
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

Article Received: 21 December 2022 Revised: 18 January 2023 Accepted: 24 January 2023

 206
IJRITCC | February 2023, Available @ http://www.ijritcc.org

Stream Applications: A Consistent Active

Management Approach for Multi-Core Cache

R.Kennady1, O.Pandithurai2

1Department of Artificial Intelligence and Data Science, Rajalakshmi Institute of Technology, Chennai, Tamilnadu

2Department of Computer Science and Engineering, Rajalakshmi Institute of Technology, Chennai, Tamilnadu

1kennady.r@ritchennai.edu.in , 2pandics@ritchennai.edu.in

Abstract:

This paper proposes a novel method for managing cache consistency in multi-core systems when executing stream applications.

The method involves arranging a mark cache for private data caches, which includes an optional integrality descriptor for shared

reading and writing data states and shared data manipulation positions. The integrality descriptor identifies the current mode of

operation for shared data in the private data cache. Additionally, the method utilizes a two-dimensional array register, referred to as

the shared data manipulation position, with width N and depth M, where N distinguishes between different cache blocks and locking

territories, while M corresponds to the number of cache blocks. This enables the identification of the cache capable or block

corresponding to shared data during read and write operations. The proposed method offers simplicity, ease of operation, low

hardware implementation cost, good extensibility, and strong configurability, ultimately improving system effectiveness.

Keywords: Cache consistency, Multi-core systems, Stream applications, Mark cache, Integrality descriptor, Shared data

manipulation, System effectiveness.

Introduction:

With the proliferation of multi-core systems, efficient

management of cache consistency has become crucial,

particularly when executing stream applications. Stream

applications often involve shared data access, which can lead

to inconsistencies and synchronization issues across multiple

cores. This paper presents a new method for active cache

management, specifically designed to address these

challenges. The method leverages a mark cache for private

data caches and employs an integrality descriptor and shared

data manipulation positions to facilitate efficient cache

consistency management. The following sections will delve

into the background, research objective, and detailed

methodology of the proposed approach.

Background:

Along with the development of computer applications, a

typical class of data-intensive applications called stream

applications has become a crucial workload for multicore

processors. Stream applications can be categorized into two

main types: media applications, such as radio communication

and image processing, which require real-time digital signal

processing for audio, video, and encoding/decoding; and

scientific algorithms, primarily used in high-precision

science modeling, including fields like fluid mechanics,

molecular dynamics, finite element analysis, and

biotechnology. These stream applications exhibit high data

parallelism, computational intensity, and data locality

characteristics.1,2

Compared to traditional desktop applications, stream

applications perform intensive arithmetic operations on each

piece of data retrieved from internal memory. Most

computations in stream applications can be parallelized at the

data, thread, and task levels. However, the data access locality

in stream applications is typically limited to adjacent or

spanning access of long data blocks, resulting in low data

reuse for producers. In multicore processors, multiple stages

of intensive data computing in stream applications are

decomposed and executed on different processor cores to

fully utilize the resources of chip multi-core systems and

achieve higher application performance.

Current commercial multi-core microprocessors mostly

integrate multiple identical and powerful processor cores,

such as the IBM Power7 with 8 processor cores, the Sun

UltraSparcT2 chip with 8 monokernels, or the Intel

ManyIntegratedCore (MIC) KNF coprocessor embedded

with 32 monokernels. These multicore processors feature a

basic structure (as shown in Figure 1) where the chip

http://www.ijritcc.org/
mailto:1pandics@ritchennai.edu.in
mailto:1pandics@ritchennai.edu.in
mailto:2shiva.s@ritchennai.edu.in
mailto:pandics@ritchennai.edu.in

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

Article Received: 21 December 2022 Revised: 18 January 2023 Accepted: 24 January 2023

 207
IJRITCC | February 2023, Available @ http://www.ijritcc.org

integrates N single-core processors, each equipped with

private data caches at different levels, including privately

owned level one data caches or privately owned level one and

two data caches (referred to as shared caches). The shared

caches are shared among the cores through internuclear

interconnections or three-level caches, aiming to improve

temporal locality and reduce average memory access

latency.3,4,5

To ensure cache coherence in multicore processors, hardware

typically adopts two implementation methods: bus

monitoring-based protocols or directory-based protocols.

Monitoring protocols distribute the responsibility of

maintaining cache coherence among the private data caches

of each core. When a write operation is completed on the

private data cache of one core, it must broadcast a notification

to all private data caches of other cores. Each core's private

data cache should be able to monitor broadcasts from other

cores and respond accordingly. However, monitoring

protocols have some drawbacks: the increasing cost of

internuclear broadcasting with the growth of processor cores,

the excessive snooping transactions on each core's private

data cache, and the cancellation of cache benefits due to

excessive broadcast requests. On the other hand, directory

protocols maintain a shadow directory structure on the shared

cache, recording the status information and update modes of

each core's private data cache.5,6 When a private data cache

of one core generates an access request, the shadow directory

checks the request and sends the necessary operations to the

relevant cores' private data caches, invalidating the

corresponding data transcriptions. While directory protocols

reduce the blind broadcast requests, they suffer from

increased hardware complexity as the processor check figure

and cache memory capacity increase, leading to inefficiencies

in algorithm implementation and scalability challenges.9,10

In conventional cache coherence schemes with software

administration, hardware requires programmable setting of

lock synchronization registers by the program. When a core

needs to read a shared data area, the programmer first reads

the lock on this region, and memory access can proceed upon

successful lock acquisition. Hardware then rejects write lock

requests from the same core to maintain data consistency.

Similarly, when a core intends to write to a shared data area,

the programmer adds a write lock after checking if the region

is already locked for reading or writing. If locked, the core

waits for the lock to be released and successfully acquires it

before starting the write operation, rejecting locking requests

from other cores until completion. When releasing a write

lock, all other cores must be notified through a broadcast, and

respective private data caches must invalidate the copies of

the data region, ensuring data consistency.11 However, the

extensive broadcast requests for consistency maintenance in

conventional architectures present several problems:

increased intercore communication bandwidth usage,

resource waste due to unnecessary broadcast requests,

additional time delays introduced by broadcast cancellation,

and prolonged processing time for handling cancellation

requests in private data caches. These challenges require

special address computation structures, larger buffer

structures, and private communication control modules,

resulting in complex cache controllers and increased area and

power consumption overheads.

Cache consistency is a well-known challenge in multi-core

systems, especially in the context of stream applications.

These applications typically exhibit data dependencies and

require synchronization among cores to ensure correct

execution. Existing cache coherence protocols have

limitations when it comes to stream applications due to the

dynamic nature of data access patterns. Therefore, novel

approaches are needed to enhance cache consistency

management and improve system effectiveness.

Research Objective:

The objective of this research is to develop a multi-core cache

consistency active management method tailored for stream

applications. The method aims to provide a simple,

operationally efficient, and cost-effective solution for

maintaining cache coherence in a multi-core environment. By

utilizing a mark cache with integrality descriptors and shared

data manipulation positions, the proposed method intends to

enhance the overall system effectiveness, improve

performance, and address the challenges associated with

shared data access and synchronization. The proposed

method involves arranging a mark cache for private data

caches, which includes an optional integrality descriptor for

shared reading and writing data states and shared data

manipulation positions. The integrality descriptor enables the

identification of the current mode of operation for shared data

in the private data cache. Furthermore, a two-dimensional

array register, referred to as the shared data manipulation

position, is utilized, with width N and depth M. N is

employed to distinguish different cache blocks and locking

territories, while M corresponds to the number of cache

blocks. This facilitates the identification of the cache capable

or block corresponding to shared data during read and write

operations. The method ensures simplicity, ease of operation,

low hardware implementation cost, extensibility, and

configurability, thereby contributing to improved system

effectiveness.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

Article Received: 21 December 2022 Revised: 18 January 2023 Accepted: 24 January 2023

 208
IJRITCC | February 2023, Available @ http://www.ijritcc.org

Research:

The research focuses on addressing the challenges associated

with cache coherence in multicore processors. The proposed

solution is based on a programmable lock synchronization

control register and introduces two special unlock commands:

the read lock solution and the write lock solution instructions.

When accessing the shared data address space, there are two

types of memory access behaviors: read-only access and

write access. Read lock is required for read-only access, and

write lock is necessary for write access. Non-read lock can be

added when writing lock is present, and only a single write

lock can exist.

The read lock or write lock instructions are atomic operations

performed on the lock synchronization control register,

completed by normal access instructions. Once the lock

operation is completed, data read or write access can

commence. To terminate the shared data access, the solution

read lock or solution write lock instructions are used.

Simultaneously, the private data caches inspect the unlock

commands to determine the validity of the shared data

manipulation position. If it is valid, it is marked as invalid,

and the corresponding cache performs the necessary

operations, such as writing back dirty rows or clearing the

significance bit.

The advantages of the research are as follows:

• The proposed active management method reduces

the time required for maintaining cache coherence

and allows for accurate calculations. By adopting

the immediate cancellation strategy under the read-

only mark release, the time for canceling read-only

operations can be significantly shortened. (Table-1

Block Information)

Physical

Address
Process ID Significant bit

Block Address n 0/1

Block Address n-1 1/2

Table-1 Block Information

• The research eliminates the need for broadcast

strategies, reducing the pressure on internuclear

communication. By not broadcasting the cache

coherence requests within the internuclear network,

the increasingly complex internuclear

communication and placement-and-routing pressure

are alleviated.

• Irrelevant cores no longer need to receive cache

coherence requests, eliminating delays and

interruptions caused by consistency request

transactions from other cores, thereby improving

system efficiency.

• The research reduces the complexity of

programming. The controllable and predictable time

delays help reduce uncertainty during programming,

thus improving system availability.

• The hardware implementation of the research is

cost-effective. By eliminating the need for special

internuclear broadcast channels, cache inner region

judgments, address comparisons, and cancellation

request calculations, the hardware requirements are

significantly reduced.

• The research offers good extensibility and

configurability. As the number of cores increases,

the method exhibits good scalability without the

need for additional hardware. The configuration

options include buffering of coherence requests,

arrangement of coherence registers and figures,

content of shared data manipulation bit registers and

integrity descriptor registers, and the organizational

form of cache-based coherence operations.

The present research aims to address the issues caused by the

Cache coherence protocol used in current multi-core

processors, which result in high hardware costs and delays in

data consistency transactions, affecting the performance of

applications. To overcome these problems, a new active

management method for Cache coherence is proposed,

specifically designed to meet the data locality characteristics

of streaming applications and better adapt to the Cache

consistency needs of producers and consumers.

In this method, each individual core's private data Cache in

the multi-core processor manages its own shared data

independently, without the need for broadcasting requests.

This significantly reduces the hardware and communication

overhead required to maintain Cache coherence, resulting in

decreased delays in data consistency transactions.

Additionally, this approach accelerates streaming

computations and is well-suited for the development of multi-

core processors.

The method involves organizing the storage structure of the

current multi-core processor, specifically improving the

configuration of the private data Cache for each core. The

schematic diagram of a concrete Cache structure after

applying this method is shown in Figure 4. The method

utilizes an optional integrity descriptor that assigns a mark

Cache to the shared data, indicating the state of reading and

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

Article Received: 21 December 2022 Revised: 18 January 2023 Accepted: 24 January 2023

 209
IJRITCC | February 2023, Available @ http://www.ijritcc.org

writing operations on the data. The integrity descriptor helps

identify the overall operation mode of shared data in the

private data Cache. The method also introduces a shared data

manipulation position, which is a two-dimensional array

register with a width of N and a depth of M. N is used to

differentiate between different blocks or regions that can be

locked in this Cache, and M represents the number of blocks

or regions in the Cache. The shared data manipulation

position helps identify which Cache is responsible for reading

and writing operations on the shared data.

In simpler terms, the research improves how the individual

parts of a multi-core processor manage their own data. By

making each core responsible for its own shared data and

avoiding unnecessary communication, it reduces costs and

delays in keeping the data consistent. This approach is

particularly useful for streaming applications and can speed

up computations. The method can be easily applied to

different multi-core processors and supports their future

development.

Overall, this research provides a solution to enhance cache

coherence in multicore processors by introducing a

programmable lock synchronization control register and

optimizing coherence operations, leading to improved system

performance, reduced communication overhead, and

simplified programming complexity.

Conclusion:

In this paper, we have presented a multi-core cache

consistency active management method specifically designed

for stream applications. By employing a mark cache with

integrality descriptors and shared data manipulation

positions, the proposed method enhances cache coherence

and synchronization among cores, thereby improving overall

system effectiveness. The method offers simplicity,

operational efficiency, low hardware implementation cost,

and configurability, making it suitable for various multi-core

systems. Future research can explore further optimizations

and evaluate the performance benefits of the proposed

approach in real-world scenarios.

References:

1. Ashraf, M., Huang, C., Raza, K. A., Huang, S., Yin,

Y., & Wu, D. F. (2022). Dynamic cooperative cache

management scheme based on social and popular

data in vehicular named data network. Wireless

Communications and Mobile Computing, 2022.

2. Similarity caching: Theory and algorithms, M

Garetto, E Leonardi, G Neglia 2020 -

ieeexplore.ieee.org

3. Joint cache placement, flight trajectory, and

transmission power optimization for multi-UAV

assisted wireless networks, J Ji, K Zhu, D Niyato, R

Wang 2020 - ieeexplore.ieee.org

4. An open privacy-preserving and scalable protocol

for a network-neutrality compliant caching, D

Andreoletti, C Rottondi, S Giordano 2019 -

ieeexplore.ieee.org

5. A decomposition framework for optimal edge-cache

leasing, J Krolikowski, A Giovanidis 2018 -

ieeexplore.ieee.org

6. Caching policy toward maximal success probability

and area spectral efficiency of cache-enabled

HetNets, D Liu, C Yang - IEEE Transactions on

Communications, 2017 - ieeexplore.ieee.org

7. Scalable cache management for ISP-operated

content delivery services, D Tuncer, V Sourlas, M

Charalambides, 2016 - ieeexplore.ieee.org

8. Icarus: a caching simulator for information centric

networking (icn), L Saino, I Psaras, G Pavlou -

SimuTools, 2014 - discovery.ucl.ac.uk

9. Caching at the edge: A green perspective for 5G

networks, B Perabathini, E Baştuğ, M Kountouri

2015 - ieeexplore.ieee.org

10. A methodology for the design of self-optimizing,

decentralized content-caching strategies, K

Kvaternik, J Llorca, D Kilper… - IEEE/ACM

Transactions …, 2015 - ieeexplore.ieee.org

11. Popularity-driven coordinated caching in named

data networking, J Li, H Wu, B Liu, J Lu, Y Wang,

X Wang 2012 - dl.acm.org

http://www.ijritcc.org/

