
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3267

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Model-Based Testing Approaches using UML

Diagrams: A Systematic Literature Review

1Jyoti Gautam Tiwari, 2 Ugrasen Suman
1Department of Computer Science and Engineering SGSITS, Indore, M.P., India

jyotitiwariscs@gmail.com
2Professor, School of Computer Science& IT Devi Ahilya University, Indore, M.P., India

ugrasen123@yahoo.com

ABSTRACT: Software Unit Testing (SUT) is the starting point for Model-Based Testing (MBT), a testing method. The Unified

Modeling Language (UML) has become the standard for modelling software in professional and academic settings. There are various

uses for the modelling language known as UML. The findings of an SLR on UML-based model-based testing methodologies are

presented in this paper. Thirty-five primary articles about six research issues were examined using selection and exclusion criteria.

Methods, model class, intermediate format use, and testing methodology are the primary points of examination. The review outcomes

identify future research needs and avenues of inquiry.

Keywords – Model-Based Testing, Unified Modeling Language, Systematic Literature Review.

INTRODUCTION

Software engineering applies engineering principles to

software creation, deployment, upkeep, and eventual retirement

[1]. Software testing aims to identify issues with a program by

running it. It is an essential part of the software industry and a

necessary step in software development. Test cases are created,

run, and evaluated as part of software testing’s primary focus

[2]. Among the many benefits of testing analysis and design

models is the opportunity to discover test cases earlier.

When necessities are being established, it is via early testing

that analysts and designers get a deeper comprehension of

requirements, finds better ways to communicate those needs,

and verify that the conditions they have defined are, in fact,

testable—saving time, money, and energy by finding defects

early on in the development process. Before a project, the test

cases are checked to ensure accuracy. There is always a

problem with the precision of test cases, particularly system test

cases [3]. Programmers, testers, and managers agree that the

analysis and design phase is crucial for choosing testing

approaches based on work principles, the link between design

and requirements, the frequency of specification change, and

conditions [4].

While object-oriented testing techniques are similar to

traditional testing, challenges arise due to specific aspects of

object-oriented programming that arise when actually putting

these techniques to the test [5, 6]. Software testers often use one

of three primary approaches: code-based testing, specification-

based testing, or model-based testing.

Software testing’s objective is to confirm that an application’s

features and functionalities meet the standards outlined in the

software requirement specification [7]. More than half of the

entire time spent on software development is devoted to testing,

one of the most critical aspects of the Software Development

Life Cycle SDLC [8]. When software systems grow in size and

complexity, test case design becomes one of the trickiest parts

of the testing [9]. Automatically generating test cases may

improve reliability and performance while decreasing

development costs [10].

In Model-Based Testing (MBT), test cases are produced in

whole or in part based on a model that defines certain (often

functional) features of the SUT. Tools for model-based

development include techniques like code generation and

simulation [11]. The steps involved in UML MBT are shown in

Fig. 1. From the Software Requirement Specification (SRS), a

model of the SUT is built.

The same holds true for writing the test report, which is based

on the criteria used to choose test cases that show flaws,

mistakes, and likely failures. If test selection criteria are applied

to the specification, the system model is then utilised to produce

the actual test cases. The SUT is used to run the tests, and the

results are analysed. Here rectangle box represent the artifacts

whereas rounded corner rectangle box represent the process.

The combination technique used by MBT to test the program

uses both the specification and the source code, making it more

effective and operational than code-based methodologies.

MBT’s primary areas of study are in ensuring that programs are

consistent with their underlying architectures and in validating

http://www.ijritcc.org/
about:blank
mailto:ugrasen123@yahoo.com

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3268

IJRITCC | September 2023, Available @ http://www.ijritcc.org

the accuracy of the models used to create such programmes.

Model-based testing tests the software using the model. The

typical MBT procedure begins with a model description,

continues with the definition of test requirements, and then

moves on to developing test cases grounded in the model,

followed by their execution, review, and eventual conclusion.

An imperfect kind of MBT, model-based mutation testing

guarantees that the generated test cases will discover a subset

of incorrect specification implementations. Since mutations can

be used as stand-ins for wrong requirements, the acronym

MBMT describes this process well.

Figure 1. Process of UML MBT

Models are used in Model-Based Testing (MBT) for the

purpose of automatically creating and running test cases [12].A

model is only a symbolic depiction of the ideal state that an

SUT should achieve. Several system representations may be

utilized with MBT to produce test cases for different facets of

the SUT. Existing models include the UML, Finite State

Machines (FSMs), Petri Nets, I/O automata, and Markov

Chains[17]. In recent years, MBT has seen an increase in the

usage of software models for the creation of test cases, either

manually or automatically [13].

The Object Management Group established UML 1997. UML

is a modeling language fused to create graphical representations

of software systems (UML). These models allow for assessing

and analysing potential designs, which can aid in achieving

design goals. From a UML model, test cases can be constructed

using a variety of methods. Recently, the testing community has

become increasingly interested in the use of UML diagrams for

the modeling of object-oriented software systems [14,15].

Despite their lack of clarity, UML diagrams include crucial

details for making test cases and give direction for the

automated development of test cases. This makes the process

of developing test cases in UML an integral and difficult aspect

of MBT [16].

The research on MBT is dispersed, with diverse studies

covering both the common and the variant techniques and the

recommendations and lessons gained.

The following questions are discussed in this paper:

1. What are the different methods used in UML MBT?

2. What UML models are used in different methods in the

primary study?

3. Is the intermediate form used in the primary study?

4. Which testing level is achieved in the primary study?

5. What are the coverage criteria used in the primary study?

6. Is the primary research include a case study?

In order to provide answers to the aforementioned questions,

SLR is conducted. Using a systematic review process, we

combed through 65 publications and determined that 35

represented high-quality primary research that addressed our

concerns. On the basis of this investigation, we present the

identified difficulties and explain the main trends and methods

in data extraction.

The format of this essay will be as follows. In the second

section, we present some context and relevant studies. Methods

for this inquiry are laid out in Part 3. In Part 4, we show the

SLR findings, including the problems and their remedies as

seen in the UML MBT; in Section 5, we debate these findings;

and in Section 6, we offer some last thoughts.

BACKGROUND AND RELATED WORK

At more abstract level of a system, graphs are used to represent

UML diagrams. The data must meet certain route constraints

during the way from the beginning to the ending node. You may

generate test cases from graphs by following these steps:

defining the requirements, constructing the graph, determining

the test requirements, and selecting pathways to cover the

requirements.

UML has a comprehensive library of diagrams and notations

that may be used in a wide variety of contexts. The meta-model

allows for the semantics of the diagrams to be interpreted in a

variety of ways by various UML tools. In order for MBT tools

to understand UML models, a subset of UML must be selected,

and its semantics clarified. Each MBT solution takes a

somewhat different tack by allowing for a unique collection of

diagram types and establishing a subset of those diagrams that

is guaranteed to be safe for usage in models. It’s important to

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3269

IJRITCC | September 2023, Available @ http://www.ijritcc.org

specify not just the static data portion of the model, but also its

dynamic behavior.

To create test cases from UML diagrams, Kunxiang Jin et al.

used SLR [19]. Test case generation using UML diagrams has

been found to have some difficulties, and solutions to these

problems have been presented. One of the important issues in

UML diagrams is state explosion due to loop transition or

events. By identifying loop transitions and events, model

slicing technique can be applied to divide the original diagram

into main diagram and sub-diagram. They provide a strategy

for optimizing test cases by prioritizing test cases. Several

methods failed to provide executable test cases because of the

unknown nature of the system as actually implemented.

Methods for transforming models may be utilized to address the

implementation issue.

Tanwir Ahmad et al. used UML activity diagrams to perform

SLR on MBT [23]. Researchers have called attention to the fact

that the majority of suggested methodologies need to be

thoroughly assessed before conclusions based only on the study

are made. The majority of the methods offered have been

designed for usage in a specific subset of the application

domain, and the non-functional needs of the SUT have yet to

be tested using UML ADs. Most studies only cover a small

portion of the MBT procedure, seldom explaining how the

offered methods fit into the overall development process.

RESEARCH METHOD

“A systematic literature review, also known as a systematic

review, is a type of secondary study that utilises a well-defined

methodology to identify, analyse, and compile all existing

studies related to a specific research question in a manner that

is objective and, to some extent, repeatable,” as defined by the

authors of one such review. While several MBT methods have

been presented, no one has yet made a concerted attempt to

compile a comprehensive review of the relevant literature.

Consequently, the literature on MBT’s efficacy, common

methodologies, methods, and learnt recommendations and

findings, are dispersed over several studies.

Research Questions

The following study questions were developed to help provide

light on the difficulties and possibilities inherent with UML

MBT.

RQ1: What are the Different Methods Used in UML MBT?

RQ2: What are the UML models are used in different

methods in the primary study?

RQ3: Is intermediate form is used in the primary study?

RQ4: Which testing level is achieved in the primary study?

RQ5: How was the primary research conducted?

RQ6: Is the primary study including a case study?

Data Sources

Many references are provided below. The following has been

selected for use in UML MBT.:

Data Retrieval

We have used the following Search string for UML MBTs :

((“Test case generation” OR “UML behavioural model test case

generation” OR “UML behavioural model testing,” OR “static

model testing,” OR “UML testing,” OR “test coverage

analysis,” OR “MBT”) AND (“model-based testing,” OR

“optimise test case generation using UML model” OR “Tsting

UMl model”)).

Studies Selection

The following requirements must be fulfilled for studies to be

deemed primary: they must be written in English, published

online between 2005 and 2020, mention UML MBT, and

expressly choose one of the UML models for test case creation

or optimization.

The search criteria have been adjusted to better suit the needs

of the investigation. Table 1 displays the outcome of applying

the search string and the results of the search.

Data Extraction

After reading 65 papers as primary study. Out of a total of 65

publications, 30 were thrown out because they either repeated

previous research or they didn’t use any of the test case creation

or optimisation tools that are part of the UML MBT.

Title, authors, publication year, case study, optimisation

approach, input model, research methodology, and results are

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3270

IJRITCC | September 2023, Available @ http://www.ijritcc.org

used to compile the data. Information was collected for 35

articles. The data extraction contains the no. of study,

publication year, Input model, Intermediate form, testing type

and case studies.

Threats to Validity

Despite our efforts, we can only explore some of the potential

data sources for UML MBT research in this paper. We have

included most of the phrases used to express UML MBT and

model-based Architecture since different databases use various

jargon. To limit the amount of unrelated research, the search

term is tweaked significantly to account for search engine

preferences. We have performed the search procedure for

identifying applicable studies in UML MBT in a methodical

and comprehensive manner. Time constraints and the ever-

increasing volume of research in this area mean that some

publications may have needed to be included.

RESULTS

Year-wise distribution of studies

Fig. 2 represents the year-wise distribution of the research

paper.

Figure 2: Frequency of publications per year

Input Model-wise distribution of studies

Fig. 3 displays the final model-level results of the literature

review. in this figure research parers are categories as input

model which shows that most of the researchers used activity

diagrams and sequence diagrams for the generation of test

cases.

Figure 3: Input model-wise results of the literature review

Research Approach wise distribution of studies

Fig. 4 displays the variation in methodology used by primary

research. The study of UML MBT is reflected in the rising

popularity of graph-based approaches (42%) as well as

heuristic-based techniques (32%).

Figure 4: Distribution of primary studies according to the

research approach

0

2

4

6

8

10

12

14

N
o

. o
f

re
se

ar
ch

 p
ap

er

Input Model

9%

43%
32%

15%

3%
Tree Based

Graph Based

Heuristic Based

Direct Specification
Based

Others

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3271

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Systems investigated

To address the study issues stated in the preceding parts, this

section presents the findings that were taken from a few

primary studies.

RQ1: What are the Different methods Used in UML MBT?

RQ1.1 Tree-Based methods

A linked acyclic graph is a tree. The tree’s nodes and

connections follow a specific order from the trunk to the leaves.

Create test cases from the input model using graph-theoretic

tree-based test case generation techniques. The tree-based

method first converts the input model into a tree as an

intermediate form before using a tree traversal technique to

generate test cases from it.

RQ1.2 Graph-Based methods

G = V, E defines a graph as an ordered pair. Each component

of this pair, V, represents a collection of nodes or vertices, and

E, a number of edges. When e = x on a directed graph, the

direction of the edge is from x to y. From a testing perspective,

looking for paths in a graph representation of the UML model

and testing data values that satisfy constraints along those

pathways is essential. Converting flowcharts into their

appropriate graph representations is an example of a graph-

based method. This includes the translation of activity diagrams

into activity diagram graphs and sequence diagrams into

sequence diagram graphs. We then utilize a specialized version

of depth-first search to generate test cases from each graph

(DFS). Afterwards, a system testing graph is derived by

combining information from the activity and sequence diagram

graphs. The system testing graph already contains the data

needed to build the test cases, so testing can be organized

around it.

 RQ1.3 Heuristic-Based methods

Common meta-heuristic approaches in UML modelling include

ant colony optimization and the genetic algorithm. The scale

and complexity of the SUT makes thorough testing impractical,

hence the employment of genetic algorithms in search

strategies is encouraging. An evolutionary algorithm, or genetic

algorithm, is modeled after the method of natural selection. The

genetic algorithm is often utilized to develop efficient

optimization solutions. Over and over, a genetic algorithm

improves a pool of applicants and the fitness function until it

meets the set of conditions for breadth of coverage [21].

Concurrency [S20] [S21] makes activity diagram-based test

case generation difficult. The fitness function creates full,

concurrent, and fully feasible pathways by utilising the active

node list and action script associated with each transition node.

RQ1.4 Direct UML Specification Processing

In direct UML specification processing method models are not

converted into an intermediate form such as graph and tree,

researcher directly generating test cases from any tool which

they implement.

Table 3: Review summary

Reference Approach Input Model Methodology
Intermediate

Forms
Testing Type

Case

Study

[S1] Tree Based Activity diagram

Condition

Classification tree

method

Condition

classification tree
System testing Yes

[S2] Tree Based Activity diagram Extenics Euler Circuit Euler path No

[S3] Tree Based
Communication

diagrams

Post-order

traversal

communication

diagram

Path Testing,

No Boundary

Coverage

[S4] Graph Based
Activity diagram,

sequence diagram
DFS algorithm

Activity graph,

sequence graph,

SYTG

Integration

testing
Yes

[S5] Graph Based Activity diagram
Business flow

control DFS
Activity graph System testing No

[S6] Graph Based Activity diagram DFS traversal
Intermediate

testable model
System testing Yes

[S7] Graph Based Activity diagram DFC, algorithm
Activity flow

graph
System testing Yes

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3272

IJRITCC | September 2023, Available @ http://www.ijritcc.org

[S8] Graph Based
Interaction

diagram

Slicing of

diagram
MDG

Integration

testing
No

[S9] Graph Based
Sequence

diagram
DFS

Labelled

transition diagram

Integration

testing
Yes

[S10] Graph Based
Sequence

diagram
TCG algorithm - Path coverage Yes

[S11] Graph Based
Sequence

diagram
DFS traversal

Structured control

graph
All paths No

[S12] Graph Based State Machine
Data Flow

Analysis
EAFG Path testing Yes

[S13] Graph Based
Collaboration

Diagram

Prism and

Dijktras

Algorithm

CWG
System

Testing
Yes

[S14] Graph Based
Sequence

Diagram
BFS DFS

Concurrent

Composite graph

Message

sequence path

testing

No

[S15] Graph Based
Sequence

Diagram
 SDT, SDG

System

Testing
Yes

[S16] Graph Based
Sequence

Diagram
SLT

SG, SLT
System

Testing
No Stimulus path

SLT stack

[S17] Graph Based Activity Diagram
Transformation

Based approach

UAD graph,

Concurrency Yes Extended AND-

OR tree

[S18] Graph Based

Sequence, State

Machine

Diagram

Coupling based,

Data flow testing

Control flow

Graph

Integration

Testing
Yes

[S19] Heuristic

State chart

diagram,

sequence diagram

Genetic algorithm SCG, SG, SYTG System testing Yes

[S20] Heuristic Activity diagram

Evolutionary

algorithm genetic

algo

ECFG Path Coverage No

[S21] Heuristic Activity diagram Genetic algorithm AFT, AFG System testing No

[S22] Heuristic Activity diagram
Hybrid genetic

algorithm

diagram of

control flow
Path testing Yes

[S23] Heuristic
State chart

diagram
Genetic algorithm

Graph of Control

and Its Expansion
- No

[S24] Heuristic Activity diagram

Orientation Based

Ant Colony

optimisation

 Path Testing No

[S25] Heuristic

Sequence

Diagram,

Machine

Diagram

XMI parser Integration

Testing
No

[S26] Heuristic
Sequence

Diagram

Genetic

Algorithm
 Prime Path

testing
No

[S27] Heuristic State Machine
Test Case

Generator
FTS Conformance No

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3273

IJRITCC | September 2023, Available @ http://www.ijritcc.org

[S28] Heuristic
Sequence

Diagram

Real time fault

driven stress

methodology

 Stress Yes

[S29] Heuristic
Sequence

Diagram

Conformance

checking

approach

Generate Sates,

transitions,

Simplify

System

Testing
Yes

[S30]
Direct UML

specification

Use Case,
TDD

AOAD, System

Testing
No

Activity Diagram Test sequence

[S31]
Direct UML

specification

Class, Use Case

& Activity

Diagram

Agent-based

regression
XMI format

Regression

testing
Yes

[S32]
Direct UML

specification
UML Model

Parsing token and

matching

mechanism

Pattern Class

Name
 Yes

[S33]
Direct UML

specification
State machine C# Atomic state System testing No

[S34]
Direct UML

specification
Class diagram OCL code - System testing Yes

[S35]
Direct UML

specification
State machine

Papyrus-RT

Modeling IDE
-

Concolic

testing
Yes

RQ2: What are the UML models are used in different methods in the primary study?

UML models may be broken down further into two types:

structural and behavioral. While structural models are rigid and

usually only address the high-level organization of SUT, most

researchers have turned to behavioral models to round out their

recommended strategy. 32 out of 35 primary study works on

behavioral models. It includes activity, sequence, interaction,

and state chart diagrams. Just three out of thirty-five main

works rely on the class diagram as their structural paradigm.

Due to the need for more specifics on model implementation,

behavioral models are often preferred by academia. [20].

RQ3: Is the intermediate form is used in the primary study?

The intermediate form is the stage in which a UML diagram is

connected to a graph or any other format used to generate the

final test case. Our study discovered 6 of 35 recommended

methods functioned without using any intermediate form

throughout the test case generation process. Control flow

graphs and sequence graphs are only two examples of the

medium formats that may be used to construct test cases. This

is especially the case for structural models, where the original

UML diagrams may not allow for easy extraction of test cases.

Since most intermediate formats are trees or graphs, most

approaches employ a tree-search-based algorithm, such as

breadth-first search or depth-first search, to walk the tree and

generate test cases.

RQ4: Which testing level is achieved in the primary study?

Unit testing, integration and system testing, system testing, and

acceptance testing are the four pillars of software testing.[1]. 13

out of 35 primary studies perform system-level testing; system

testing is to validate end-to-end system specifications that are

described in the software requirement specifications. Some

researchers perform integration testing, path testing, regression

testing and stress testing. 3 out of 35 primary studies do not

specify any testing type.

RQ5: What methodology was used in the primary study?

Most of the original research we investigated employed

networks as an intermediary form, and those studies created test

cases from the models provided using graph traversal

algorithms. 9 out of 35 works on graph traversal algorithm. Test

case generation and optimization using an ant colony algorithm

with an orientation-based strategy has been the focus of a

number of primary research studies, as have other approaches

like the genetic algorithm, the transition-based approach, the

condition classification method, and test driven development.

RQ6: Is the primary study including case study?

We found out that majority of researchers utilised case studies

to illustrate the output of their models. Researchers may

examine their results in further detail using a case study

technique, but only in relation to a certain place or topic.

Typically, a case study approach will take a small sample size

of data and demonstrate the outcome. In its truest form, case

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3274

IJRITCC | September 2023, Available @ http://www.ijritcc.org

studies examine and provide in-depth contextual analysis of a

select few circumstances or occurrences as well as the

connections between them. [22].

DISCUSSION

Due to the sheer amount of potential inputs and processes,

evaluating every single conceivable test case is impractical for

most applications. The most difficult part of testing software is

deciding on a collection of test cases to uncover all of the bugs

in the SUT. The basic objective of Model-Based Testing

(MBT) is to automate the production and running of test cases

generated from UML models. More test coverage, quicker

mistake detection, and a shorter minimum standard are the main

advantages of MBT. The test cases for MBT were developed

using a variety of different models. Here, we have zeroed in on

UML MBT’s test cases and testing procedure, focusing on how

they may be generated with the help of UML models.

UML models may be used to represent the system in a

straightforward manner with greater abstraction. We conducted

an SLR on UML MBT to investigate the existing approaches

and the unanswered questions in this study area. Out of the 65

publications we read, we found 35 that directly addressed our

study topics. Thus, we consider them to be primary studies.

Considering the varied research and the history of model-based

testing, we developed an intermediate type of model to

establish the level of model-based testing. Several conclusions

about model-based testing may be drawn from our research.

We have developed a foundational understanding of UML

MBT and its driving forces. Models are used to create test

cases, which can then be used to examine working software.

Since there is agreement on the general model-based testing

procedure, all of the methods detailed in the main paper can be

understood as instantiations of the reference process model.

The methodologies vary in how UML models are chosen, how

intermediate forms are generated, how test criteria are

described, how test cases are generated, what kind of testing is

performed, and what kind of case study is used. We have

provided a table-based presentation of these components.

In addition, we have recognised a number of challenges in

developing efficient test cases. The majority of academics have

seen graphs as the intermediate representation of UML

diagrams and have limited their attention to just path coverage

requirements. Most researchers use activity and sequence

diagrams as the input models. However, there is no framework

that can encompass all forms of UML diagrams, produce test

cases, and prioritise the test cases.

CONCLUSION

Testing real-world systems manually or exhaustively is

unrealistic due to the sheer amount of possible input

combinations and actions. Creating test cases that can identify

defects in the SUT is a massive obstacle. MBT testing is

initiated early in the product development process to cut down

on testing time. UML is now widely accepted as the gold

standard for software modelling in both the academic and

business worlds. This motivates the need for an SLR on UML-

based model-based testing strategies.

The results of our research show that the input model,

methodology, and intermediate form of UML MBT. We have

looked at a few methods for creating test cases, but there are

likely many more that may be derived from these. Research into

these methods might help UML MBT get the most possible

advantages. Researchers may find this study’s findings helpful

as a starting point for further research of UML MBT.

REFERENCES

[1] Aditya P. Mathur, ‘Foundations of Software Testing’ 2nd

Edition by Pearson, 2013.

[2] Dr. Leelevathi Rajamanicham, 2014 ‘Testing Tool for

Object Oriented Software’, International Journal of

Scientific Research and management.

[3] John D. Mcgregor, David A. Sykes 2001 ‘A practical

guide to testing object- oriented software’,3rd edition by

Addison-Wesley.

[4] Sanjeev Patwa, Anubha Jain 2016 ‘Effect of Analysis

and Design Phase factors on Testing of Object Oriented

Software’, IEEE.

[5] Namita Khurana, R. S. Chillar 2014 ‘Literature Review

of Test Case generation Techniques for Object Oriented

System’, International Journal of Computer Application,

vol. 105-no. 15.

[6] P.D. Ratna Raju, Suresh Cheekaty, Harishbabu Kalidasu

2011 ‘Object oriented Software Testing’, International

Journal of Computer Science and Information

Technology, Vol. 2.

[7] Daniel Maciel, Ana C.R. Paiva, and Alberto Rodrigues

Da Silva. 2019. ‘From requirements to automated

acceptance tests of interactive apps: An integrated

model-based testing approach’, ENASE 2019, pp.265–

272.

[8] Marvin V Zelkowitz, ‘Perspectives in software

engineering. ACM Computing Surveys’ CSUR 10, 2

1978, 197–216.

[9] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira,

and Guilherme H. Travassos, 2007 ‘A survey on model-

based testing approaches: A systematic review’, ASE. pp.

31–36.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3275

IJRITCC | September 2023, Available @ http://www.ijritcc.org

[10] Chunhui Wang, Fabrizio Pastore, Arda Goknil, Lionel

Briand, and Zohaib Iqbal, 2015 ‘Automatic generation of

system test cases from use case specifications’, ISSTA

2015, ACM Press, New York, New York, USA, Vol. 18.

pp.385–396.

[11] Harendra Singh, Mohammad Arif, MohdFayak,

Afsaruddin Khan, 2016 ‘A Survey on Object-Oriented

Software Testing’, International Journal of Computer

Science and Information Technology.

[12] V. Garousi, MikaV. Mäntylä, 2016 ‘When and what to

automate in software testing? A multi-vocal literature

review’, Inf. Software Technol. 76, pp.92–117.

[13] H. Muccini, A. Bertolino, P. Inverardi, 2003 Using

software architecture for code testing, IEEE Trans.

Software Eng. 29, pp.160–171.

[14] Md khalid Hussain, Dr.Krisna Prasad, 2016 ‘A Literature

Survey for Test Case Generation Using UML Model’,

International Journal of Computer Science Trends and

Technology IJCST, Vol- 4.

[15] Paramjit Kaur, Rupinder Kaur, 2013 ‘Approaches for

Generating Test Cases Automatically to Test the

Software’, International Journal of Engineering and

Advanced Technology.

[16] Aliya Hussain, Saurabh Tiwari, Jagadish Suryadevara,

and Eduard Enoiu, 2018 ‘From modeling to test case

generation in the industrial embedded system domain’,

Lecture Notes in Computer Science, pp. 499–505.

[17] Hartman, M. Katara, S. Olvovsky, 2006 ‘Choosing a test

modeling language: a survey’, doi:10.1007/978-3-540-

70889-6, vol.16.

[18] Paramjit Kaur, Rupinder Kaur, 2013 ‘Approaches for

Generating Test Cases Automatically to Test the

Software’, International Journal of Engineering and

Advanced Technology.

[19] Kunxiang Jin, Kevin Lan, 2021 ‘Generation of Test

Cases from UML Diagrams - A Systematic Literature

Review’, SEC 2021.

[20] Woo Yeol Kim, Hyun Seung Son, and Robert Young

Chul Kim, 2011 ‘A study on test case generation based

on state diagram in modeling and simulation

environment’, CCIS.

[21] Mahesh Shirole, Rajeev Kumar, 2013 ‘UML

Behavioural Model Based Test Case Generation: A

Survey’, ACM SIGSOFT, vol. 38, no.4.

[22] Zaidah Zainal 2007 ‘Case study as a research method’,

Journal Kemanusiaan bil.9.

[23] Tanwir Ahmad, Junaid Iqbal, Adnan Ashraf, Dragos

Truscan, Ivan Porres, 2019’ Model-based testing using

UML activity diagrams: A systematic mapping study’,

Computer Science Review, Vol. 33.

[S1] Supaporn Kansomkeat, Jeff Offutt, 2010 ‘Generating

Test Cases from UML Activity Diagram using the

Condition-Classification Tree Method’, IEEE, 2nd

International Conference on Software Technology and

Engineering, Vol.1, pp.62-66.

[S2] Liping Li, Xingsen Li, Tao He, JieXiong, 2013’

Extenics-based Test Case Generation for UML Activity

Diagram’, ELSEVIER, Procedia Computer Science, oi:

10.1016/j.procs.2013.05.151, pp.1186-1193.

[S3] Philip Samuel, Rajib Mall, Pratyush Kanth 2007

‘Automatic test case generation from UML

communication diagrams’, Information and Software

Technology 49, doi:10.1016/j.infsof.2006.04.001,

Pp.158–171.

[S4] Meiliana, Irwandhi, Ricky, Daniel, 2017 ‘Automated

Test Case Generation from UML Activity Diagram and

Sequence Diagram using Depth First Search Algorithm’,

ELSEVIER, ICCSCI doi: 0.1016/j.procs.2017.10.029,

pp.629-637.

[S5] Walaithip, Suwatchai, Luepol, 2016 ‘Generating Test

Cases from UML Activity Diagram Based on Business

Flow Control’, ACM, ICNCC, DOI:

http://dx.doi.org/10.1145/3033288.3033311, pp.155-

160.

[S6] Nayak and D. samanta, 2011 ‘Synthesis of Test scenarios

using UML Activity Diagram’, Software and System

Modelling, vol. 10, DOI 10.1007/s10270-009-0133-4.

[S7] Ranjita K. Swain, Vikas Panthi, Prafulla K. Behera, 2013

‘Generation of Test Cases using Activity Diagram’,

International Journal of Computer Science and

Informatics, vol. 3, Issue-2.

[S8] Ranjita K. Swain, Vikas Panthi, Prafulla K. Behera, 2012

‘Test Case Design Using Slicing of UML Interaction

Diagram’, ELSEVIER, Procedia Technology.

[S9] Emanuela G. Cartaxo, Francisco G. O. Neto, D. L.

Machado, 2007 ‘Test Case Generation by means of UML

Sequence Diagrams and Labelled Transition System’,

IEEE, CNPq/Brazil Process 550466/2005-3.

[S10] Nabilah K. Bahrin, Radziah Mohamad, 2015 ‘TCG

Algorithm Approach for UML Sequence Diagram’,

Malaysian Software Engineering Conference, 978-1-

4673-8227-4/15/$31.00, pp.43-48.

[S11] Nayak and D. Samanta, 2010 ‘Automation Test Data

Synthesis using UML Sequence diagrams’, Journal of

Object Technology, Vol. 9, no. 2, pp. 75–104.

[S12] Lionel Briand1, Y. Labiche2 and Q. Lin2 2010

‘Improving the coverage criteria of UML state machines

using data flow analysis’, Software Testing, Verification

and Reliability Software, .

[S13] Syed Usman Ahmed, Sneha Anil Sahare, Alfia

Ahmed, 2012 ‘generate test cases from the input model’,

World Journal of Science and Technology, vol.1, pp.4-6.

[S14] Monalisha Khandai, Arup Abhinna Acharya, Durga

Prasad Mohapatra, 2011 ‘A Novel Approach of Test

Case Generation for Concurrent Systems Using UML

http://www.ijritcc.org/
https://www.sciencedirect.com/science/journal/15740137
https://www.sciencedirect.com/science/journal/15740137/33/supp/C
http://dx.doi.org/10.1145/3033288.3033311

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 3276

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Sequence Diagram’, 978-1-4244-8679-3/11/2011 IEEE,

pp.157-161.

[S15] S. Shanmuga Priya, P. D. Sheba Kezia Malarchelvi,

2013 ‘Test Path Generation Using UML Sequence

Diagram’, International Journal of Advanced Research in

Computer Science and Software Engineering, Vol. 3,

Issue 4, pp.1069-1076.

[S16] Mani P., Prasanna M., 2017’ Test Case Generation

for Embedded System Software Using Uml Interaction

Diagram’, Journal of Engineering Science and

Technology, Vol. 12, No. 4, pp.860-874.

[S17] Chang-ai Sun, Yan Zhao, Lin Pan, Xiao He, and Dave

Towey, 2014 ‘A Transformation-based Approach to

Testing Concurrent Programs using UML Activity

Diagrams’, Software—Practice and Experience Wiley

InterScience DOI: 10.1002/spe.

[S18] Lionel Briand, Yvan Labiche, and Yanhua Liu, 2012

‘Combining UML Sequence and State Machine

Diagrams for Data-Flow Based Integration Testing’, A.

Vallecillo et al. Eds.: ECMFA 2012, LNCS 7349, pp. 74–

89.

[S19] Namita Khurana, R. S. Chillar, 2015 ‘Teat case

Generation and Optimization using UML Models and

genetic Algorithm’, 3rd International Conference on

Recent Trends in Computing, doi:

10.1016/j.procs.2015.07.502, pp.996-1004.

[S20] Mahesh Shirole, Mounika Kommuri, Rajeev Kumar,

2012 ‘Transition Sequence Exploration of UML Activity

Diagram using Evolutionary Algorithm’, Proceedings of

ISEC, ACM 978-1-4503-1142-7/12/02, pp.97-100.

[S21] Ajay k Jena, Santosh K Swain, Durga P. Mohapatra,

2014 ‘A Novel Approach for Test Case Generation from

UML activity Diagram’ IEEE, ICICT, 978-1-4799-2900-

9/14, pp.621-629.

[S22] Xinying Wang, Xiajun Jiang, Huibin Shi, 2015

‘Prioritization of Test Scenarios using Hybrid Genetic

Algorithm Based on UML Activity Diagram’, IEEE

Software, pp.854-857.

[S23] Mahesh Shirole, Amit Suthar, Rajeev Kumar, 2011

‘Generation of Improved Test Cases from UML State

Diagram Using Genetic Algorithm’ ACM ISEC, ACM

978-1-4503-0559-4/11/02, pp.125-134.

[S24] Vinay Arora, Maninder Singha, Rajesh Bhatia, 2020

‘Orientation-based Ant colony algorithm for

synthesizing the test scenarios in UML activity diagram’,

Information and Software Technology,

https://doi.org/10.1016/j.infsof.2020.106292.

[S25] Dominykas Barisas, Eduardas Bareiša, and Šarūnas

Packevičius, 2013 ‘Automated Method for Software

Integration Testing Based on UML Behavioral Models’,

ICIST 2013, CCIS 403, pp. 272–284.

[S26] Bahare Hoseini, Saeed Jalili, 2014 ‘Automatic Test

Path Generation from Sequence Diagram Using Genetic

Algorithm’, 7th International Symposium on

Telecommunications, 978-1-4799-5359-2/14/$31.00

©2014 IEEE, pp.106-111.

[S27] Dirk Seifert, 2008 ‘Conformance Testing based on

UML State Machines: Automated Test Case Generation,

Execution and Evaluation’, Dirk Seifert. Conformance

Testing based on UML State Machines: Automated Test

Case Generation, Execution and Evaluation. Research

Report.

[S28] Vahid Garousi, 2009 ‘Fault-driven stress testing of

distributed real-time software based on UML models’,

Software Testing, Verification and Reliability Software,

Wiley Online Library, DOI: 10.1002/stvr.418, pp.101-

124.

[S29] João Pascoal Faria, Ana C.R. Paiva, and Mário

Ventura de Castro, 2013 ‘Techniques and Toolset for

Conformance Testing against UML Sequence

Diagrams’, IFIP International Federation for Information

Processing, ICTSS 2013, LNCS 8254, pp. 180–195.

[S30] Saurabh Tiwari, Atul Gupta, 2015 ‘An Approach of

Generating Test Requirements for Agile Software

Development’, ISEC’15,

http://dx.doi.org/10.1145/2723742.2723761, pp.186-

195.

[S31] Pradeep Kumar Arora, Rajesh Bhatia, 2017 ‘Agent-

Based Regression Test Case Generation Using Class

Diagram, Use Cases and Activity Diagram’, ICSCC,

Procedia Computer Science 125, pp.747–753.

[S32] Ashish Verma, Dr Maitrayee Dutta, 2014

‘Automated Test case generation using UML diagrams

based on behaviour’, international Journal of innovation

in Engineering and Technology, Vol. 4 Issue 1, pp. 31-

39.

[S33] Ricardo D. F. Ferreira, P. Faria, C. R. Paiva, 2010

‘Test Coverage Analysis of UML State Machines’, IEEE

3rd International Conference on Software Testing,

Verification, and Validation, DOI

10.1109/ICSTW.2010.60, pp.284-289.

[S34] Kalou Cabrera Castillos, Fr’ed’eric Dadeau, Jacques

Julliand, and Safouan Taha, 2011 ‘Measuring Test

Properties Coverage for Evaluating UML/OCL Model-

Based Tests’, IFIP International Federation for

Information Processing, pp. 32–47.

[S35] Reza Ahmadi, Karim Jahed, Juergen Dingel, 2019’

mCUTE: A Model-level Concolic Unit Testing Engine

for UML State Machines’, 34th IEEE/ACM International

Conference on Automated Software Engineering ASE,

DOI 10.1109/ASE.2019.00132, pp.1182-1185.

http://www.ijritcc.org/
https://doi.org/10.1016/j.infsof.2020.106292
http://dx.doi.org/10.1145/2723742.2723761

