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Abstract: 

 In a finite vector space V (n,q), where V is n-dimensional over a finite field with q elements, a collection P 

of subspaces is called a vector space partition. The property of this set P is that any vector that is not zero may 

be found in exactly one element of P. Partitions of vector spaces have strong ties to design theory, error-

correcting algorithms, and finite projective planes.  

The first portion of my talk will focus on the mathematical fields that share common ground with vector space 

partitions. The rest of the lecture will go over some of the most well-known results on vector space partition 

classification. Heden and Lehmann's result on vector space partitions and maximal partial spreads, as well as 

El-Zanati et al.'s recent findings on the types found in spaces V(n, 2) for n = 8 or less, the Beutelspacher and 

Heden theorem on T-partitions, and their newly established condition for the existence of a vector space 

partition will all be covered. Furthermore, I will demonstrate Heden's theorem about the tail length of a vector 

space split. Finally, I shall provide some historical notes. 

Keywords: Vector spaces, Finite fields, Projective planes, subparts spreads, T-Partitions. 

1. Introduction: 

We will primarily focus on vector spaces that have 

a limited number of dimensions and are defined 

over finite fields. Additionally, we will examine 

collections of subspaces that span the whole vector 

space and only cross at the zero vector. When n is 

the size of V and q is the number of components in 

the scalar field, a configuration in the space of 

vectors "V = V(n, q)" is defined as a vector space 

partition P consisting of subspaces. 

𝑈, 𝑈′ ∈ 𝑃 ⟹ 𝑈 ∩ 𝑈′ = {0̅} 

And                                                     𝑉 = ⋃𝑈∈𝑃 𝑈. 

First, let us provide two significant instances of 

vector space partitions that are not trivial. 

For Instance-1: 

Consider the equation 𝑞 = 𝑝𝑘, where q is “any 

power of a prime number p. Let's define the finite 

field "F" as 𝐺𝐹(𝑞4), which may be seen as a 4-

dimensional vector space "V" over the finite field 

𝐺𝐹(𝑞). Let 𝛼1, 𝛼2, 𝛼3, … … . 𝛼𝐾 be an array of coset 

representations of the multiplicative group of a 

subfield 𝐺𝐹(𝑞2) in the multiplicative group of F,” 

where k is defined as (|𝐹| − 1)/(|𝐺𝐹(𝑞2) − 1|. 

The subsequent set of subspaces inside V. 
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𝑃 =  { 𝛼1𝐺𝐹(𝑞2) , 𝛼2𝐺𝐹(𝑞2) , . . . , 𝛼𝐾𝐺𝐹(𝑞2 ) } 

will form a partition of V which is a vector space. 

The subsequent establishment of “a vector space” 

separation is credited to Dekker [9] and distinctly 

“Beutelspacher” [4]. 

For Instance-2: 

Take into consideration “the finite field 𝐺𝐹(𝑞𝑘)  as 

a vector space W over 𝐺𝐹 (𝑞) and let U be a 

subspace of W.” We create a subspace Uα of the 

space "V = W × U" by using the formula "Uα = 

{(αu, u) | u ∈ U}" for every instance of "α ∈ GF 

(𝑞𝑘)". 

The following setP ofsubspaces toV  

 “𝑃 =  { 𝑈𝛼 | 𝛼 ∈  𝐺𝐹(𝑞𝑘) }  ∪  { 𝑊 × {0̅} }”  

will make up a division of V in vector space. One 

way to describe a partition P in a vector space is as 

a subtype 

[𝑑1
𝑛1𝑑2

𝑛2 … … 𝑑𝑡
𝑛𝑡], 

“if P consists of 𝑛1 spaces of dimension 𝑑1, 𝑛2 

spaces of dimension 𝑑2, etc., where 𝑑1 ,𝑑2, 𝑑3, … 𝑑𝑡 

are t distinct non-negative integers. So, the 

partition in Example 1 is of type [2𝑞2 + 1] and the 

partition in Example 2 is, in case 𝑑𝑖𝑚(𝑊) ≠

 𝑑𝑖𝑚(𝑈), 𝑜𝑓 𝑡𝑦𝑝𝑒 [dim (𝑊)1 𝑑𝑖𝑚(𝑈)|𝑊| ]. ” 

Discussing the many kinds of vector space 

partitions that are feasible may seem to be a simple 

undertaking. However, if you use finite vector 

spaces with a dimension of eight “over a finite field 

that contains two elements,” you will encounter 

significant difficulties. This specific case is the 

"first" open case that has been opened. The 

problem of the various “types of vector space 

partitions was investigated in the 1970s and 1980s 

by Bu [9], Beutelspacher [4], and Heden [22]. 

Additionally, during this millennium, El-Zanati, 

Seelinger, Sissokho, Spence, and Vanden Eynden 

made numerous contributions to the study of this 

problem, as evidenced by the publication [15], as 

well as by Heden and Lehmann [29]. This article's 

primary objective is to provide a comprehensive 

analysis of the most current findings, in addition to 

the findings from the 1970s and 1980s, concerning 

the topic at hand. In the first few parts, we will 

briefly explore the relationship “between vector 

space partitions and projective planes and the 

relationship to error-correcting codes.” This 

provides a reason for studying “vector space 

partitions,” which we will investigate. The last 

section will include historical notes on vector space 

partition difficulties and group partition problems. 

These remarks will be included in the preceding 

section. 

2. Projective planes and partitions in vector 

space 

A projective plane is a mathematical structure that 

is made up of lines and points. It is defined by a set 

of criteria that these lines and points must meet.  

1. The intersection of any two lines occurs at 

a single, distinct location. 

2. Every pair of points lies on exactly one line. 

3. There are four points such that each point is 

only connected to at most two lines. 

The counting reasons demonstrate “that the number 

of points will be equivalent to the number of lines, 

namely the integer 𝑞2 + 𝑞 + 1. The number q will 

be referred to as the plane's order. From every 

given point, there are precisely q + 1 lines passing 

through it, and each line has exactly q + 1 points.” 

By removing a single line, known as the "line at 

infinity," along with its corresponding points, we 

may derive an affine plane from any projective 

plane. The remaining elements will be composed of 

parallel sets of lines. On the other hand, there is 

only one line for every pair of remaining points, 

and each point is included in exactly one member 

of each concurrent class. However, by including a 

line at infinity, we may connect any projective 
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plane to any affine plane. In this line, the various 

dots stand for the various parallel classes. 

In this paper, we will describe a technique for 

building predictive planes utilizing vector space 

partitioning that was proposed by Dekker [10]. 

Consider a 4-dimensional vector space, denoted as 

"V = V(4, q)", over a finite field with q elements. 

Consider a vector space partition, denoted as P, of 

V that only consists of 2-dimensional subspaces of 

V: 

The set P is defined as {U1, U2, ..., Ut}, where the 

dimension of each Ui is 2, for “i = 1, 2, ..., t = q2 + 

1.” 

(Up until now, we have only explored the basic 

division of every “2-dimensional space into 1-

dimensional spaces.”) 

An affine plane is initially generated by this 

division. Four distinct vectors from V will make up 

the points. In the partition, the lines will represent 

the cosets of the spaces. In other words, each line 

Li,α may be expressed as α + Ui, where α is an 

element of GF(q4). 

Duplications may arise, and “each element Ui of 

the vector space partition forms a parallel class 

including q4 / q2 = q2 lines, since separate cosets 

of subgroups are disjoint and together include the 

whole space. To demonstrate the existence of a 

single line passing through any two points and in 

the affine plane GF(q4 ), it suffices to locate Ui 

such that  Ui P".” 

The equation "Li,β = β + Ui" includes both the point 

"β + 0 = β" and the point "β + (α − β) = α." A 

similar procedure is used to confirm the other 

properties of an affine plane. Just as we 

demonstrated before, by including a line at infinity 

to this algebraic plane, we can now build a 

projective plane. 

To get projective planes with different properties, 

we use the Drekkere[1] architecture in conjunction 

with different vector space partitions. A 

Desarguesian projective plane may be obtained by 

following the vector space partition described in 

Example 1. Nevertheless, obtaining “a Non-

Desarguessian projective plane” by the use of 

similar vector space partitions is a rather simple 

task. 

A partition of the “vector space” "V (4, q)" into 

mutually disjoint lines, denoted as a spread or line 

spread, is referred to as a vector space partition of 

the kind "[2q2+1]". The spread consists of a family 

of lines that cover “all points in the projective space 

PG(3, q) of dimension 3.” 

It is important to note that not every projective 

plane can be obtained in this manner. For instance, 

Dembowski's canonical work [11] provides 

examples of projective planes that cannot be 

discovered using this approach. 

3. Maximum subpart spreads 

Determining the existence of a projective plane of 

order q that is not a power of a prime is a very 

complex and significant issue, but it is undeniably 

intriguing. There is no existence of projective 

planes with orders 6, 10, and 14, as well as for a 

subsequent endless series of integers. To be more 

exact, the Bruck-Ryser-Chowla theorem [6] 

provides the sole known global limitation on the 

order of the projective plane. It states that if the 

order n is equivalent to 1 or 2 modulo 4, it must be 

the result of adding two perfect squares. For 

example, the number 14 cannot be expressed as the 

sum of two squares. The first unresolved instance 

is when q equals 12. 

In order to create such a plane, we may begin by 

establishing a set of parallel lines that are organized 

into distinct groups, resulting in what is known as 

a partial net. Every point on the plane must be part 

of one line in each set of parallel sets for a net to be 
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considered valid. A partial net is formed when all 

lines in a collection of identical line families are 

removed from an affine plane. 

Bruck [5] proved in 1963 that there is a limit N(n) 

such that an algebraic plane of order n may be 

formed by augmenting a partial net with more 

concurrent classes than N(n).. To be more specific, 

consider the function  

"𝑝(𝑥) =
1

2
𝑥4 + 𝑥3 + 𝑥2 +

3

2
𝑥, " 

 and let "𝑑 =  𝑛 −  1 −  𝑡, " “where t is the 

number of parallel classes in a partial net.” If the 

inequality "𝑝(𝑑 −  1)  <  𝑛" is true, it is possible 

to extend the partial net to form an affine plane. In 

simpler terms, if you are able to discover “9 

mutually orthogonal latin squares of order 12, then 

you may add another 2 to form a set of 11 mutually 

orthogonal latin squares of order 12. This 

collection is large enough to represent a projective 

plane of order 12.” 

The logical extension of these cases to the field of 

vector space partition problems is to study how 

parallel classes of lines formed from two-

dimensional subspaces inside a four-dimensional 

vector space emerge. 

A maximum “partial spread is a set S of 2-

dimensional subspaces of 𝑉 =  𝑉(4, 𝑞) such that 

every 2-dimensional subspace of V intersects with 

at least one member of S in a non-trivial way.” 

The first person to look at maximal partial spreads 

was Mesner [37]. He gave his students apparently 

random instructions in 1967 to choose two-

dimensional zones with non-overlapping areas. His 

kids could always find a method to expand the lines 

they had previously identified to make a whole 

layout if they found more than a certain limit. 

“Maximal partial spreads have been extensively 

investigated by many writers, including Mesner 

[37], Bruen [7], Bruen and Thas [8], Heden [24], 

Blokhuis [6], Heden, Pambianco, Marcugino, and 

Faina [28], Blokhuis and Metsch [3], Ebert [13], 

Beutelspacher [4], G´acs and Sz¨onyi [18]. The 

most well recognized upper limit for a maximum 

partial spread is established by Blokhuis [3]”: For 

any maximum “partial spread S in 𝑉 (4, 𝑝), where 

p is a prime” integer,  

"|𝑆| ≤ 𝑝2 −
𝑝 + 1

2
. " 

“Bruen and Thas, Beutelspacher Ebert, and several 

other scholars have created maximal partial 

spreads” with sizes "𝑞2 − 𝑞 + 1" and "𝑞2 − 𝑞 + 2" 

Bruen and Thas [8] have conjectured that "𝑞2 −

𝑞 + 2" is the maximum size for a non-trivial 

maximal partial spread in 𝑉(4, 𝑞). Nevertheless, 

Heden [25] demonstrated in 2000 that this claim is 

incorrect. He used “a computer search to discover 

a greatest partial spread of size 45 in 𝑉 (4, 7). Now, 

we examine the architecture in Example 2 under a 

very specific but significant scenario.” 

For Instance-3:  

The direct product 𝑊 ×  𝑈 refers to the 

combination of two sets, where W represents “the 

finite field GF(32)" and is considered “a vector 

space over GF(2).” The subspace U will have a size 

of 3 in the vector space W. “By using the 

construction of Bu, as seen in Example 2, we get a 

vector space partition of the form 

[33251]𝑜𝑓 𝑉(8 ,2)” Next, we proceed to divide the 

subspace W, which has a dimension of 5, into a 

subspace with a size of 3 and the other subspaces 

with a dimension of 1 each. Thus, we have a 

partition of the form [124333]. The spread will 

consist of three elements and have a size of 33 in 

the 𝑉 (8, 2) space. 

If the hypothesis proposed by “Eisfeld and Storme, 

as well as by Hong and Patel” [31], is shown to be 

accurate, then it would imply that the partial 3-

spread in 𝑉 (8, 2) is of the maximum conceivable 

magnitude. “Recently, El-Zanati et al [15] 
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discovered a vector space partition of the 

form[117334]” by a computer search. The 

significance of this vector space split will be 

relevant in the subsequent discussion. 

The aforementioned example substantiates the 

arduousness of identifying all possible vector space 

divisions. It is worth noting that there has been 

significant research on maximum partial t-spreads 

in 𝑉 (𝑛, 𝑞). The research has received contributions 

from Beutelspacher [4] in 1980 and from Govaerts 

and Storme [19] throughout this millennium. 

4. Flawless codes and vector space partitions 

A direct product of sets contains a subset C that 

is an ideal e-error correcting code. 

"𝐶 ⊆  𝐴1  × 𝐴 2 × . . .×  𝐴𝑡" 

where each “word x in this direct product varies 

in at most e coordinate points from a unique word 

in C. The study of error correcting codes,” 

including both perfect and non-perfect codes, is a 

well-established field that emerged in the late 

1940s amid the advancement of computers. 

However, it has significant relevance, particularly 

in the context of information transmission. 

In 1972, Herzog and Schönheim [30] discovered 

“that vector space partitions might be used to 

create flawless 1-error correcting codes. Consider 

a vector space partition” denoted as 

"P = { U1, U2, . . . , Ut }" 

 of the vector space "𝑉 =  𝑉 (𝑛, 𝑞). " The map ϕ, 

defined as 

“ϕ: U1 × U2 × . . . × Ut       →  V,” 

where  

                                       (u1, u2, . . . , ut) → u1 

+ u2 + . . . + ut . 

“The kernel of this map, i.e.” 

ker(𝜑) = {(𝑢1, 𝑢2, 𝑢3, … . . , 𝑢𝑡)|𝑢1 + 𝑢2

+ ⋯ . +𝑢𝑡| = 0} 

 is “a perfect 1-error correcting code.” If the 

spaces in the vector space partition P have 

different sizes or dimensions, the codes are 

referred to as “mixed perfect codes.” 

For those who are well-versed in the traditional 

Hamming code, the above structure could seem 

like an expansion of the famous Hamming code 

as the H-matrix kernel.  For instance, consider 

𝐻 = (
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

) 

From the vector space division that includes the 

subspaces of V (3, 2), the space containing the 

null of this matrix, the Hamming code, may be 

obtained in the following way: 

𝑃 =  { 𝑈1 =  {(0, 0, 0), (0, 0, 1)} , 𝑈2 

=  {(0, 0, 0), (0, 1, 0)} , . . . , 𝑈7 

=  {(0, 0, 0), (1, 1, 1)} } 

“All perfect codes that are built in this manner will, 

in fact, be linear codes, which are vector spaces 

over the field GF(q).” Last but not least, Herzog 

and Sch¨onheim [30] made the observation that any 

“linear perfect 1-error correcting code comes from 

a vector space partition,” as was explained before. 

5. Addressing the classifications of “vector 

space partitions” 

As previously stated, and maybe inferred “from 

Example 3 above, determining all potential forms 

of vector space partitions is a challenging 

endeavour.” It encompasses both the discovery of 

novel structures and the establishment of essential 

prerequisites for the existence of a certain category. 

Thus yet, no comprehensive set of circumstances 

that are both required and sufficient has been 

discovered. 
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5.1.Essential prerequisites: 

In this section, we will consistently assume that if 

a vector space partition is of the form 

𝑑1
𝑛1𝑑2

𝑛2 … … . . 𝑑𝑘
𝑛𝑘 then the values of d1, d2, ..., dk 

are in ascending order. 

 In order for “a vector space partition of type” 

𝑑1
𝑛1𝑑2

𝑛2 … … . . 𝑑𝑘
𝑛𝑘 to exist in "𝑉 =  𝑉 (𝑛, 𝑞)", the 

following packing condition must be true: every 

vector is included in only one space of the partition. 

𝑛1(𝑞 𝑑1  −  1)  +  𝑛2(𝑞 𝑑2  −  1) + . . . + 𝑛𝑘(𝑞 𝑑𝑘

−  1)  = 𝑞𝑛 −  1 

“For any two members U and W of a vector space 

partition” "𝑃 𝑜𝑓 𝑉 =  𝑉 (𝑛, 𝑞)", it is established 

that the dimension of the span of the union of U and 

W is equal to the sum of the dimensions of U and 

W. This observation was initially made by Bu [9]. 

Therefore, for any i and j: 

 “𝑑𝑖  +  𝑑𝑗  ≤  𝑛 . ” 

This criterion shall hereafter be referred to as the 

dimension condition. Example 2 demonstrates the 

possibility of achieving equality. 

Kurz [35] noted that the packing criterion implies 

that,  

𝑞𝑛 − 1 

𝑞𝑑𝑘 − 1
≤ ∑ 𝑛𝑖

𝑘

𝑖=1

= |𝑃|  ≤
𝑞𝑛 − 1 

𝑞𝑑𝑘 − 1
    

A constraint “for the number of spaces in a vector 

space partitioning was improved by Heden and 

Lehmann [29]. This bound states that if we are not 

in the situation of Example 2 of Section 1, then”  

"|𝑃|  ≥  𝑞𝑑𝑘  + 𝑞𝑑𝑘−1  +  1. " 

We relied on the idea of the second packing 

condition, which indicates that a vector space 

partition PH is obtained by intersecting all the 

spaces of a vector space partition P with a 

hyperplane H. It will be more convenient to use the 

following notation to represent the second packing 

condition:  

A "(𝑚𝑘 , 𝑚𝑘−1, . . . , 𝑚2, 𝑚1)" −partition is 

equivalent to a "[1𝑚1  2 𝑚2 . . . 𝑘𝑚𝑘  ]" −partition, 

with the allowance of zero values for “some of the 

non-negative integer exponents.” 

“A hyperplane H is classified as type b = (bk, . .. . , 

b2, b1) if it includes bi of the subspaces of 

dimension i of P. Let sb be the quantity of 

hyperplanes classified as type b.”  

Heden and Lehmann [26] developed the second 

packing condition, which is 

𝑠𝑏 ≠ 0 ⟹    ∑ 𝑏𝑑𝑞𝑑 = ∑ 𝑚𝑑 − 1.

𝑘

𝑑=1

𝑘

𝑑=1

 

“Let B be the set of all possible solutions that 

satisfy the diophantine equation mentioned above.” 

Heden and Lehmann [29] demonstrated the 

following required requirements by considering 

incidents in a way that accounts for them twice:  

For all 1 ≤  𝑑, 𝑑′ ≤  𝑛 −  2, 

∑ 𝑏𝑑𝑆𝑏

𝑏∈𝐵

= 𝑚𝑑        … … … … … … … … (1) 

∑ (
𝑏𝑑

2
)

𝑏∈𝐵

𝑠𝑏 =  (
𝑚𝑑

2
) … … … … … … … . . (2) 

∑ 𝑏𝑑𝑏𝑑′𝑠𝑏 = 𝑚𝑑𝑚𝑑′   

𝑏∈𝐵

… … … … … … … . (3) 

Heden and Lehmann [29] developed the following 

by using the hyperplane criteria, which are 

essential requirements. Denote the function "V" as 

"V(2t, q)" and suppose that "V" is divided into parts 

of the form "(mt, ..., m1)", where "mt" is equal to 

"qt + 1 - a." Let "d is less than t," such that "md is 

greater than 0." 

𝑚𝑑 <
𝑞𝑡 − 1

𝑞𝑡−𝑑 − 1
  … … … … . (4) 

http://www.ijritcc.org/
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Hence,  

"𝑎 ≥ 𝑚𝑑 − 𝑅𝑞(𝑡, 𝑑, 𝑚𝑑)      … … … … … … … (5)" 

Whence,  

 

𝑅𝑞(𝑡, 𝑑, 𝑚) = 𝑚(𝑚

− 1)

1
2

(𝑞2𝑡−2𝑑 − 1) + 1 − 𝑞𝑡−𝑑

𝑞𝑡 − 1 − 𝑚 (𝑞𝑡−𝑑 − 1)
 

Now, we will assess this constraint in a specific 

scenario. We regard the expression as "𝑉 (2𝑡, 𝑞)." 

In Example 1 of Section 1, we can readily identify 

a spread that comprises "qt + 1" spaces with a size 

of t. Subsequently, we may replace a certain 

quantity “of these spaces by partitions of vector 

spaces,” which are composed of spaces of smaller 

dimensions. If the condition "𝑡/2 <  𝑑 <  𝑡" is 

satisfied, it is not possible to “get a vector space 

partition with more than a subspace of size d. 

Heden and Lehmann [29]” investigated the 

possibility of obtaining more than d-dimensional 

spaces, while still having qt + 1 − a spaces of 

dimension t. However, these t-dimensional spaces 

would be different from the ones in a full spread. 

Nevertheless, they proved that this situation is 

impossible to achieve if there is a finite number of 

spaces of dimension d. More specifically: 

Assume that d is equal to the product of t and k, 

and that md is the number of spaces of d 

dimensions. If  

𝑚𝑑 ≤ √2𝑞(𝑡−2𝑘)/2 

Hence,  

"𝑎 ≥ 𝑚𝑑" 

To conclude this part, we will now address the tail's 

length. The set of spaces with the shortest 

conceivable dimension is called the tail of a vector 

space partition. You may measure the tail's 

magnitude by measuring its length. As we'll see in 

a bit, Example 3's vector space division has a tail 

magnitude of 17. Following Section 4's description, 

Heden [27] used the relationship with perfect codes 

to determine the following limits on the length of a 

vector space partition's tail. For any vector space 

partition of the form 𝑑1
𝑛1 , 𝑑2

𝑛2 , … . 𝑑𝑘
𝑛𝑘, 

(i) If the expression "qd2−d1 does not divide 

n1 and if d2 < 2d1," then the expression 

"n1 ≥ qd1 + 1" is true.  

(ii) If the expression "qd2−d1 does not divide 

n1 and d2 ≥ 2d1, then either d1 divides 

d2 and n1 = (qd2 − 1)/(qd1 − 1) or n1 > 

2qd2−d1" holds true. 

(iii) If the quotient of dividing n1 by "qd2−d1" 

is a whole number and "d2" is less than 

twice "d1", then "n1" is greater than or 

equal to "qd2 − qd1 + qd2−d1".  

(iv) iv) If the expression "qd2−d1" divides n1 

and "d2 ≥ 2d1," then the statement "n1 

≥ q d2" is true. 

 

5.2.T-partitions 

A vector space partition refers to the division of a 

vector space into non-overlapping subsets, where 

each subset contains vectors that have certain 

properties or characteristics. A set P is considered 

a T-partition if 

“𝑇 =  { 𝑑𝑖𝑚(𝑊) | 𝑊 ∈  𝑃}” 

The objective is to determine the necessary 

conditions for “a given set T of positive integers to 

ensure the existence of a T-partition.” It is usually 

assumed that the set "T" consists of elements "t1, t2, 

..., tk" wherein "t1" is less than "t2" and so on. 

For the scenario when "t1 = 1, it is straightforward 

to identify a T-partition for any space V = V (n, q) 

where tk+tk−1 ≤ n. When we treat V as a direct 

product of W and U, where d2 = dim(W) = tk and 

d1 = dim(U) = n − dim(W),we get a partition of 
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type 𝑑1
𝑞𝑑2

𝑑2
1 by using the framework of Example 2 

of a vector space partition from the previous 

sentence.” Now, we divide each of the "k - 1" 

subspaces with dimension d1 into one subspace 

with “dimension ti and the remaining subspaces 

with dimension 1. It is observed that the inequality 

k ≤ d2 implies that k < qd2, so this particular T-

partition will occur.” 

For t1 to be higher than or equal to 2, the situation 

becomes non-trivial. The idea of T-partition was 

first out by Beutelspacher [4] in 1978. He made a 

discovery related to the Frobenius number about 

the existence of T-partitions.  

Consider a set "A" consisting of positive integers, 

denoted as {a1, a2, . . . , ak }. “Assume that the 

greatest common divisor of these numbers is 1. The 

Frobenius number g(A) is defined as the largest 

integer n that cannot be expressed as a linear 

combination” of the numbers in set A, using non-

negative coefficients. Kontorovich [34] 

demonstrated that the inequality 

𝑔(𝐴) ≤ 2𝑎1 ⌊
𝑎𝑘

𝑘
⌋ − 𝑎1 holds, 

where "𝑎1" represents the lowest integer and 

𝑎𝑘" represents the biggest integer in set A. 

Based on the aforementioned result from Selmer, 

Beutelspacher [4] demonstrated the following. 

Let's examine the vector space denoted as "𝑉 =

 𝑉 (𝑛, 𝑞). " For 

𝑛 > 2𝑡1 ⌊
𝑡𝑘

𝑑.𝑡𝑘
⌋ + 𝑡2 + ⋯ + 𝑡𝑘 , 

A set “V has a T-partition if and only if the greatest 

common divisor of the elements in T” divides the 

number n. 

It is important to note that if 𝑉 (𝑛, 𝑞) can be divided 

into T parts, then the greatest common divisor of T 

must divide n.  

In addition, Beutelspacher [4] demonstrated the 

following theorem for T-partitions, specifically 

when t1 is equal to 2. 

 Subsequently, Heden [22] established the 

conclusion in its entirety. The space V (2t, q) is 

capable of accommodating a partition with the 

formula “T = {t1 < t2 < . . . < tk = t}. 

 T = {t1 < t2 < . . . < tk = t}.” 

5.3.“An enumeration of the several vector 

space partitions in V (n, 2), where n is less 

than or equal to 7.” 

The “enumeration was conducted by El-Zanati et 

al in [14],” although Heden [23] had previously 

eliminated the study of almost all instances. 

Through a” computer search focused on a specific 

vector space partition, it was shown that the 

packing requirement, dimension condition, and 

tail condition are both necessary and sufficient in 

the situation of "𝑉 (𝑛 ≤  7, 2). " For example, 

when n is less than or equal to 5,” we get the 

preceding enumeration: 

𝒏 𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒕 𝒕𝒚𝒑𝒆𝒔 𝒐𝒇 𝒗𝒆𝒄𝒕𝒐𝒓 𝒔𝒑𝒂𝒄𝒆 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝒔 𝒊𝒏 𝑽(𝒏, 𝟐) 

1 [11],        

2 [13],        

 [21],        

3 [17], [1421],       

 [31],        

4 [115], [11221], [1922], [1623], [1324],    

 [25],        

 [1831],        
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 [41],        

5 [131], [12821], [12223], [11924], [11625], [11326], [11027], [1729], 

 [12431] 1212131], [1182231], [1152331], [1122431], [192531], [162631], [132731], 

 [11641],        

 [51].        

 

In their work, Heden, El-Zanati, and colleagues 

[16] examined the case when n = 8, q = 2, and 

spaces with dimensions of at least 2 constituted the 

vector space partitions. Except for one case, all of 

the packing conditions, size requirements, and tail 

conditions were determined to be necessary and 

sufficient in this situation. With these three 

conditions met, the existence of a vector space 

partition of type [2636413] was the only remaining 

option. Nevertheless, the hyperplane criteria, 

which were developed for this very situation, might 

rule out this possibility. It is also possible to infer 

from Heden and Lehmann's theorem [29] that there 

is no such vector space split. 

5.4. Do any circumstances exist that are both 

essential and adequate? 

By presenting instances, Heden and Lehmann [29] 

shown that the "packing, dimension, tail, and 

hyperplane" conditions—the four prerequisites for 

a vector space partition—are not enough to ensure 

its existence. In this example, we provide the 

extraordinary and uncommon instances where we 

know all the types, according to the size and 

dimensions of the scalar field.  

It can be shown using basic reasoning that "qd - 1" 

is a divisor of "qn - 1" when q is a prime power, if 

and only if d is a divisor of n. Therefore, according 

to the initial packing requirement, “a vector space 

partition of type [d m] can only exist in V (n, q) if 

d is a divisor of n.” This is likewise satisfactory, 

since it ensures that "GF(qn )" has a subfield "GF(qd 

)". By using the same method as shown in Example 

1, we can easily establish a partition of the vector 

space of type "[dm]", where "𝑚 =  (𝑞𝑛  −  1)/

(𝑞𝑑  −  1). " 

Problem complexity increases, however, even 

when limiting consideration to two independent 

degrees in the vector space division, as we go 

beyond the previously stated simple case. As seen 

in instance-3, the scenario "[1𝑛1  𝑑𝑛2  ]" remains 

little explored. Heden [26] demonstrated the 

following in his thesis: The conditions of packing, 

dimension, and  

"𝑑𝑖𝑚(𝑈𝑖)  ≥  𝑐, 𝑓𝑜𝑟 𝑖 ≤  𝑞, "  

are both “necessary and sufficient for the 

existence of a vector space partition” 

"𝑈1, 𝑈2, . . . , 𝑈𝑘" 𝑜𝑓 "𝑉 (𝑛, 𝑞), " given that 

"dim(Uq+1) = dim(Uq+2) = . . . = dim(Uk) = c." 

An extension of Lindström's theorem [31], this 

theorem establishes that all subspaces with the 

exception of one have dimension "c". 

6. A few historical observations 

George Abram Miller [38] was the first researcher 

to study these kind of difficulties. In an academic 

paper published in 1906, he proved that if 

subgroups can be formed from an abelian group 

G, then every element of G must have a certain 

numerical value, the order, which is a "prime 

number p." The concept behind the proof is 

straightforward. Let's consider two elements, hi 

and hj, in a group G. Assume that hi has an order 

of p and hj has an order of q, where p is a prime 

number. Additionally, hi and hj belong to separate 

“subgroups, Hi and Hj,” respectively, in “the 

partition of G.” Furthermore, the equation "hi + 

hj = hk" belongs to a distinct group called Hk 
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inside the partition. The total of hk, repeated p 

times, may be expressed as 

"p · hk = (hi + hj ) + (hi + hj ) + . . . + (hi + hj ) 

= p · hj ." 

This total is zero since it is part of both Hk and Hj. 

Miller found a way to partition a set containing p2 

items into subsets with p elements each. 

Twenty years after finishing his master's thesis 

with Miller as his advisor, Rieffel [37] 

investigated the subgrouping of infinite groups. A 

Russian researcher named Kontorovich studied 

and published results on G-partitions with the 

"unique property: G = HK = KH for any two 

members H and K in the partition" in 1939 and 

1940. 

Here is a simple example of a partition within a 

non-abelian group. Here is one way to divide up 

the set S3: 

“S3 = {id., (1 2)} ∪ {id., (1 3)} ∪ {id., (2 3)} ∪ 

{id., (1 2 3), (1 3 2)}.” 

 The primary goal of research by Reinhold Baer, 

his pupil Otto Kegel [33], and Michio Suzuki was 

to classify subgroups of non-abelian groups. 

Takahasi [40] provided a comprehensive 

overview of this quest for categorization in 2003. 

If one of the following requirements is satisfied 

by a group G, then and only then does G have a 

non-trivial partition in Zappa's view: 

1. “G is a p-group when the subgroup HP (G) is 

not equal to G and the order of G is greater than 

p. 

 2. G is a Frobenius group.  

3. G is a group of Hughes-Thompson type.  

4. G is isomorphic to PGL(2,ph), where p is an 

odd prime.  

5. G is isomorphic to PSL(2,ph), where p is a 

prime. 

 6. G is isomorphic to a Suzuki group G(q), where 

q = 2h and h is greater than 1.” 

 The Hughes subgroup, formed by G's 

components without a p-order, is denoted as 

Hp(G). This is an essential notation to keep in 

mind. With at least one non-trivial element fixing 

a point and every non-trivial element fixing 

precisely one point, a permutation group known 

as a Frobenius group functions transitively on a 

finite set. S3 exemplifies a Frobenius group. 
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