
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2984
IJRITCC | September 2023, Available @ http://www.ijritcc.org

Design a New Neural Network Architecture Using a

Layer of Neurons
, Alaa E, Mohammad Almajali dadaileh -,Nadeem Elc, Obada Alhabashneh b, Khalid Altarawneh aIbrahim Altarawni

FHarasees

Aqaba University of Technology, Aqaba, Jordan,

Mutah University, Karak, Jordan,

Mutah University, Karak, Jordan,

Mutah University, Karak, Jordan,

Mutah University, Karak, Jordan,

Aqaba University of Technology, Aqaba, Jordan

Abstract

Nowadays there are many different models of artificial neural networks. The difference between these models lies in the learning

methods only, that is, in the rules for changing the parameters of the algorithm tuning, with or without links and side comments.

While studying the general framework of network models, we see that the rules for obtaining the result and the mechanism for

calculating the error can differ. For example, a multilayer realization might produce a threshold function when used as a classifier,

or a linear function if used as an internal typeface.

Where this research came to discuss the possibilities of the standard representation of some models of artificial neural networks,

which clarify and treat some of the characteristics of that representation. Which can be considered an essential element in the process

of typical representation of these networks, where a new proposal is made during this representation by using a “layer” of neurons,

in other words, using a group of neurons that work in parallel and perform the same functions for which they were set .

Keywords: model, layer, neuron, artificial, research, function, element, network.

1- Introduction:

Currently, a large number of various paradigms of artificial

neural networks are k nown. However, the difference

between paradigms often lies only in learning methods, that

is, in the rules for changing the tuning parameters of the

algorithm, and the presence or absence of lateral and

feedback links. Within the framework of network paradigms,

the rules for obtaining the result and calculating the error can

differ. For example, a multilayer perceptron may output a

threshold function when used as a classifier, or a linear

function if used as an interpolator.

If we conditionally divide neural networks into “simple” and

“complex”, then the architecture of “simple” networks is built

based on several structural components. Such components are

a processing element (neuron), a layer or a group of

processing elements operating in parallel, and a set of layers

that form the actual neural network. In some types of

networks, the rules for signaling between neurons of a layer

or layers of the network play a special role. "Complex" neural

networks can usually be thought of as a combination of

several "simple" ones.

The limited number of structural components of neural

networks leads to a natural question about the possibility of a

uniform description of various architectures. To answer this

question, it is necessary to determine what elements will be

required to describe networks, what properties such elements

should have, and determine the rules for using these elements.

It is obvious that a uniform representation of various types of

neural networks should allow not only implementing existing

paradigms, but also providing the means to obtain "new

types" of networks.

One of the possible, and in our opinion, the most attractive

ways of a uniform description of neural networks is their

representation in the form of modular structures. This paper

proposes a method for representing neural networks in the

form of modular structures, and discusses the features of such

a representation.

Almost all widely known and applied in practice neural

networks can be used as classifiers. Therefore, without loss

of generality, the idea of a modular representation can be

considered on the example of a classification problem. For

greater certainty, we will talk about neural networks trained

“with a teacher”. That is, about such networks in which the

required output is known for each image from the training set.

The latter is important in the sense that it not only makes it

possible to concretize the analysis, but also implies the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2985
IJRITCC | September 2023, Available @ http://www.ijritcc.org

presence of an additional module in the network

representation.

The possibilities of modular representation are considered on

the example of the most famous feed-forward networks, such

as multilayer perceptron (MLP), radial basis functions (RBF)

and support vector machines (SVM) [1, 2]. Recurrent,

associative [3], and associative-projective networks [4] are

considered as examples of a modular representation of

networks with feedback and lateral connections. In

conclusion, a trivial example of building a "new type"

network is given.

2. Modular representation of feed-forward networks:

Most neural networks are based on the representation of a

neuron as a processor element with adjustable parameters, for

example, in MLP. By analogy with a biological neuron, a

processing element has an arbitrary number of inputs and one

output, and each input is associated with a customizable

parameter called the connection weight. In some networks,

such as SVMs, processor elements are not always explicitly

distinguished, however, such networks can also be described

using "neurons".

Let the vector X describe the image supplied to the inputs of

the neuron. Denote the output of the neuron through y, and

then the functioning of the neuron in general terms can be

represented as follows:

 𝑦 = 𝐹(𝐺(, 𝑋)),

(1)

Where V - is the vector of connection weights, F- is the

transfer function of the neuron, and G is some “weighting”

function. Depending on whether a neuron model with or

without a threshold is used, the size of the weight vector can

be equal to or greater than the number of neuron inputs. There

are neural networks for which more than one tuning

parameter per connection can be used. An example of such a

network is discussed below.

The "weighting" function is a scalar function of a vector

argument. The type of "weighting" function determines the

properties of the neuron in the space of inputs. For example,

in the most common neuron model, the weighting function is

defined as the scalar product of the input vector and the

weight vector, given the threshold:

 𝑆𝑃(𝑣, 𝑥) = 𝑣𝑜 + (𝑣′, 𝑋) = 𝑣𝑜 +

∑𝑁
𝑖=1 𝑣, 𝑥 , (2)

Where N is the number of neuron inputs and 0 , v is the

threshold. The index p - "perceptron" in the name of the

function was introduced for the convenience of referring to

various "weighting" functions. The result of calculating

function (2) is proportional to the distance to the hyper plane

defined by the normal vector 'V { v ,...,v } = 1 N and offset 0,

v in the space of neuron inputs.

For neurons using the weighting function (2), the most

commonly used transfer function is the sigmoid

𝑆𝑃(𝑡) =
𝐼

𝐼 + 𝑒−∝𝑡

In many other, practically important cases, the result of the

weighting function is proportional to the distance to some

point in the input space. For example, in RBF networks, the

weighting function is represented as the Euclidean distance to

the reference point, the coordinates of which can be

considered as link weights

𝑆𝑟(𝑣, 𝑥) = (𝑣𝑜 , 𝑋) = 𝑣𝑜 + ‖𝑣 − 𝑥‖ = 𝑣𝑜 +

√∑𝑁
𝑖=1 (𝑣1 − 𝑥1)2 (3)

Where the index r means "radial" function. The threshold 0 v

in function (3), by analogy with function (2), is introduced as

a weighting factor, and in this case, it has the meaning of the

"range" of the transfer function. In RBF networks, Gaussian-

type functions are usually used, that is, we can consider a

transfer function of the form

𝐹𝑟(𝑡) = 𝑒−∝𝑡

It should be added that in networks with lateral connections,

for example, in networks of associative memory, an

additional “setting” input of the neuron u is sometimes

considered, while before recalculating the network, y = u is

taken and this input is usually not used in further calculations.

Temporarily abstracting from the learning algorithms, let us

try to highlight what common in the operation (recalculation)

of the selected is feed-forward networks, that is, in MLP, RBF

and SVM. Without loss of generality, we can consider the

classification problem into two classes. In this case, the neural

network has one output. We introduce the following notation:

X is the vector at the input of the network and z is the output

of the entire network. We will use subscripts to number inputs

or neurons in one layer, and upper ones to designate network

layers.

Consider a two-layer perceptron. Let y be the output of the

first layer neuron. At the output of the first layer, we get the

vector { ,..., } 1 M Y = y y , where M is the number of neurons

in the first layer. Then the operation of the two-layer

perceptron is described by the expression

𝑍 = 𝐹𝑃2 (𝐺𝑃2(𝑉2 − 𝑌))

= 𝐹𝑃2(𝑣𝑜
1

+ ∑

𝑀

𝑖=1

𝑣1
2. 𝐹𝑝𝑖 (𝐺𝑝𝑖(𝑣𝑖

1. 𝑋))))

In the two-class classifier mode, the output of the perceptron

(the desired class) is determined by comparison with some

threshold T . The input vector will be assigned to the first of

two classes if z < T , otherwise - to the second one. Therefore,

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2986
IJRITCC | September 2023, Available @ http://www.ijritcc.org

the non-linearity at the output in this case is unnecessary, and

for the output neuron, you can use the linear transfer function

Fp(t) = t . Therefore, the operation of a two-layer perceptron

can be described by the expression

 𝑧 = 𝑣0
2 + ∑𝑚

𝑖=1 𝑣1
2. 𝐹𝑝(𝑆𝑃(𝑆𝑃(𝑣1

′ . 𝑋))

(4)

RBF and SVM networks are based on the use of "support

vectors", that is, points in the input space chosen in a certain

way. Let M reference points be chosen, then the operation of

the RBF network is described by the expression.

 𝑧 = 𝑣𝑖 + ∑𝑚
𝑖=1 𝑣𝑖. 𝐹𝑟(𝑆𝑟(𝑣𝑖. 𝑋))

(5)

And the operation of the SVM network

 𝑧 = 𝑣0 + ∑𝑚
𝑖=1 𝑣𝑖. 𝐾(𝑣𝑖. 𝑋))

(6)

Where K is the so-called kernel function and has a wide range

of representations.

However, it turns out that the kernel functions used in practice

can be represented in the form (1), while one of the functions

(2) or (3) will be used as the weighting function. An example

is the Gaussian kernel:

𝐾(𝑣, 𝑥) = 𝑒𝜑‖𝑣−𝑥‖2

Which exactly matches one of the RBF implementations, or

a polynomial kernel:

𝐾(𝑣, 𝑥) = (1 + (𝑣. 𝑥))𝑑

Which in the case of d = 1 gives a neuron of the "perceptron"

type.

Comparison of expressions (4) - (6) shows that in the sense

of work (direct recalculation or examination) SVM is a

generalization of RBF and a two-layer perceptron. However,

RBF and SVM remain different neural network paradigms

because they use different rules for generating a set of support

vectors and setting the weights of the output neuron.

Returning to the original task, namely, to the representation

of neural networks in the form of modular structures, we see

that the direct propagation networks under consideration can

be described using two layers (modules) with the following

rules for the operation of module elements:

 𝑦 = 𝐹(𝐺(𝑣′, 𝑥))𝑎𝑛𝑑 𝑧 = 𝐹𝑝(𝑆𝑝(𝑣2, 𝑦))

(7)

In principle, the networks under consideration allow a

modular representation in the form of sets of neurons, and

each of these networks requires no more than two types of

processor elements. There are several approaches to

describing neural networks in the form of sets of processor

elements, for example, descriptions using graphs [5].

However, there are associative networks that require taking

into account the cooperative behavior of neurons within the

layer.

Therefore, it is proposed to consider the layer as the minimum

element of the modular representation.

It is easy to check that, using the weighting function (3) and

taking into account the cooperative behavior, the modular

representation (7) describes such recognition methods as the

method of potential functions, as well as the methods of

nearest and k-nearest neighbors.

The first advantages of the modular representation of feed-

forward networks stem from the principle of solving the

classification problem using such networks. RBF and SVM

networks are so-called classifiers with input space

transformation. The essence of using these classifiers is that

they find such a transformation of the input space Ω → R that

in the space R the classes become linearly separable, and a

linear perceptron (linear separating rule) is used to determine

the boundary between the classes.

It is proved that MLP and RBF are universal approximators.

That is, if the boundary between classes exists, then a

classifier can be constructed that exactly describes such a

boundary [6–8]. However, there are two fundamental

problems with the use of classifiers with the transformation

of the original feature space. The first is the determination of

the most appropriate transformation functions (in the case of

RBF, these are the Fr functions) and the second, directly

related to the first, is the number of support vectors needed to

achieve linear reparability. There is a contradiction between

the requirement of linear reparability and a limited number of

support vectors.

To resolve this contradiction (reduce the number of support

vectors), it is possible to use a compromise solution when,

after transforming the space, in our case, using the "RBF

module", not a linear, but, for example, a two-layer

perceptron with a small number of neurons in the first

(hidden) layer is used . Then one cannot require linear

reparability in the new space.

Nevertheless, the modular representation makes sense if it

allows you to describe the learning process of neural

networks. MLP and RBF learning algorithms are presented in

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2987
IJRITCC | September 2023, Available @ http://www.ijritcc.org

[1], and SVM in [2]. Without going into a detailed

description, we note the following: in the networks under

consideration, the algorithms for changing the tuning

parameters belong to the layer, although they require

knowledge of the error at the output of the entire network.

Therefore, in order to represent a neural network with a

modular structure, it is necessary to determine what

properties the module (layer) should have and what functions

the modular network as a whole should support, regardless of

the types of modules included in it.Let us define the

properties that a layer and a modular network should have. In

general, a fully functional layer should have the following

properties:

1) Architecture - the layer has inputs, outputs and a certain

number of neurons (processor elements) working in parallel.

Here it should be noted that the parallelism of the work of

neurons in the layer refers to the "external" observer and

means only that at each moment of time the outputs of all

neurons in the layer are determined.

2) Work - a direct recalculation algorithm, that is, the rules

for obtaining a result at the outputs for the current values at

the inputs.

3) Training - an algorithm for changing the settings and

determining the error at each input by an error signal or

known errors at each of the outputs of the module (layer), and

also, which is very important, the rules for removing or

adding inputs or outputs according to the number specified

from the outside and / or according to the internal algorithm

of the layer.

Consider the purpose and use of the functions of the layer

(module). First, it should be noted that not all features are

required. Depending on the type and purpose, the module

may not contain neurons and may not have a learning

algorithm, that is, it may not contain tuning parameters. In

addition, the ability to determine the error at each input is a

property of the learning algorithm of this module and

determines the limitations in building a modular architecture.

Therefore, for example, if it is supposed to use an MLP layer

with learning by error back propagation, then the subsequent

module must determine the error for each of its inputs, since

the learning algorithms of the MLP layer use the value of this

error. For some implementations of the RBF layer in training

mode, it is sufficient to simply know that there is an error on

a given input.

In the case of SVM modeling, there are two possibilities for

organizing training in a modular representation: both the

layer can receive a signal about the presence of an error at the

output and the corresponding reference vector (neuron) will

be deleted, or obtain information about the numbers of

deleted inputs of the subsequent module. In this case, the

corresponding outputs (support vectors) will be removed

from the layer. The second option is universal, since the

modular representation similarly implements the algorithms

for removing unnecessary links (pruning), which are used in

many feed-forward networks.

The presence of rules for removing inputs and outputs in

modules ensures the implementation of mechanisms for

removing unnecessary connections (tuning parameters) and

neurons (processor elements). The simplest algorithm is to

remove links that have zero weight.

In the example under consideration, where the second layer

of each of the networks contains one neuron, deleting the

connection means deleting the input of this layer, which

means that the outputs of the corresponding neurons of the

first layer do not affect the result of the network, and the

corresponding neurons of the first layer can be deleted. The

described mechanism corresponds to the last stage of SVM

training.

The mechanism for adding inputs and outputs makes it

possible to implement network options that either involve the

creation of new support vectors by including a new part of the

training set or based on specific heuristics. It is important that

the number of inputs or outputs of a module affects only the

number of external connections of neighboring modules but

does not require knowledge of either the operation algorithm

or the learning algorithm of adjacent modules. In addition, the

number of inputs and outputs of the entire modular network

remains unchanged.

Let the modules have the listed properties, and then it is not

difficult to single out the functions that should be provided by

the modular network as a whole. Moreover, it is obvious that

the functions of the network should not imply “knowledge”

about which particular learning or work algorithm

implements a particular module.

Then the modular network should provide:

1) Architecture - inputs, outputs and a number of modules

(layers) connected by directional connections. The direction

of the links specifies the direct recalculation of the network.

2) Work - the sequence of recalculation of modules and the

rule for generating the output of the entire network.

3) Training - obtaining information about an error in the

network, the rules for propagating an error through the

network, the sequence of recalculating modules during

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2988
IJRITCC | September 2023, Available @ http://www.ijritcc.org

training, and also ensuring the coordination of the number of

connections in case of a change in the number of inputs or

outputs for modules.

In addition to the above functions, for modeling some types

of networks, rules for automatically adding or removing

modules of a given type can be introduced.

3. Modular representation of networks with feedback and

lateral connections:

Most networks with feedback and lateral connections have a

natural representation in the form of modular

 Structures. The most common networks with feedback and

lateral connections are recurrent, associative and associative-

projective networks.

Recurrent networks are most widely used in time series

analysis, in sentence parsing problems, and others, usually

where the data represents a certain sequence. Recurrent

networks are built based on a multilayer perceptron and

include all types of feedback. There are four types of

recurrent networks, which are shown in Fig. 1. Networks

differ only in the way they form feedback loops and usually

have a two-layer architecture.

The Frasconi-Gori-Soda recurrent network [9] is shown in

fig. 1a and is a network with local feedback. In this

architecture, the output of each neuron in the hidden layer is

connected to the input of the same neuron. In the architecture

proposed by Narendra and Parthasarathy [10] (Fig. 1b), the

entire network is covered by feedback, that is, the output of

each neuron of the last layer is connected to each of the

neurons of the first hidden layer. Elman [11] (Fig. 1c)

considered the use of a feedback network covering only the

hidden layer. That is, the output of each neuron of the hidden

layer is connected to the inputs of all neurons of the same

layer. Williams and Zipler [12] (Fig. 1d) considered the

possibility of using a "fully connected" recurrent network, in

which the output of each neuron of the network is connected

to the inputs of all neurons on each layer.In all considered

recurrent networks, feedback acts as a delay buffer for one

cycle, that is, in addition to the input vector, the state of the

outputs of the corresponding neurons at the previous

recognition cycle is fed to the network neurons. There are

modifications of recurrent networks in which the delay buffer

performs a more complex function, for example, a delay with

accumulation, when the current state of the neurons is added

to the contents of the buffer, taken with a certain coefficient.

The new state of the buffer is determined by the formula

 𝐵𝑖+1 =∝ 𝐵𝑦𝑖 + (1−∝)𝐵𝑖.

(8)

Where B is the state of the buffer, Y are the outputs of neurons

at cycle t, and 0 1 < < α is the coefficient, which is often called

the moment.

Often, the input of recurrent networks is not a separate

element of the sequence, but a subsequence of a certain

length. In this case, a conventional multilayer perceptron can

also be used to recognize sequences, and the delay buffer is

used outside the network to form the input vector. On fig.

Figure 2 shows examples of using a multilayer perceptron

(Fig. 2a) and a recurrent network (Fig. 2b) for sequence

analysis.

Figure 1-a

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2989
IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 1- b

Figure 1- c

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2990
IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 1- d.

Figure (1-a, 1-b, 1-c, 1-d): Examples of recurrent networks based on a multilayer perceptron.

Directly from Fig. 2 shows that, using only two types of

layers - MLP and delay layer (Delay), it is possible to build

both considered networks. An example of building these

networks using modules that implement the corresponding

layer is shown in fig. 3. Other architectures of recurrent

networks also appear in an obvious way.

Hopfield-type associative networks contain one layer of

neurons with lateral connections [8 -11]. In terms of

functioning, the main difference between associative

networks and networks of direct distribution and recurrent

networks is not so much the type of connections as the

process of network convergence. Network convergence is the

process of successive recalculation of the network several

times for the same total input action, which allows the output

vector of the network to shift to the center of the attractor. In

other words, after convergence, one of the previously stored

vectors appears at the output of the associative layer.

Figure 2- a.

Outputs Outputs

Hidden

layer

Hidde

n layer

Hidde

n layer
Hidden

layer

Inpu

ts

input

s

Input

s

Input

s

Input

s

inpu

ts

t0V

t1V

t2V

t4V

Vt5

t6V

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2991
IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 2- b

Figure 2 (a, b)- An example of using networks for time series analysis.

We said above that for the functioning of a modular neural

network, we need some data flow control algorithm (router),

which does not depend on the number or types of modules

included in the network. One of the requirements for the

router is the ability to automatically detect the presence of

cycles in the "designed" modular network and the ability to

set the parameters for working with each of the cycles. The

parameters of the cycle, in fact, are the number of

recalculations of modules within the cycle per one input

vector or a sign of stopping the recalculation. Here the input

vector has the meaning of the vector given to the input of the

cycle, and not the entire network. Cycles in modular networks

are considered in more detail in [12 -15].

In Hopfield-type associative networks, the algorithm of

neuron operation is the same as the algorithm used in MLP.

It turns out that if we can set the sign of the end of the cycle

count, then in the modular representation, in order to

implement this type of associative networks, we do not need

to introduce an additional type of layer. If in fig. If we remove

the output layer of neurons, we get an implementation of

associative memory, where for one input vector; recalculation

in the MLP-delay-MLP cycle is performed until the activity

of neurons at the output of the MLP layer stops changing.

In the case of associative-projective networks [16- 20], the

modular representation is generally natural, since in networks

of this type not only the functions of each of the layers are

defined (in these networks there are several types of layers

that differ in the recalculation algorithm and functions

performed), but almost arbitrary data flows between layers.

4. Using the Modular View:

The advantages of modularizing recurrent and social neural

networks, as well as feed-forward networks, follow from the

way the architecture is built in a modular implementation.

Since the network for solving a specific problem is no longer

implemented by a single algorithm, but is presented as a

unified set of algorithms related exclusively to the layer, then,

having the means to dynamically (or interactively) change the

type of layer used, arbitrarily combine layers and set the

Outputs Outputs

Hidden

layer

Hidde

n layer

Hidde

n layer

Hidden

layer
1-Z

in

p

u

ts

In

p

ut

s

in

pu

ts

Inp

uts

In

pu

ts

In

p

ut

s

In

p

ut

s

In

p

ut

s

In

p

ut

s

In

p

ut

s

In

p

ut

s

In

p

ut

s

In

p

ut

s

In

p

ut

s

In

p

ut

s

In

p

ut

s

1W

2W

3W

4W

W5

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2992
IJRITCC | September 2023, Available @ http://www.ijritcc.org

direction of data flows, we get the opportunity to quite simply

“design” a neural network that most successfully solves a

specific applied problem.

Figure 3-a

Figure 3-b.

Figures 3(a ,b): Example of Modular Networks for Time Series Analysis.

Outputs

MLP

MLP Hidden

layers

D3]D2 D1
Outputs

t0V

t1V

t2V

t4V Vt5

t6V

MLP

Outputs

MLP

D2

D4

Hidden

layers

D3

D1
Outputs

W

1

W2

2

W3

W4

W5

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2993
IJRITCC | September 2023, Available @ http://www.ijritcc.org

A tool that allows you to interactively design a neural

network from modules for solving applied problems is CAD

INN [20].

Consider a model problem illustrating the advantages of a

modular representation. As an example, take the

classification problem known as XOR. The problem is

formulated as follows: four points with coordinates (0.0),

(1.1), (0.1) and (1.0) are given on the plane. The first two

points belong to one class, the third and fourth to another. At

one time, Minsky and Papert showed that a single-layer

perceptron does not solve this problem, and it has become a

classic for testing neural networks. It is known that the

minimal architecture of MLP (Fig. 4a), solving this problem,

contains two neurons and five connections (weights or

adjustable parameters).

However, if instead of using “classical” neural networks, we

put two RBF layers in series, then we need only two neurons

and three connections to solve the problem (Fig. 4b). In this

case, the links are three adjustable parameters that are the

coordinates of the centers of the support vectors. In our case,

the transfer function can be practically any, in particular,

linear. Any of the four points can be chosen as a reference

vector in the first layer. Let a point with coordinates (0,0) and

a linear transfer function be chosen. Then at the output of the

neuron of the first layer for 4 input vectors (coordinates of

points) we will have three points now in one-dimensional

space (on the line), with coordinates (0), (2) and (1). Both

points of the second class at the output of the layer are

indistinguishable. Taking as a reference vector for the second

RBF layer a point with coordinate (1) and a linear transfer

function, as well as a threshold of 0.1 (3), we obtain a modular

network that solves the problem.

The "new type" architecture shown in Fig. 4b quite fully

illustrates the potential of the proposed approach to modeling

neural networks [21. 22].

Known neural network paradigms do not provide the ability,

for example, to use RBF neurons or layers sequentially. This

is due to the problems of constructing learning algorithms for

such a network. However, when solving applied problems, by

examining data using known types of networks and learning

algorithms, it is possible to determine what kind of

transformation of the input feature space “simplifies” the

solution. By isolating individual layers in trained networks

and combining them with layers of other types, we get a

powerful tool for solving classification problems, and more

broadly - recognition, of arbitrary complexity.

5. Conclusions:

Through the foregoing, we see that this research analyzes

several different models of neural networks used on a wide

range of applications. Accordingly, it becomes clear that the

main component of the structures of these networks is a layer

of neurons.

It has been established that if we consider layers as

independent elements of the architecture, the number of

different layers required to model the studied neural network

models is less than the number of models themselves.

Based on the analysis carried out, it is proposed to consider

the layers of neurons as units or elements of the architecture

of modular networks. The requirements for the properties of

the layers and the functioning of the modular network as a

whole are formulated. A typical example shows that the

representation of neural networks in the form of unit layers

allows not only to model well-known models, but also to

build structures that have not been studied before.

Note that no set of studied units gives a viable neural network.

The use of modules in the construction of neural networks of

various architectures requires the introduction of certain rules

and restrictions. The rules for using modules when building

neural network architectures will be discussed in subsequent

publications.

Of particular interest are the problems of training modular

networks with an arbitrary composition of modules. In an

arbitrary network, some modules can be trained with a

teacher, some without, and some modules may not require

training at all. The latter type includes the principal

component method, which allows one to reduce the

dimension of the original feature space.

Most developers train modules separately and obtain a

general solution to the problem as a combination of solutions

from individual networks. However, cooperative learning is

of great interest, when the results at the outputs of some

modules are interpreted as signals for learning others. We see

the continuation of theoretical research in the field of modular

neural networks, in particular, the study of cooperative

learning methods.

References:

1- Safwan Al Salaimeh, BILJANA STOJAN ILIC,

Management of telecommunication operator

services in Serbia – Case study Eastern Serbia,

WSEAS TRANSACTIONS on BUSINESS and

ECONOMICS, VOL. 9, 2022.

2- Prof. Safwan Al Salaimeh, Dr. Amer Abu Jassar, Dr.

Mohammad Salim Al Hababsah, Improved

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2994
IJRITCC | September 2023, Available @ http://www.ijritcc.org

Algorithm For Creating An Optimized Network

Diagram, Test Engineering and Management,

Volume 83, Issue Jan – Apr. , 2021

3- Vardan Mkrttchian and Safwan Al Salaimeh, About

Performance of the Computer Education System to

Present in Natural Language, chapter of book

"Advances in Engineering Research" vol 40, 2020.

4- 1. End to end learning for self-driving cars / M.

Bojarski [et al.] // arXiv preprint arXiv:1604.07316.

– 2016.

5- Smadi, T. A., & Zureiqat, M. A. (2017). High-Speed

Small-Purpose Parallel Hybrid Architecture of

Summator for Calculation Back 3x in Eighth

Coding. Eastern European Scientific Journal, (3),

19-31.

6- Quantization and training of neural networks for

efficient integerarithmetic-only inference / B. Jacob

[et al.] // Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. – 2018.

– P. 2704–2713.

7- Hussein, A. L., Trad, E., & Al Smadi, T. (2018).

Proactive algorithm dynamic mobile structure of

Routing protocols of ad hoc

networks. IJCSNS, 18(10), 86.

8- 5.Low-bit quantization of neural networks for

efficient inference / Y. Choukroun [et al.] // 2019

IEEE/CVF International Conference on Computer

Vision Workshop (ICCVW). IEEE. – 2019. – P.

3009–3018.

9- Haq: Hardware-aware automated quantization with

mixed precision / K. Wang [et al.] // Proceedings of

the IEEE conference on computer vision and pattern

recognition. – 2019. – P. 8612–8620.

10- Quantized convolutional neural networks for

mobile devices / J. Wu [et al.] // Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition. – 2016. – P. 4820–4828.

11- Krishnamoorthi R. Quantizing deep convolutional

networks for efficient inference: A whitepaper:

arXiv preprint arXiv:1806.08342. – 2018.

12- Mobilenets: Efficient convolutional neural networks

for mobile vision applications / A.G. Howard [et al.]

// arXiv preprint arXiv:1704.04861. – 2017.

13- A. Smadi, H. A. Al Issa, E. Trad, and K. A. A.

Smadi, “Artificial Intelligence for Speech

Recognition Based on Neural Networks,” Journal

of Signal and Information Processing, vol. 06, no.

02, pp. 66–72, 2015, doi: 10.4236/jsip.2015.62006.

14- Safwan Al Salaimeh, Khaldoun Albesuol,

Khaled Batiha, Combined method of routing

multimedia data in computer networks,

International Journal of Advanced Research in

Computer Science, vol.2, No.5, sep. – oct., 2011,

India.

15- Al Salaimeh safwan, Hanna jabber, 2008, Weights

Adjustment Neural Networks. European Journal

of Scientific Research (EJSR) / Vol.21 No.2,

pp.314-318, (2008), UK.

16- Safwan Al Salaimeh, Information Technologies of

the Distributed Applications Design, Leonardo

Journal of Science, Issue 10, Jan – June, 2007.

17- A. S. Takialddin, O. I. Al-Agha, and K. A. Alsmadi,

“Overview of Model Free Adaptive (MFA) Control

Technology,” IAES International Journal of

Artificial Intelligence (IJ-AI), vol. 7, no. 4, p. 165,

Oct. 2018, doi: 10.11591/ijai.v7.i4.pp165-169.

18- T. Al Smadi, “Application of Fuzzy Logic to

Cognitive Wireless Communications,” Journal of

advanced Sciences and Engineering Technologies,

Jan. 2019, doi: 10.32441/jaset.02.01.03.

19- A. S. Takialddin, K. Al Smadi, and O. O. AL-Smadi,

“High-Speed for Data Transmission in GSM

Networks Based on Cognitive Radio,” American

Journal of Engineering and Applied Sciences, vol.

10, no. 1, pp. 69–77, Jan. 2017, doi:

10.3844/ajeassp.2017.69.77.

20- Galinskaya A.A. Architecture and training of

modular classifiers for applied problems //

Mathematical machines and systems. - 2003. - No.

2. - P. 77 - 86.

21- Distel R. Graph Theory. - Novosibirsk: Publishing

House of the Institute of Mathematics, 2002. - 336

p.

22- Al Smadi, K. A., & Rababah, M. A. A. (2018).

Analytical Survey: Speech Recognition Methods

Used In Voice Recognition Techniques. Journal of

Advanced Sciences and Engineering

Technologies, 1(2), 1-8.

http://www.ijritcc.org/

