., 32-

bit floating point)

Power

Consumption

Lower power

consumption

Higher power

consumption

Cost
Generally more

affordable

Generally more

expensive

Use Cases

General computing

tasks, multitasking,

single-threaded

applications

Graphics rendering,

video encoding,

machine learning,

gaming, parallel

computing

Research

The research aims to provide a procedure and device that can

effectively share the on-chip cache between CPUs and GPUs,

considering their different access characteristics, while

achieving high performance, simplicity in hardware

implementation, and low cost. The technical solution

proposed in this research involves the following steps:

Classification Caching:

The access requests from the CPU and GPU are classified and

categorized according to their respective sources.

Arbitration of Different Types of Access Requests:

The different types of access requests are arbitrated to

determine which requests will enter the cache pipeline. This

arbitration process considers the priority state value,

representing the priority level for different caching

classifications. If the priority state value indicates a

preference for the CPU, an access request from the CPU is

selected as the winner and allowed to enter the pipeline.

Similarly, if the priority state value indicates a preference for

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

Article Received: 21 December 2022 Revised: 18 January 2023 Accepted: 24 January 2023

 212
IJRITCC | February 2023, Available @ http://www.ijritcc.org

the GPU, an access request from the GPU is chosen as the

winner and enters the pipeline.

Handling Access Requests:

The request type of each access request entering the pipeline

is checked, and the corresponding actions are performed

based on the type.

3.1) CPU Access Request:

If the request type is from the CPU, further actions are taken

based on whether it is a read or write operation.

For a read operation, the cache is checked to determine if the

requested data is already present (cache hit). If the data is

found in the cache, it is directly returned to the CPU core. If

the data is not in the cache (cache miss), it is fetched from the

external memory storage, cached in the cache, and then

returned to the CPU core.

For a write operation, the cache is checked for a cache hit. If

the data to be written replaces existing data in the cache, the

new data is written, and an order is sent to cancel or update

private data backup in the CPU core. If it is a cache miss, the

data is written into a newly assigned cache block address

based on the cache's writing distribution principle.

3.2) GPU Access Request:

If the request type is from the GPU, similar actions are

performed for read and write operations as in the CPU access

request.

For a read operation, the cache is checked for a cache hit. If

the data is present, it is directly returned to the GPU. If it is a

cache miss, the requested data is fetched from the external

memory storage and directly returned to the GPU without

being written into the cache.

For a write operation, the cache is checked for a cache hit. If

the data to be written replaces existing data in the cache, the

new data is written, and an order is sent to cancel or update

private data backup in the CPU core. If it is a cache miss, the

data is written to the external memory storage without being

written into the cache.

Classification of Access Requests:

The procedure begins by classifying the access requests from

the CPU and GPU based on their respective memory access

features. The access requests are categorized into different

types.

Arbitration of Caching Access Requests:

The different types of access requests for caching are

arbitrated to determine which requests will enter the

streamline. This arbitration process considers factors such as

priority and characteristics of CPU and GPU access. The

access request that wins the arbitration enters the streamline

for further processing.

Streamline Execution:

When executing the access requests in the streamline, the

procedure distinguishes between CPU and GPU access

requests and performs the corresponding actions.

3.1) CPU Access Request:

For an access request from the CPU, the procedure performs

the access request using the on-chip cache. The read-write

data of the access request are processed through the cache. If

it is a read operation, the procedure checks if the data is

already present in the cache (cache hit) and returns it to the

CPU core. If it is a write operation, the procedure determines

if the data replaces existing data in the cache and sends a

notification to cancel or update private data backup in the

CPU core.

3.2) GPU Access Request:

For an access request from the GPU, the procedure handles

the access request differently. The read-write data reading or

writing external memory storage are bypassed and directly

performed without going through the cache. If it is a read

operation, the procedure checks if the data is in the cache

(cache hit) and returns it directly to the GPU. If it is a write

operation, the procedure determines if the data replaces

existing data in the cache and sends a notification to cancel or

update private data backup in the CPU core.

Optimization for CPU and GPU Access Characteristics:

The procedure optimizes the process based on the memory

access features of the CPU and GPU. For CPU programs,

which exhibit higher data locality, the procedure improves

program performance by accessing data that enters the cache

during streamline execution. On the other hand, for GPU

programs, which have poor data locality and exhibit a

streaming behavior, the procedure avoids accessing data

through the cache, reducing the impact on CPU programs.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

Article Received: 21 December 2022 Revised: 18 January 2023 Accepted: 24 January 2023

 213
IJRITCC | February 2023, Available @ http://www.ijritcc.org

Advantages of the Procedure:

The procedure offers several advantages:

It simultaneously considers the different access

characteristics of CPUs and GPUs, allowing for high

performance.

It introduces cache sharing without significant changes to the

existing processor structure, resulting in a simple hardware

configuration and low cost.

It provides flexibility in selecting different resolving

strategies based on the memory access features of CPUs and

GPUs, improving system agility and responsiveness.

Corresponding Device for CPU and GPU Cache Sharing:

The procedure corresponds to a device that enables CPU and

GPU cache sharing. The device shares the same technical

effects as the procedure, optimizing CPU and GPU access

and improving system performance. The details of the device

are not repeated here.

In summary, the research proposes a procedure and device for

sharing on-chip cache between CPUs and GPUs. The

procedure classifies and arbitrates different types of access

requests, while the device facilitates cache sharing. The

approach optimizes CPU and GPU access characteristics and

offers advantages such as high performance, simplicity in

hardware implementation, and flexibility in resolving

strategies.

Conclusion:

The presented on-chip cache procedure and device offer a

practical and efficient solution for managing access requests

from both CPUs and GPUs in modern computing systems.

One of the key advantages of this procedure is its ability to

consider and optimize for the distinct access characteristics

exhibited by CPUs and GPUs.

The procedure begins by classifying the access requests from

CPUs and GPUs based on their respective memory access

features. By categorizing the requests into different types, the

procedure can effectively handle and prioritize the access

requests during the caching process.

The next step is the arbitration of caching access requests.

The procedure determines which types of access requests will

enter the streamline based on factors such as priority and the

specific characteristics of CPU and GPU access. This

arbitration process ensures that the most relevant and

important access requests are given priority, enhancing the

overall efficiency of the system.

During the streamline execution, the procedure differentiates

between CPU and GPU access requests and performs the

corresponding actions accordingly. For CPU access requests,

the procedure leverages the on-chip cache to process the read-

write data. By utilizing the cache, the procedure significantly

improves the program's performance by accessing data that

has been stored in the cache, thus reducing the latency

associated with external memory access.

On the other hand, for GPU access requests, the procedure

takes a different approach. It bypasses the cache and directly

performs the read-write operations on the external memory

storage. This strategy is based on the observation that GPU

programs typically exhibit a streaming behavior and have

poor data locality. By avoiding the cache and directly

accessing the external memory, the procedure minimizes the

impact on CPU programs, enhancing overall system

performance.

The presented on-chip cache procedure and device provide a

practical solution for efficiently managing CPU and GPU

access requests in modern computing systems. By

considering the distinct access characteristics of CPUs and

GPUs, the proposed procedure achieves high performance,

simple hardware implementation, and cost-effectiveness.

References:

1. Ashraf, M., Huang, C., Raza, K. A., Huang, S., Yin, Y.,

& Wu, D. F. (2022). Dynamic cooperative cache

management scheme based on social and popular data

in vehicular named data network. Wireless

Communications and Mobile Computing, 2022.

2. Similarity caching: Theory and algorithms, M Garetto,

E Leonardi, G Neglia 2020 - ieeexplore.ieee.org

3. Joint cache placement, flight trajectory, and

transmission power optimization for multi-UAV

assisted wireless networks, J Ji, K Zhu, D Niyato, R

Wang 2020 - ieeexplore.ieee.org

4. An open privacy-preserving and scalable protocol for a

network-neutrality compliant caching, D Andreoletti, C

Rottondi, S Giordano 2019 - ieeexplore.ieee.org

5. A decomposition framework for optimal edge-cache

leasing, J Krolikowski, A Giovanidis 2018 -

ieeexplore.ieee.org

6. Caching policy toward maximal success probability and

area spectral efficiency of cache-enabled HetNets, D

Liu, C Yang - IEEE Transactions on Communications,

2017 - ieeexplore.ieee.org

7. Scalable cache management for ISP-operated content

delivery services, D Tuncer, V Sourlas, M

Charalambides, 2016 - ieeexplore.ieee.org

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

Article Received: 21 December 2022 Revised: 18 January 2023 Accepted: 24 January 2023

 214
IJRITCC | February 2023, Available @ http://www.ijritcc.org

8. Icarus: a caching simulator for information centric

networking (icn), L Saino, I Psaras, G Pavlou -

SimuTools, 2014 - discovery.ucl.ac.uk

9. Caching at the edge: A green perspective for 5G

networks, B Perabathini, E Baştuğ, M Kountouri 2015 -

ieeexplore.ieee.org

10. A methodology for the design of self-optimizing,

decentralized content-caching strategies, K Kvaternik, J

Llorca, D Kilper… - IEEE/ACM Transactions …, 2015

- ieeexplore.ieee.org

11. Popularity-driven coordinated caching in named data

networking, J Li, H Wu, B Liu, J Lu, Y Wang, X Wang

2012 - dl.acm.org

http://www.ijritcc.org/

