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Abstract 

This paper addresses the growing complexity of forecasting in an era where data volumes are expected to reach 180 zettabytes by 2025. 

It aims to bridge the gap between the theoretical aspects of time series analysis and their practical applications in fields like finance, 

healthcare, and environmental studies. The research covers foundational concepts such as Autocorrelation and White Noise and spans 

various methodologies from traditional models like ARIMA to advanced techniques involving machine learning. Special attention is 

given to the challenges of applying these theories to real-world, often irregular or incomplete data. The paper also explores the 

integration of technologies like AI in forecasting, emphasizing the need for robust and interpretable models. Concluding with a call for 

greater academia-industry collaboration, it suggests new research directions for innovative, practical forecasting solutions in a data-

intensive world. 
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I. Introduction 

Nowadays, there's so much data growing fast in all different 

forms. It's super important to get useful insights and guesses 

from time series data. This kind of data is all about predicting 

the future from past data. It's really useful in many areas like 

finance, business, energy, health, and environment. It helps 

people make smart choices, figure out where to use resources, 

and manage risks. This leads to better efficiency, new ideas, 

and progress. But, it's tough to use the big ideas from time 

series forecasting in real-life situations where there's a ton of 

data. This paper tries to really dig into this problem by 

looking at important topics. By 2025, there's going to be a 

huge amount of data, like 180 zettabytes (that's a really big 

number!). This is both exciting and challenging for time 

series forecasting. Now, we have new kinds of data from 

places like social media, sensors, and IoT (Internet of Things) 

gadgets. This data is special, but often it's mixed up, missing 

pieces, or keeps changing, so it needs good cleaning and 

organizing. Old but gold methods like ARIMA and 

smoothing stuff are still liked because they're easy to 

understand and use. Newer methods like deep learning are 

really accurate but sometimes hard to get. Putting different 

models together can make things more accurate and less 

random. There are also new cool things like Bayesian stuff 

for dealing with uncertainty and machine learning that's easier 

to understand. When you have lots and lots of data, you need 

big models and tools. Things like Spark, which is a computer 

thing, are getting popular. Automated tools like Auto-TS and 

TPOT help pick the right model. Knowing a lot about the area 

you're studying is key to picking out important info. Playing 

with model settings and knowing when to stop can make them 

work better. There are real examples where this stuff has 

worked, like in predicting what people will buy, energy use, 

and stock prices. It's really important to have models that are 

strong and make sense. It's also key to understand 

complicated patterns in the data. Adding in causes and effects 

can make predictions better. Mixing what you know about  

the area with machine learning can lead to better and clearer 

forecasts. More teamwork between people in universities and 

businesses can help make these big ideas work in real life. 

Data is everywhere today. It is very important. Forecasting, 

or predicting the future, is now key in many areas. The paper 

"Time Series Forecasting: Bridging Theory and Practice in a 

Data-Intensive World" looks at this important topic. It studies 

time series data. This type of data is a series of data points in 

time order. It's very useful for making predictions. This paper 

has two main goals. The first goal is to explain the theory 

behind time series analysis. It looks closely at ideas like 

Autocorrelation and White Noise. These are basic parts of 

time series data. The paper also looks at different tools and 

methods used in this field. It covers simple techniques like 

Judgmental Forecasts and more complex ones like Time 

Series Regression Models. The second goal is about using 

these theories in real life. It's one thing to understand these 

models. It's another to use them well in real situations. The 

paper talks about how to apply methods like Time Series 

Decomposition, Exponential Smoothing, ARIMA models, 

and Dynamic Regression Models. It pays extra attention to 

forecasting when you have time series data that are linked or 

in groups. This is becoming more important as data gets more 
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complex. The paper also looks at new forecasting methods. 

These new methods can help solve harder forecasting 

problems.  

The paper also talks about real-life forecasting problems. 

These include issues like irregular data, big datasets, and 

changing data patterns. The introduction prepares us for a full 

talk on time series forecasting. It will cover both theory and 

real-world uses. It shows why this topic is important today. 

At the end, the paper looks at new trends and problems in 

forecasting. We need models that are strong and easy to 

understand. We should also think about cause and effect. The 

paper suggests new research areas. This includes creating new 

methods and using AI better. It says that academics and 

industries should work together. This will help make practical 

forecasting solutions faster. This whole approach is meant to 

help people who use forecasting. It gives them new ideas. 

This helps in many areas, like business and science. 

II. Literature Survey 

Autocorrelation is a tool used in time series data. It checks 

how similar data points are over time [2]. This helps in 

finding patterns and links in the data. There are methods like 

the Durbin-Watson statistics and the Ljung-Box test to 

measure this [2]. Granger introduced a concept called 

Granger causality [3]. It uses past data to predict future data. 

This shows how things are linked over time [3]. 

Autocorrelation is key for understanding and making models 

of time series data. It's used a lot in forecasting. White noise 

in time series data is like a bunch of random points that don't 

link up. It stays the same over time [4]. It's used to test other 

data against. Gardner talked a lot about smoothing techniques 

in time series data [4]. These techniques work well even with 

white noise. The Ljung-Box test, by Ljung and Box, checks 

if data has white noise or not [5]. White noise helps to see if 

a model's predictions are useful. There are many tools and 

techniques for forecasting. Hyndman and Athanasopoulos 

gave a lot of info on how to choose and use these tools [1]. 

They say it's important to look at different factors and pick 

the right one for your data. Makridakis and Hibon used the 

M3 test [7]. This test checks how well different methods 

predict at various times and with different data. Their work 

shows it's important to match the method to the data. 

Judgmental forecasts use expert opinions and data together 

[8]. Armstrong wrote about how combining these two can 

improve forecasts [8]. He gives tips on how to gather and use 

expert advice. Goodwin and Fildes talked about the role of 

human judgment in forecasting [9]. They discuss its problems 

and how to make it better. Time series regression models mix 

time series data with other factors to get more accurate 

predictions [10]. Montgomery et al. explained how to make 

and test these models [10]. Wei gave a complete guide on 

time-varying and multiple factor analysis, including 

regression models [11]. Decomposing time series data means 

breaking it into main parts [12]. This includes trend, seasonal, 

and error parts. Cleveland et al. used the LOESS (STL) 

method to separate these parts [12]. They showed how it 

works for complex data. Shumway and Stoffer gave a detailed 

review of these decomposition methods [13]. They said it 

makes it easier to understand and model the data [13]. 

There are different smoothing methods in time series, like 

simple, Holt, and Winters' methods. Gardner [14] examined 

them and discussed their advantages and disadvantages. He 

talked about how user-friendly they are and how they can be 

utilized with various kinds of data. Hyndman and Koehler 

[15] examined the precision of their forecasts. To verify this, 

they employed metrics such as mean square error (MSE) and 

mean error (MAE). Time series benefit from the use of 

ARIMA models. They handle seasonal variations and trends. 

A thorough description of these models was provided by Kutu 

et al. [16]. They described the prediction process of ARIMA 

models. Additionally, Brockwell and Davis [17] discussed 

ARIMA models. They described ways to recognize, 

anticipate, and evaluate these models. Dynamic regression 

models are a bit different. They change over time. This makes 

them good for situations where things keep changing. 

Montgomery et al. [18] explained how these models work. 

They talked about how these models can adjust over time. 

Hyndman and Athanasopoulos [1] also studied these models. 

They said these models are flexible for complex problems. 

Hierarchical forecasting deals with time series that are linked 

or in a hierarchy. Syntetos and Boylan [20] looked at how this 

works in inventory management. They talked about 

challenges in collecting data and making forecasts. 

Kourentzes, Barrow, and Petropoulos [21] focused on 

estimating sales for different products. They discussed how 

to make these estimates more accurate. Advanced forecasting 

uses new ideas beyond traditional methods. Chen and Yang 

[22] looked at using neural networks for forecasting. They 

talked about how these can spot complex patterns. 

Makridakis, Spiliotis, and Assimakopoulos [23] discussed 

how forecasting has changed. They gave advice on picking 

the right methods based on data and problems. Dealing with 

missing data and uncertainty is a big challenge. De Gooijer 

and Hyndman [24] reviewed these issues over 25 years. They 

talked about the importance of managing missing data. 

Willemain, Smart, and Schwarz [25] looked at how 

competition affects forecasts. They also discussed picking the 

best models. So, time series forecasting covers many ideas 

and challenges. There's a lot of research and advice out there 

on this topic. This paper gives a good starting point for 

anyone interested in learning more about forecasting. 

III. Time Series Analysis 

 

3.1  Autocorrelation 

Drawing a parallel to correlation, which quantifies the linear 

association between two variables, autocorrelation assesses 

the linear dependence between the lagged values of a time 

series [1].  
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𝑟𝑘 =
𝛴𝑡=𝑘+1
𝑇 [(𝑦𝑡 −  ȳ)(𝑦𝑡−𝑘 −  ȳ)]

𝛴𝑡=1
𝑇 (𝑦𝑡 −  ȳ)2

 

 

r1: indicates the autocorrelation between the current 

observation and just previous observation or lag 1.  

r2: indicates the autocorrelation between the current 

observation and two period apart previous observation or lag 

2.  Where rk: is a autocorrelation between yt and yt-1. 

 

In essence, autocorrelation reveals the correlation between 

the present observation and preceding observations at varying 

lags. Autocorrelation is influenced by both trend and 

seasonality. In instances where the data exhibits a trend, 

autocorrelation tends to be positively substantial for shorter 

lags, gradually diminishing as the lags increase. Regarding 

seasonality, autocorrelation tends to be more pronounced for 

seasonal lags compared to non-seasonal lags. 

 

3.2  White Noise 

Time series exhibiting no correlation are known as White 

Noise. This concept is similar to white light containing all 

colors, White Noise includes all frequencies within its 

spectrum. It is statistically defined by a series of random 

values that are independent and identically distributed (i.i.d.). 

For white noise data, the sampling distribution of \( r_k \) 

(referenced in equation 1) tends to follow a normal 

distribution with a mean (\( \mu \)) of 0 and a variance (\( 

\sigma^2 \)) of \( 1/T \), where \( T \) represents the time series 

length. This indicates that as the time series length increases, 

the sampling distribution increasingly resembles a normal 

distribution with a mean of 0 and a variance inversely 

proportional to the time series length. 

 

 
 

Figure-1 (Generalized Normal Distribution) 

 

Figure-1 illustrates the Generalized Normal Distribution. 

Given that white noise conforms to a normal distribution with 

𝜎2 = 1/𝑇, approximately 95% of all rk values for white noise 

should fall within the range of −1.96/√𝑇 to +1.96/√𝑇. 

Deviations beyond this range suggest the presence 

seasonality or trend in data, indicating that it may not strictly 

adhere to the characteristics of white noise. 

 

IV. Decomposing Time Series 

 

Time series frequently show a range of patterns, contributing 

to considerable variability that complicates analysis and 

prediction. Decomposing a time series into its unique 

components can greatly aid in understanding and improving 

forecast precision. Each component of this decomposition 

represents a specific type of pattern inherent in the data[1]. 

 

4.1  Transformations and adjustments 

Changing the data helps us understand it better. This is often 

the first thing to do when breaking down time series data. It's 

helpful to change the data if it goes up and down a lot. For 

example, data with big changes at the end, like in power law 

distributions, is often changed using logs. This makes it easier 

to understand. When we use logs, changes in the data show 

up as percentage changes. If the original observations are 

labelled as y1…yT, and the transformed ones as w1…wT, then 

the transformation is represented as wt = log(yt). 

Computations, such as the square or cube root, may be 

utilised in specific circumstances. "Power transformations" 

and they may be broadly defined as    wt = yp[1]. 

 

Box-Cox transformations are a special kind of change you 

can make to data [2].  

𝑤𝑡 = {
        log(𝑦𝑡)                                          𝑖𝑓  𝜆 =  0

 
𝑠𝑖𝑔𝑛(𝑦𝑡)|𝑦𝑡|

𝜆− 1

𝜆
                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

 

 

4.1.1 Classical Decomposition 

 

Three-tiered segmentation of seasonal, trend, and residual 

data, enables for a more sophisticated and complete data 

analysis. It enables the identification of trend changing 

moments as well as the recurrence of seasonal patterns. This 

type of research is incredibly beneficial in generating more 

accurate forecasting models. 

There are two types of "classical decomposition": "additive 

decomposition" and "multiplicative decomposition" [1]. 

 

For “Additive Decomposition”: yt-St 

For “Multiplicative Decomposition”: yt / St  

 

Adjustments made in time series analysis are customized 

based on the seasonal period, represented by \( m \) (for 

example, \( m=4 \) for quarterly data, \( m=12 \) for monthly 

data, or \( m=7 \) for daily data exhibiting weekly patterns). 

Traditional decomposition operates under the premise that the 

seasonal component stays consistent annually. In scenarios 

involving multiplicative seasonality, the values within the \( 

m \)-period forming the seasonal component are often 

referred to as seasonal indices.. 

 

4.1.2 Methods used by official statistics agencies 

Official statistics agencies bear the responsibility of analysing 

extensive economic time series data. To effectively analyse 

these time series, these agencies have crafted their own 

decomposition techniques tailored for seasonal adjustment. 

It's noteworthy that these techniques are specifically designed 
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to handle quarterly and monthly data; however, they are not 

suitable for the analysis of daily, hourly, or weekly data. 

 

X-11 Method 

Even though this method is rooted in classical decomposition, 

it successfully addresses the limitations associated with 

classical decomposition. [1] 

 

Comparison between the X-11 Method and Classical 

Decomposition: 

 

Fixed Seasonal Component in Classical Decomposition: 

• Drawback: “Classical decomposition” assumes a 

constant seasonal component over time. This poses 

challenges when dealing with time series that can exhibit 

irregular patterns in its seasonal components, such as in the 

case of "Electricity Consumption Demand." 

• X-11 Solution: By including and regulating irregular 

patterns in the seasonality component, the "X-11 Model" 

provides a solution. It estimates the seasonal component 

using the moving average approach. This allows for response 

to changing seasonal trends. 

 

Lack of Handling Outliers: 

• The occurrence and treatment of outliers in time 

series data are not addressed by "classical decomposition." As 

a result, when outliers are present, the predicting results might 

suffer. 

• The "X-11 Model" incorporates the issue of the 

outlier and gives a method for dealing with outliers. It detects 

and compensates for outlier data points to deliver more 

accurate decomposition results. 

 

Inadequate Handling of Trading-Day Effects: 

• The disadvantage is that "classical decomposition" 

may fail to account for trading-day effects, which can be 

significant in economic and financial time series. 

• The "X-11 Method" provides procedures for 

correcting and accounting for trading-day impacts in time 

series data. This is particularly useful in economic and 

financial forecasting. 

 

4.1.3 STL Method 

Loess Seasonal and Trend Decomposition [1]. It can only 

result in an additive decomposition; for a multiplicative 

decomposition, the log of the additive decomposition must be 

calculated. 

 

Comparisons between the X-11 Method and STL Method: 

Non-Linear Relationships 

• The "X-11 Method" has the disadvantage of being 

unable of estimating non-linear connections. 

• Solution: By estimating non-linear correlations with 

Loess, the "STL Approach" solves this issue. It is a versatile 

and dependable method for time series decomposition. 

 

 

 

Seasonality: 

• The "X-11 Method" is confined to dealing with 

seasonality in monthly or quarterly data series. 

• Solution: In contrast, the "STL Method" is adaptable 

and capable of dealing with seasonality on a daily, weekly, 

monthly, or quarterly basis. 

 

More Robustness to the Outlier: 

• The "X-11 Method" has the disadvantage of being 

sensitive to outliers and extreme numbers, which may impact 

the accuracy of the decomposition. 

• STL Solution: "STL Decomposition" estimates 

components using locally weighted regression (Loess). It 

reduces the importance of extreme values. It is resilient and 

stable decomposition in the presence of outliers. 

 

The following images shows the comparison between the 

above discussed decomposed techniques, the following 

images are obtained by using tribble (us employment) 

available under the library fpp3. 

 

 

Figure-2: Classical, X-11, STL Decomposition applied to 

total Retail USA Employment 

 

Figure-3: Classical, X-11, STL Decomposition applied to 

USA Unemployment 
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V.  Forecasting Workflow 

 

• Data Preparation: 

The initial phase in forecasting entails data preparation, 

encompassing tasks such as loading the data, identifying 

missing values, and other pre-processing activities. Various 

forecasting models come with distinct requirements—some 

necessitate complete data without missing values, while 

others demonstrate robustness in the presence of missing 

values. Therefore, checking and addressing missing values is 

a crucial step for optimal forecasting. 

  

• Plot the Data(visualise): 

It is strongly recommended to display the data to understand 

the intrinsic aspects, such as trend or seasonality. It helps in 

detection of common patterns which is essential for selection 

of a suitable model for study. 

 

• Define a model(specify): 

Different forecasting models have their own pros and cons. 

It's important to choose a model that fits the data well for 

accurate forecasts. 

 

• Model Training (Estimation):  

After choosing the model, the next step is training it with data. 

The model learns patterns and connections to make future 

forecasts. 

 

• Check the model performance(evaluate): 

To evaluate a time series forecasting model, first split the data 

into training and test sets. Select metrics like MAE, MSE, 

RMSE, MAPE, and R² to assess performance. Fit the model 

to the training data, then make and evaluate predictions on the 

test set. Lower metric values and higher R² indicate better 

performance. Compare results with a basic forecast for 

context. Examine the forecasts against the actual data and 

look for unpredictability in the residuals. Perform time series 

cross-validation and change the model parameters as 

appropriate. The best model balances statistical performance 

with the application's specific needs, such as simplicity and 

computational efficiency. 

• Generating Forecasts:  After training, and checking 

the model, forecasting techniques begin computing. There is 

need to include all crucial supplementary data in the forecast-

focused dataset to create reliable forecasts. 

 

VI. Some Simple Forecasting Methods 

Basic forecasting approaches are frequently used as 

benchmark models for comparison. These benchmarks enable 

us to assess the performance of more complex models, 

indicating whether our chosen model outperforms these 

simpler alternatives. This comparative analysis helps in 

gauging the effectiveness of our forecasting approach. 

• Mean Method: 

According to this strategy, the "average" (or "mean") of the 

provided historical data will be the forecast value for all 

future values. The following expression can be used to 

indicate the future forecast values if we represent the 

provided historical data as y1, y2..., yT: 

 

𝑦{𝑇 + ℎ|𝑇}̂ = {𝑦}̅̅ ̅̅ =  
𝑦1 +⋯ .+𝑦𝑇

𝑇⁄  [1] 

 

The estimate of yT+h based on the data y1, y2…, yT can be 

denoted as 𝑦{𝑇 + ℎ|𝑇}̂  

 

 

Figure4: Average forecasts are employed for the projection 

of clay brick production in Australia. 

• Naïve Method: 

For the “Naïve Method”, all forecast values are set to value 

of the last observation. In other words, 

 

𝑦{𝑇 + ℎ|𝑇}̂ =𝑦𝑇 [1] 

 

This method works very well with the economical and finical 

data: 

 

 
                Figure5: Naïve forecasts are utilized for 

projecting clay-brick production of Australia. 

 

• Seasonal Naïve Method: 

Similar to the "Naïve Method," this approach is employed 

when the data demonstrates a strong seasonal pattern. 

In this scenario, the approach involves establishing each 

forecast to match the last observed value from the 

corresponding season (e.g., the identical month of the 

preceding year). 
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𝑦{𝑇 + ℎ|𝑇}̂ =𝑦𝑇+ℎ−𝑚(𝑘+1) [1] 

 

The forecast for all future values in the formula, where "k" 

is the integer component of "h-1/m" and "m" is the seasonal 

period, equals the last observed value for each season. 

When working with monthly data, for instance, the forecast 

is set to equal the latest observed value for January for all 

future January values. 

 

          

                   
 

Figure6: For the estimation of clay brick production in 

Australia, seasonal naïve forecasts are implemented. 

 

• Drift Method: 

Permitting prediction values to show a growing or 

declining trend over time is one way to apply a variation of 

the "Naïve Method." The average change shown in 

previous data is used in this method to determine the 

amount of change over time, or "Drift." 

 

𝑦{𝑇 + ℎ|𝑇}̂ =𝑦𝑇 + 
ℎ

𝑇−1
  ∑ (𝑦𝑡 − 𝑦𝑡−1) =  𝑦𝑇

𝑇
𝑡=2 + ℎ (

𝑦𝑇 −𝑦1

𝑇−1
) [1] 

 

 
 

Figure7:  Drift forecasts are employed for projecting clay 

brick production in Australia. 

Google’s daily Closing Stock Price 

In Figure 8, Non-seasonal benchmark models (Mean, 

Naïve, and Drift) are implemented on Google's Daily 

Closing Stock Price Data for the year 2015. These models 

are utilized to forecast one month ahead. It's worth noting 

that the Seasonal Naïve Model was not applied in this 

context, as there is no discernible seasonality in the Stock 

Price Data. 

 

Figure8: Forecasts are generated based on Google's daily closing 

stock price in the year 2015. 

Every now and then, one of these straightforward models can end 

up being the best option for forecasting. But these approaches are 

frequently used as standards rather than as the best option.If your 

selected model outperforms these benchmark models, it is 

considered valuable and worth using. On the contrary, if your model 

does not surpass the performance of these benchmark methods, it 

may not be considered suitable for the forecasting task at hand. 

 

Figure9: Forecasts are generated based on Electricity 

Consumption in USA 

VII.  Fitted Values Explanation 

In time series analysis, each data point can be predicted using its 

preceding historical observations. These predictions are known as 

fitted values, represented as 𝑦{𝑡|𝑡 − 1}̂  or simply 𝑦𝑡̂. This indicates 

that the forecast for 𝑦𝑡̂ relies on the observations 𝑦1, … , 𝑦𝑡−1. It's 

important to understand that fitted values are not actual forecasts 

because they are computed using parameters estimated from the 

entire time series, including future data points. 
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•  Mean Method - Fitted Values: 

For the Mean Method, fitted values are calculated as 𝑦𝑡̂ =  𝑐̂, where 

𝑐̂ is the average calculated using all observations, even those beyond 

the time t. 

 

• Fitted Values of Drift: 

Fitted Values of “Drift Method” are given by 𝑦𝑡̂ = 𝑦𝑡−1 + 𝑐̂ where 

𝑐̂ =  
𝑦𝑇− 𝑦1

𝑇−1
. [1] 

 

• Fitted Values of Naïve and Seasonal Naïve 

Method: 

Both methods, “Seasonal Naïve Method” and “Naïve 

Method”, do not involve any parameters in their forecasts. As 

a result, their fitted values are considered actual or true 

forecasts since no parameter estimation is employed, making 

the predictions solely based on observed data. 

 

VIII.  Residuals  

The “Residuals” in a Time Series are what is left over after fitting 

the Model. The Residuals are the difference between the 

observations and corresponding fitted values. 

𝑒𝑡 = 𝑦𝑡 − 𝑦𝑡̂    [1] 

If the transformations have been used in the Model, then we 

should look residuals at the transformed scale, these are called 

“innovation residuals”. Suppose we modelled the logarithms of 

the data, 𝑤𝑡 =  log(𝑦𝑡) , then the innovation residuals are given 

by 𝑤𝑡 − 𝑤𝑡̂ whereas regular residuals are given by 𝑦𝑡 − 𝑦𝑡̂. 
Residuals are used to check whether the data has captured the 

information of the data properly or not. For this purpose, we 

use the innovation residuals. If the patterns are observable in 

the innovation residuals, the model can be improved.  

IX. Residuals Diagnostics 

A robust “Forecasting Method” should produce 

“Innovation Residuals” with the following properties: 

1. Uncorrelated “Innovation Residuals” are essential. If there 

is correlation among them, valuable information remains 

untapped, urging the need for improvement in forecasting 

computations. 

2. “Innovation residuals” should have a zero mean to avoid 

bias in forecasts. 

 

Any forecasting method lacking these properties can be 

enhanced. While these ensure optimal use of information, 

they are not ideal for selecting a forecasting method. If any 

property is not met, adjustments can be made. Addressing 

bias involves adding the mean m to all forecasts. Resolving 

correlation issues will be discussed later. 

Additionally, although not necessary, it is beneficial for the 

residuals to exhibit the following properties: 

3. It is beneficial for the “Innovation Residuals” to maintain a 

constant variance, known as “Homoscedasticity”. 

4. While not mandatory, it is advantageous for the innovation 

residuals to approximate a “Normal Distribution”. 

Forecasting Google Daily Closing Stock Price 

Continuing with the example of Google's Daily Closing 

Stock Price mentioned earlier, for the stock market prices 

and indexes, the “Naïve Method” is considered the best 

forecasting approach/Method as compare other simple 

forecasting Methods. In this method, each projected value 

value is set equal to 𝑦𝑡̂ = 𝑦𝑡−1 which is the most recent 

observed value. 

Hence the “Residuals” are 𝑒𝑡 = 𝑦𝑡 −  𝑦𝑡 ̂ = 𝑦𝑡 − 𝑦𝑡−1   

 

Figure10: Predictions are derived from the daily closing stock 

price of Google in the year 2015. 

The Figure 10 illustrates the closing daily stock price of Google 

in 2015. The notable large jump on July 17, 2015, corresponds 

to a 16% increase attributed to unexpectedly robust second-

quarter results.  

 

Figure11: Residuals arise from estimating the price of Google's 

stock using the “Naïve Method”. 

Figure 11, the “Residuals” obtained from this series using the 

“Naïve Method”. The substantial positive residual is a 

consequence of the unexpected jump in July. 
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Figure12: A histogram depicting the residuals from applying 

the “Naïve Method” to forecast the Google stock price 

reveals that the right tail appears somewhat elongated for a 

normal distribution. 

 

Figure13: The “Autocorrelation Function (ACF)” of the 

residuals resulting from applying the “Naïve Method” to the 

Google stock price illustrates a lack of correlation, 

indicating that the forecasts are sound. 

The forecasts produced by the "Naïve Method," which makes 

use of all the data in the provided time series, are shown in 

the above graphs. There are no discernible correlation exits in 

the residual series, and the mean of the residuals for the 

specified time series is very near to zero. 

 

Figure14: Residuals arise from forecasting the Electricity 

Consumption in USA using the “Naïve Method”. 

 

Figure15: The “Autocorrelation Function (ACF)” of the 

residuals resulting from applying the “Naïve Method” to the 

Electricity Consumption in USA illustrates a high amount of 

correlation, indicating that the forecasts are not sound. 

 

Figure16: A histogram depicting the residuals from applying the 

“Naïve Method” to forecast the Electricity Consumption reveals 

that residual does not follow a normal distribution. 

The forecasts produced by the "Naïve Method" are shown in 

the figure 16, which do not fully utilise the information 

contained in the provided time series. There is a substantial 

correlation in the residual series, and the mean of the residuals 

of the provided time series is not close to zero. 

 

X. Prediction Intervals and Distributional Forecasts 

 

• Forecast Distributions 

A probability distribution, which characterises the chance of 

witnessing future values of the provided time series using the 

fitted model, can be used to quantify forecast uncertainty. The 

mean of this distribution is represented by the Point Forecast. 

Notably, the majority of time series fitted models produce 

projections that are regularly distributed [1]. 

• Intervals of Prediction 

A prediction interval denotes the range that we expect or 

forecast 𝑦𝑡 to fall with a certain probability. It can be 

expressed as 𝑦𝑇+ℎ | 𝑇̂ ± 𝑐𝜎ℎ̂, where the coverage probability 

affects c. Prediction intervals are important because they can 

communicate forecast uncertainty. Point forecasts alone don't 

reveal the accuracy of forecasts, but by providing prediction 
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intervals, we can communicate the associated uncertainty 

with each forecast. 

• Prediction Intervals in One Step 

When predicting one step ahead, the standard deviation of the 

forecasting error can be estimated using the standard 

deviation of the residuals, as indicated by the formula. 

𝜎̂  =  √
1

𝑇 − 𝐾 −𝑀
∑𝑒𝑡

2̂

𝑇

𝑡=1

 

Here, T is the time series' length, K denotes the number of 

parameters that were calculated using forecasting techniques, 

and M denotes the quantity of missing values. Since the first 

observation cannot be predicted, M equals 1 for the forecast 

in the "Naïve Method." 

The prognosis for the next value of the price in the instance 

of a "Naïve Forecast for the Google Daily Closing Stock Price 

Data," where the last observed value is 758.88, is also 758.88. 

According to the equation above, the residuals' standard 

deviation is 11.19. 

Hence the 95 % prediction interval for the next value is  

758.88 ±  1.96(11.19)  =  [736.9, 780.8] 

Similarly, an 80% prediction interval for the next value is 

758.88 ±  1.28(11.19)  =  [745.5, 773.2] 

• Multiple-Step Forecasting Periods 

Prediction intervals are characterised by their common 

property of lengthening with an increase in the forecast 

horizon (h). The prediction intervals go broader the further 

out we project since there is more uncertainty involved. In 

other words, h grows with 𝜎-ℎ. An estimate of 𝜎-ℏ is required 

in order to generate the prediction intervals, and this can be 

obtained using the formula in the “One-Step Prediction 

Intervals”. 

 

• Benchmarking Techniques 

Assuming uncorrelated residuals, the predicted standard 

deviation for the four benchmark approaches is as follows: 

 

If 𝜎ℎ̂ denotes standard deviation of the h-step forecast 

distribution, and 𝜎̂ is residual standard deviation. 

If, 𝜎̂ is the residual standard deviation and, 𝜎ℎ̂ is the standard 

deviation of the h-step forecast distribution. 

 

Note h = 1 and T is very large. 

 

Benchmark 

Methods 

h-step forecast Standard 

Deviation 

Mean 𝜎ℎ̂  =  𝜎̂√1 +  1/𝑇 

Naïve 𝜎ℎ̂  =  𝜎̂√ℎ 

Seasonal Naïve 𝜎ℎ̂  =  𝜎̂√𝑘 + 1 

Drift 𝜎ℎ̂  =  𝜎̂√ℎ(1 + ℎ/(𝑇 − 1)) 

 

 

Figure17: Prediction intervals using a naïve technique for 

the closing stock price of Google, are established at 80% 

and 95% confidence levels. 

When visualized, intervals of prediction are depicted as dim 

regions, and the colour intensity within these regions corresponds 

to the associated probability. This graphical representation serves 

to convey a comprehensive understanding of the uncertainty 

linked to the forecasts. 

 

Figure18: Prediction intervals for the Electricity Consumption in 

USA, based on a naïve method, are established at 80% and 95% 

confidence levels. 

XI.  Forecasting using Transformations 

Some common transformations which can be used when 

modelling was discussed early. When forecasting from a 

model with transformations, we first produce forecasts of the 

transformed data. Then we need to reverse the 

transformations to obtain forecasts on the original scale.  

For the Box-Cox Transformation given by (), the reverse 

transformation is given by 

𝑦𝑡  =  {   
𝑒𝑥𝑝(𝑤𝑡)                                                𝑖𝑓 𝜆 =  0

𝑠𝑖𝑔𝑛(𝜆𝑤𝑡 + 1)|𝜆𝑤𝑡  +  1|
1
𝜆⁄               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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• Intervals of prediction with transformations 

In case a transformation has been applied, the prediction 

interval is initially calculated on the transformed scale. 

Subsequently, the endpoints are reverted to the original scale 

through back transformation, ensuring that the intervals 

maintain their probability coverage. However, it's important 

to note that after back transformation, the intervals may no 

longer retain symmetry around the point forecast.  

• Bias Adjustments 

One drawback of using the back-transformed point forecast is 

known as the Box-Cox transformation may no longer 

represent the projected distribution's mean. Assuming that the 

forecast distribution is symmetrical on the transformed scale, 

it is often the median of the forecast distribution. 

𝑦̂𝑇 + ℎ | 𝑇  

=  

{
 
 

 
 𝑒𝑥𝑝(𝑤̂𝑇+ℎ | 𝑇) [1 + 

𝜎ℎ
2

2
]           𝑖𝑓 𝜆 =  0; 

(𝜆𝑤̂𝑇+ℎ | 𝑇  +  1)
1/𝜆[1 + 

𝜎ℎ
2(1 −  𝜆)

2(𝜆𝑤̂𝑇+ℎ | 𝑇  +  1)
2
] 𝑒𝑙𝑠𝑒    

 

The magnitude of the forecast variance directly influences the 

disparity between the mean and median. 

This disparity between the basic back-transformed prediction 

and (as per equation 5.2) also the mean (as per equation 5.3) 

is termed bias. When the mean is used instead of the median, 

it implies that the point forecast has undergone bias-

adjustment. 

To assess the impact of this bias-adjustment, take into 

consideration the following scenario: we use the drift method 

with a log transformation to anticipate the average annual 

price of eggs (λ= 0). The log transform is employed in this 

instance, to guarantee that forecasting as well as forecast 

intervals remain positive. 

 

Figure 19: Egg price forecasts, utilizing the “Drift method 

applied to the logged data”, depict bias-adjusted mean 

forecasts represented by a solid line, and median forecasts 

indicated by dashed lines. 

In Figure 19, the dashed line represents the median forecasts, 

while the solid line represents the mean forecasts. The upward 

shift of the dashed line to the solid line is attributed to the bias 

adjustment. This adjustment is made to align the point 

forecasts with the mean, providing a clearer representation of 

the forecast distribution. 

XII.  Forecasting with Decomposition 

The earlier discussion on Time Series Decomposition reveals 

its significant role in the forecasting process. When 

employing a Decomposition in Addition, we express the 

temporal sequence as: 

𝑦𝑡 = 𝑆̂𝑡 + 𝐴̂𝑡 

Here, 𝑆̂𝑡 represents the Temporal Aspect of the Time Series, 

and 𝐴̂𝑡 = 𝑇̂𝑡 + 𝑅̂𝑡 denotes the Seasonally Adjusted a part of 

the Time Series, combining the Component of Trend (𝑇̂𝑡) and 

the Residual Component (𝑅̂𝑡). 

In cases of Multiplicative Decomposition, the formulation 

changes to: 

𝑦𝑡 = 𝑆̂𝑡 × 𝐴̂𝑡 

and here 𝐴̂𝑡 = 𝑇̂𝑡 × 𝑅̂𝑡. 

To forecast using these decomposed series, the Seasonal 

Component 𝑆̂𝑡 and Seasonally Adjusted Component 𝐴̂𝑡 are 

projected independently. The assumption is that the seasonal 

component either remains constant or changes very gradually. 

Consequently, the Seasonal Naïve Method is often the 

preferred approach for forecasting the Seasonal Component. 

For the Seasonally Adjusted Component, various non-

seasonal forecasting methods can be effectively utilized. 

 

Figure20: Forecasts for the total US retail employment data are 

generated by employing a naïve forecast for the “Seasonally 

adjusted component and a seasonal Naïve forecast for the 

seasonal component”, following an STL decomposition of the 

data. 
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Figure21: Checking the residuals. 

 

Figure22: Forecasts for the unemployment data of USA are 

generated by employing a naïve forecast for the seasonally 

adjusted component and a seasonal naïve forecast for the 

seasonal component, following an STL decomposition of the 

data. 

 

Figure23: Checking the residuals. 
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Conclusion and Future Scope 

This paper has delved into the intricate world of time series 

forecasting, applying transformation and decomposition 

techniques across a diverse array of data sets, including US 

trade employment and unemployment figures, Google stock 

trends, electricity consumption patterns, and egg price 

fluctuations in the market. We have proved the adaptability 

and usefulness of these approaches from time series data 

through these many applications. In analyzing US trade and 

employment, we look at unemployment rates. We use 

transformation and decomposition in this analysis. These 

methods reveal complex economic dynamics. They provide 

valuable insights for policy-making. They also help in 

economic planning. The study focuses on Google stock 

trends. These trends are analysed using specific methods. 

This analysis gives deeper insights into market behaviors. It 

helps investors. It also aids analysts. They can make more 

informed decisions. Electricity consumption patterns are 

important. They matter for planning and sustainability efforts. 

These patterns have been forecasted more accurately. This 

shows the potential of certain techniques. These methods are 

utilised in the energy industry. The application of these 

strategies in egg pricing marketing demonstrates their utility 

in agriculture. Applying transformation and decomposition 

improve forecast accuracy and reveal underlying trends and 

patterns. 

Future Scope 

More study in this area is promising. It is possible to combine 

powerful machine learning and AI with classical approaches. 

This may result in more advanced models. These models 

might perform better with large datasets. It would boost 

prediction accuracy and dependability. It is critical to 

investigate real-time forecasting in volatile markets. Stock 

and energy markets are critical. This would allow for 

informed, fast judgments. Decisions would be made using 

current information. It is also advantageous to use these 

strategies to varied, worldwide datasets. It would also help 

with environmental conservation. transformation and 

deconstruction approaches show promise in predicting. They 

have enormous potential for use in time series analysis. It is 

critical to keep innovating in this field. Ongoing research is 

also necessary.  
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