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Abstract 

Nowadays there are many different models of artificial neural networks. The difference between these models lies in the learning 

methods only, that is, in the rules for changing the parameters of the algorithm tuning, with or without links and side comments. 

While studying the general framework of network models, we see that the rules for obtaining the result and the mechanism for 

calculating the error can differ. For example, a multilayer realization might produce a threshold function when used as a classifier, 

or a linear function if used as an internal typeface. 

Where this research came to discuss the possibilities of the standard representation of some models of artificial neural networks, 

which clarify and treat some of the characteristics of that representation. Which can be considered an essential element in the process 

of typical representation of these networks, where a new proposal is made during this representation by using a “layer” of neurons, 

in other words, using a group of neurons that work in parallel and perform the same functions for which they were set . 

Keywords: model, layer, neuron, artificial, research, function, element, network. 

 

1- Introduction: 

Currently, a large number of various paradigms of artificial 

neural networks are k nown. However, the difference 

between paradigms often lies only in learning methods, that 

is, in the rules for changing the tuning parameters of the 

algorithm, and the presence or absence of lateral and 

feedback links. Within the framework of network paradigms, 

the rules for obtaining the result and calculating the error can 

differ. For example, a multilayer perceptron may output a 

threshold function when used as a classifier, or a linear 

function if used as an interpolator. 

If we conditionally divide neural networks into “simple” and 

“complex”, then the architecture of “simple” networks is built 

based on several structural components. Such components are 

a processing element (neuron), a layer or a group of 

processing elements operating in parallel, and a set of layers 

that form the actual neural network. In some types of 

networks, the rules for signaling between neurons of a layer 

or layers of the network play a special role. "Complex" neural 

networks can usually be thought of as a combination of 

several "simple" ones. 

The limited number of structural components of neural 

networks leads to a natural question about the possibility of a 

uniform description of various architectures. To answer this 

question, it is necessary to determine what elements will be 

required to describe networks, what properties such elements 

should have, and determine the rules for using these elements. 

It is obvious that a uniform representation of various types of 

neural networks should allow not only implementing existing 

paradigms, but also providing the means to obtain "new 

types" of networks. 

One of the possible, and in our opinion, the most attractive 

ways of a uniform description of neural networks is their 

representation in the form of modular structures. This paper 

proposes a method for representing neural networks in the 

form of modular structures, and discusses the features of such 

a representation. 

Almost all widely known and applied in practice neural 

networks can be used as classifiers. Therefore, without loss 

of generality, the idea of a modular representation can be 

considered on the example of a classification problem. For 

greater certainty, we will talk about neural networks trained 

“with a teacher”. That is, about such networks in which the 

required output is known for each image from the training set. 

The latter is important in the sense that it not only makes it 

possible to concretize the analysis, but also implies the 
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presence of an additional module in the network 

representation. 

The possibilities of modular representation are considered on 

the example of the most famous feed-forward networks, such 

as multilayer perceptron (MLP), radial basis functions (RBF) 

and support vector machines (SVM) [1, 2]. Recurrent, 

associative [3], and associative-projective networks [4] are 

considered as examples of a modular representation of 

networks with feedback and lateral connections. In 

conclusion, a trivial example of building a "new type" 

network is given. 

 

2. Modular representation of feed-forward networks: 

Most neural networks are based on the representation of a 

neuron as a processor element with adjustable parameters, for 

example, in MLP. By analogy with a biological neuron, a 

processing element has an arbitrary number of inputs and one 

output, and each input is associated with a customizable 

parameter called the connection weight. In some networks, 

such as SVMs, processor elements are not always explicitly 

distinguished, however, such networks can also be described 

using "neurons". 

Let the vector X describe the image supplied to the inputs of 

the neuron. Denote the output of the neuron through y, and 

then the functioning of the neuron in general terms can be 

represented as follows: 

                                              𝑦 = 𝐹(𝐺(, 𝑋)),                                        

(1) 

Where V - is the vector of connection weights, F- is the 

transfer function of the neuron, and G is some “weighting” 

function. Depending on whether a neuron model with or 

without a threshold is used, the size of the weight vector can 

be equal to or greater than the number of neuron inputs. There 

are neural networks for which more than one tuning 

parameter per connection can be used. An example of such a 

network is discussed below. 

The "weighting" function is a scalar function of a vector 

argument. The type of "weighting" function determines the 

properties of the neuron in the space of inputs. For example, 

in the most common neuron model, the weighting function is 

defined as the scalar product of the input vector and the 

weight vector, given the threshold: 

                           𝑆𝑃(𝑣, 𝑥) = 𝑣𝑜 + (𝑣′, 𝑋) = 𝑣𝑜 +

∑𝑁
𝑖=1 𝑣, 𝑥 ,                            (2) 

Where N is the number of neuron inputs and 0 , v is the 

threshold. The index p - "perceptron" in the name of the 

function was introduced for the convenience of referring to 

various "weighting" functions. The result of calculating 

function (2) is proportional to the distance to the hyper plane 

defined by the normal vector 'V { v ,...,v } = 1 N and offset 0, 

v in the space of neuron inputs. 

For neurons using the weighting function (2), the most 

commonly used transfer function is the sigmoid 

𝑆𝑃(𝑡) =
𝐼

𝐼 + 𝑒−∝𝑡
 

In many other, practically important cases, the result of the 

weighting function is proportional to the distance to some 

point in the input space. For example, in RBF networks, the 

weighting function is represented as the Euclidean distance to 

the reference point, the coordinates of which can be 

considered as link weights 

𝑆𝑟(𝑣, 𝑥) = (𝑣𝑜 , 𝑋) = 𝑣𝑜 + ‖𝑣 − 𝑥‖ = 𝑣𝑜 +

√∑𝑁
𝑖=1 (𝑣1 − 𝑥1)2                     (3) 

Where the index r means "radial" function. The threshold 0 v 

in function (3), by analogy with function (2), is introduced as 

a weighting factor, and in this case, it has the meaning of the 

"range" of the transfer function. In RBF networks, Gaussian-

type functions are usually used, that is, we can consider a 

transfer function of the form 

𝐹𝑟(𝑡) = 𝑒−∝𝑡 

  

It should be added that in networks with lateral connections, 

for example, in networks of associative memory, an 

additional “setting” input of the neuron u is sometimes 

considered, while before recalculating the network, y = u is 

taken and this input is usually not used in further calculations. 

Temporarily abstracting from the learning algorithms, let us 

try to highlight what common in the operation (recalculation) 

of the selected is feed-forward networks, that is, in MLP, RBF 

and SVM. Without loss of generality, we can consider the 

classification problem into two classes. In this case, the neural 

network has one output. We introduce the following notation: 

X is the vector at the input of the network and z is the output 

of the entire network. We will use subscripts to number inputs 

or neurons in one layer, and upper ones to designate network 

layers. 

Consider a two-layer perceptron. Let y be the output of the 

first layer neuron. At the output of the first layer, we get the 

vector { ,..., } 1 M Y = y y , where M is the number of neurons 

in the first layer. Then the operation of the two-layer 

perceptron is described by the expression 

𝑍 = 𝐹𝑃2 (𝐺𝑃2(𝑉2 − 𝑌))

= 𝐹𝑃2(𝑣𝑜
1

+ ∑

𝑀

𝑖=1

𝑣1
2. 𝐹𝑝𝑖 (𝐺𝑝𝑖(𝑣𝑖

1. 𝑋)))) 

In the two-class classifier mode, the output of the perceptron 

(the desired class) is determined by comparison with some 

threshold T . The input vector will be assigned to the first of 

two classes if z < T , otherwise - to the second one. Therefore, 
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the non-linearity at the output in this case is unnecessary, and 

for the output neuron, you can use the linear transfer function 

Fp(t) = t . Therefore, the operation of a two-layer perceptron 

can be described by the expression 

                                𝑧 = 𝑣0
2 + ∑𝑚

𝑖=1 𝑣1
2. 𝐹𝑝(𝑆𝑃(𝑆𝑃( 𝑣1

′ . 𝑋))                     

(4) 

RBF and SVM networks are based on the use of "support 

vectors", that is, points in the input space chosen in a certain 

way. Let M reference points be chosen, then the operation of 

the RBF network is described by the expression. 

                                    𝑧 = 𝑣𝑖 + ∑𝑚
𝑖=1 𝑣𝑖. 𝐹𝑟(𝑆𝑟(𝑣𝑖. 𝑋))                               

(5) 

And the operation of the SVM network 

                                  𝑧 = 𝑣0 + ∑𝑚
𝑖=1 𝑣𝑖. 𝐾(𝑣𝑖. 𝑋))                                   

(6) 

Where K is the so-called kernel function and has a wide range 

of representations. 

However, it turns out that the kernel functions used in practice 

can be represented in the form (1), while one of the functions 

(2) or (3) will be used as the weighting function. An example 

is the Gaussian kernel: 

𝐾(𝑣, 𝑥) = 𝑒𝜑‖𝑣−𝑥‖2
 

Which exactly matches one of the RBF implementations, or 

a polynomial kernel: 

𝐾(𝑣, 𝑥) = (1 + (𝑣. 𝑥))𝑑 

Which in the case of d = 1 gives a neuron of the "perceptron" 

type. 

Comparison of expressions (4) - (6) shows that in the sense 

of work (direct recalculation or examination) SVM is a 

generalization of RBF and a two-layer perceptron. However, 

RBF and SVM remain different neural network paradigms 

because they use different rules for generating a set of support 

vectors and setting the weights of the output neuron. 

Returning to the original task, namely, to the representation 

of neural networks in the form of modular structures, we see 

that the direct propagation networks under consideration can 

be described using two layers (modules) with the following 

rules for the operation of module elements: 

                              𝑦 = 𝐹(𝐺(𝑣′, 𝑥))𝑎𝑛𝑑   𝑧 = 𝐹𝑝(𝑆𝑝(𝑣2, 𝑦))               

(7) 

In principle, the networks under consideration allow a 

modular representation in the form of sets of neurons, and 

each of these networks requires no more than two types of 

processor elements. There are several approaches to 

describing neural networks in the form of sets of processor 

elements, for example, descriptions using graphs [5]. 

However, there are associative networks that require taking 

into account the cooperative behavior of neurons within the 

layer. 

Therefore, it is proposed to consider the layer as the minimum 

element of the modular representation. 

It is easy to check that, using the weighting function (3) and 

taking into account the cooperative behavior, the modular 

representation (7) describes such recognition methods as the 

method of potential functions, as well as the methods of 

nearest and k-nearest neighbors. 

The first advantages of the modular representation of feed-

forward networks stem from the principle of solving the 

classification problem using such networks. RBF and SVM 

networks are so-called classifiers with input space 

transformation. The essence of using these classifiers is that 

they find such a transformation of the input space Ω → R that 

in the space R the classes become linearly separable, and a 

linear perceptron (linear separating rule) is used to determine 

the boundary between the classes. 

It is proved that MLP and RBF are universal approximators. 

That is, if the boundary between classes exists, then a 

classifier can be constructed that exactly describes such a 

boundary [6–8]. However, there are two fundamental 

problems with the use of classifiers with the transformation 

of the original feature space. The first is the determination of 

the most appropriate transformation functions (in the case of 

RBF, these are the Fr functions) and the second, directly 

related to the first, is the number of support vectors needed to 

achieve linear reparability. There is a contradiction between 

the requirement of linear reparability and a limited number of 

support vectors. 

To resolve this contradiction (reduce the number of support 

vectors), it is possible to use a compromise solution when, 

after transforming the space, in our case, using the "RBF 

module", not a linear, but, for example, a two-layer 

perceptron with a small number of neurons in the first 

(hidden) layer is used . Then one cannot require linear 

reparability in the new space. 

Nevertheless, the modular representation makes sense if it 

allows you to describe the learning process of neural 

networks. MLP and RBF learning algorithms are presented in 
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[1], and SVM in [2]. Without going into a detailed 

description, we note the following: in the networks under 

consideration, the algorithms for changing the tuning 

parameters belong to the layer, although they require 

knowledge of the error at the output of the entire network. 

Therefore, in order to represent a neural network with a 

modular structure, it is necessary to determine what 

properties the module (layer) should have and what functions 

the modular network as a whole should support, regardless of 

the types of modules included in it.Let us define the 

properties that a layer and a modular network should have. In 

general, a fully functional layer should have the following 

properties: 

1) Architecture - the layer has inputs, outputs and a certain 

number of neurons (processor elements) working in parallel. 

Here it should be noted that the parallelism of the work of 

neurons in the layer refers to the "external" observer and 

means only that at each moment of time the outputs of all 

neurons in the layer are determined. 

2) Work - a direct recalculation algorithm, that is, the rules 

for obtaining a result at the outputs for the current values at 

the inputs. 

3) Training - an algorithm for changing the settings and 

determining the error at each input by an error signal or 

known errors at each of the outputs of the module (layer), and 

also, which is very important, the rules for removing or 

adding inputs or outputs according to the number specified 

from the outside and / or according to the internal algorithm 

of the layer. 

Consider the purpose and use of the functions of the layer 

(module). First, it should be noted that not all features are 

required. Depending on the type and purpose, the module 

may not contain neurons and may not have a learning 

algorithm, that is, it may not contain tuning parameters. In 

addition, the ability to determine the error at each input is a 

property of the learning algorithm of this module and 

determines the limitations in building a modular architecture. 

Therefore, for example, if it is supposed to use an MLP layer 

with learning by error back propagation, then the subsequent 

module must determine the error for each of its inputs, since 

the learning algorithms of the MLP layer use the value of this 

error. For some implementations of the RBF layer in training 

mode, it is sufficient to simply know that there is an error on 

a given input. 

In the case of SVM modeling, there are two possibilities for 

organizing training in a modular representation: both the 

layer can receive a signal about the presence of an error at the 

output and the corresponding reference vector (neuron) will 

be deleted, or obtain information about the numbers of 

deleted inputs of the subsequent module. In this case, the 

corresponding outputs (support vectors) will be removed 

from the layer. The second option is universal, since the 

modular representation similarly implements the algorithms 

for removing unnecessary links (pruning), which are used in 

many feed-forward networks. 

The presence of rules for removing inputs and outputs in 

modules ensures the implementation of mechanisms for 

removing unnecessary connections (tuning parameters) and 

neurons (processor elements). The simplest algorithm is to 

remove links that have zero weight. 

In the example under consideration, where the second layer 

of each of the networks contains one neuron, deleting the 

connection means deleting the input of this layer, which 

means that the outputs of the corresponding neurons of the 

first layer do not affect the result of the network, and the 

corresponding neurons of the first layer can be deleted. The 

described mechanism corresponds to the last stage of SVM 

training. 

The mechanism for adding inputs and outputs makes it 

possible to implement network options that either involve the 

creation of new support vectors by including a new part of the 

training set or based on specific heuristics. It is important that 

the number of inputs or outputs of a module affects only the 

number of external connections of neighboring modules but 

does not require knowledge of either the operation algorithm 

or the learning algorithm of adjacent modules. In addition, the 

number of inputs and outputs of the entire modular network 

remains unchanged. 

Let the modules have the listed properties, and then it is not 

difficult to single out the functions that should be provided by 

the modular network as a whole. Moreover, it is obvious that 

the functions of the network should not imply “knowledge” 

about which particular learning or work algorithm 

implements a particular module. 

Then the modular network should provide: 

1) Architecture - inputs, outputs and a number of modules 

(layers) connected by directional connections. The direction 

of the links specifies the direct recalculation of the network. 

2) Work - the sequence of recalculation of modules and the 

rule for generating the output of the entire network. 

3) Training - obtaining information about an error in the 

network, the rules for propagating an error through the 

network, the sequence of recalculating modules during 
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training, and also ensuring the coordination of the number of 

connections in case of a change in the number of inputs or 

outputs for modules. 

In addition to the above functions, for modeling some types 

of networks, rules for automatically adding or removing 

modules of a given type can be introduced. 

3. Modular representation of networks with feedback and 

lateral connections: 

Most networks with feedback and lateral connections have a 

natural representation in the form of modular 

 Structures. The most common networks with feedback and 

lateral connections are recurrent, associative and associative-

projective networks. 

Recurrent networks are most widely used in time series 

analysis, in sentence parsing problems, and others, usually 

where the data represents a certain sequence. Recurrent 

networks are built based on a multilayer perceptron and 

include all types of feedback. There are four types of 

recurrent networks, which are shown in Fig. 1. Networks 

differ only in the way they form feedback loops and usually 

have a two-layer architecture. 

The Frasconi-Gori-Soda recurrent network [9] is shown in 

fig. 1a and is a network with local feedback. In this 

architecture, the output of each neuron in the hidden layer is 

connected to the input of the same neuron. In the architecture 

proposed by Narendra and Parthasarathy [10] (Fig. 1b), the 

entire network is covered by feedback, that is, the output of 

each neuron of the last layer is connected to each of the 

neurons of the first hidden layer. Elman [11] (Fig. 1c) 

considered the use of a feedback network covering only the 

hidden layer. That is, the output of each neuron of the hidden 

layer is connected to the inputs of all neurons of the same 

layer. Williams and Zipler [12] (Fig. 1d) considered the 

possibility of using a "fully connected" recurrent network, in 

which the output of each neuron of the network is connected 

to the inputs of all neurons on each layer.In all considered 

recurrent networks, feedback acts as a delay buffer for one 

cycle, that is, in addition to the input vector, the state of the 

outputs of the corresponding neurons at the previous 

recognition cycle is fed to the network neurons. There are 

modifications of recurrent networks in which the delay buffer 

performs a more complex function, for example, a delay with 

accumulation, when the current state of the neurons is added 

to the contents of the buffer, taken with a certain coefficient. 

The new state of the buffer is determined by the formula 

                                              𝐵𝑖+1 =∝ 𝐵𝑦𝑖 + (1−∝)𝐵𝑖.                         

(8) 

Where B is the state of the buffer, Y are the outputs of neurons 

at cycle t, and 0 1 < < α is the coefficient, which is often called 

the moment. 

Often, the input of recurrent networks is not a separate 

element of the sequence, but a subsequence of a certain 

length. In this case, a conventional multilayer perceptron can 

also be used to recognize sequences, and the delay buffer is 

used outside the network to form the input vector. On fig. 

Figure 2 shows examples of using a multilayer perceptron 

(Fig. 2a) and a recurrent network (Fig. 2b) for sequence 

analysis. 

 

Figure 1-a 
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Figure 1- b 

 

 

Figure 1- c 
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Figure 1- d. 

Figure (1-a, 1-b, 1-c, 1-d): Examples of recurrent networks based on a multilayer perceptron. 

Directly from Fig. 2 shows that, using only two types of 

layers - MLP and delay layer (Delay), it is possible to build 

both considered networks. An example of building these 

networks using modules that implement the corresponding 

layer is shown in fig. 3. Other architectures of recurrent 

networks also appear in an obvious way. 

Hopfield-type associative networks contain one layer of 

neurons with lateral connections [8 -11]. In terms of 

functioning, the main difference between associative 

networks and networks of direct distribution and recurrent 

networks is not so much the type of connections as the 

process of network convergence. Network convergence is the 

process of successive recalculation of the network several 

times for the same total input action, which allows the output 

vector of the network to shift to the center of the attractor. In 

other words, after convergence, one of the previously stored 

vectors appears at the output of the associative layer. 

 

 

  

 

  

 

 

 

 

 

  

 

         

Figure 2- a. 
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Figure 2- b 

Figure 2 (a, b)-  An example of using networks for time series analysis. 

We said above that for the functioning of a modular neural 

network, we need some data flow control algorithm (router), 

which does not depend on the number or types of modules 

included in the network. One of the requirements for the 

router is the ability to automatically detect the presence of 

cycles in the "designed" modular network and the ability to 

set the parameters for working with each of the cycles. The 

parameters of the cycle, in fact, are the number of 

recalculations of modules within the cycle per one input 

vector or a sign of stopping the recalculation. Here the input 

vector has the meaning of the vector given to the input of the 

cycle, and not the entire network. Cycles in modular networks 

are considered in more detail in [12 -15]. 

In Hopfield-type associative networks, the algorithm of 

neuron operation is the same as the algorithm used in MLP. 

It turns out that if we can set the sign of the end of the cycle 

count, then in the modular representation, in order to 

implement this type of associative networks, we do not need 

to introduce an additional type of layer. If in fig. If we remove 

the output layer of neurons, we get an implementation of 

associative memory, where for one input vector; recalculation 

in the MLP-delay-MLP cycle is performed until the activity 

of neurons at the output of the MLP layer stops changing. 

In the case of associative-projective networks [16- 20], the 

modular representation is generally natural, since in networks 

of this type not only the functions of each of the layers are 

defined (in these networks there are several types of layers 

that differ in the recalculation algorithm and functions 

performed), but almost arbitrary data flows between layers. 

4. Using the Modular View: 

The advantages of modularizing recurrent and social neural 

networks, as well as feed-forward networks, follow from the 

way the architecture is built in a modular implementation. 

Since the network for solving a specific problem is no longer 

implemented by a single algorithm, but is presented as a 

unified set of algorithms related exclusively to the layer, then, 

having the means to dynamically (or interactively) change the 

type of layer used, arbitrarily combine layers and set the 
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direction of data flows, we get the opportunity to quite simply 

“design” a neural network that most successfully solves a 

specific applied problem. 

 

 

  

 

 

 

 

 

 

 

 

 

  

 

Figure 3-a 

 

 

 

 

 

 

 

           

 

 

 

Figure 3-b. 

Figures 3(a ,b ): Example of Modular Networks for Time Series Analysis. 
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A tool that allows you to interactively design a neural 

network from modules for solving applied problems is CAD 

INN [20]. 

Consider a model problem illustrating the advantages of a 

modular representation. As an example, take the 

classification problem known as XOR. The problem is 

formulated as follows: four points with coordinates (0.0), 

(1.1), (0.1) and (1.0) are given on the plane. The first two 

points belong to one class, the third and fourth to another. At 

one time, Minsky and Papert showed that a single-layer 

perceptron does not solve this problem, and it has become a 

classic for testing neural networks. It is known that the 

minimal architecture of MLP (Fig. 4a), solving this problem, 

contains two neurons and five connections (weights or 

adjustable parameters). 

However, if instead of using “classical” neural networks, we 

put two RBF layers in series, then we need only two neurons 

and three connections to solve the problem (Fig. 4b). In this 

case, the links are three adjustable parameters that are the 

coordinates of the centers of the support vectors. In our case, 

the transfer function can be practically any, in particular, 

linear. Any of the four points can be chosen as a reference 

vector in the first layer. Let a point with coordinates (0,0) and 

a linear transfer function be chosen. Then at the output of the 

neuron of the first layer for 4 input vectors (coordinates of 

points) we will have three points now in one-dimensional 

space (on the line), with coordinates (0), ( 2 ) and (1). Both 

points of the second class at the output of the layer are 

indistinguishable. Taking as a reference vector for the second 

RBF layer a point with coordinate (1) and a linear transfer 

function, as well as a threshold of 0.1 (3), we obtain a modular 

network that solves the problem. 

The "new type" architecture shown in Fig. 4b quite fully 

illustrates the potential of the proposed approach to modeling 

neural networks [21. 22]. 

Known neural network paradigms do not provide the ability, 

for example, to use RBF neurons or layers sequentially. This 

is due to the problems of constructing learning algorithms for 

such a network. However, when solving applied problems, by 

examining data using known types of networks and learning 

algorithms, it is possible to determine what kind of 

transformation of the input feature space “simplifies” the 

solution. By isolating individual layers in trained networks 

and combining them with layers of other types, we get a 

powerful tool for solving classification problems, and more 

broadly - recognition, of arbitrary complexity. 

5. Conclusions: 

Through the foregoing, we see that this research analyzes 

several different models of neural networks used on a wide 

range of applications. Accordingly, it becomes clear that the 

main component of the structures of these networks is a layer 

of neurons. 

It has been established that if we consider layers as 

independent elements of the architecture, the number of 

different layers required to model the studied neural network 

models is less than the number of models themselves. 

Based on the analysis carried out, it is proposed to consider 

the layers of neurons as units or elements of the architecture 

of modular networks. The requirements for the properties of 

the layers and the functioning of the modular network as a 

whole are formulated. A typical example shows that the 

representation of neural networks in the form of unit layers 

allows not only to model well-known models, but also to 

build structures that have not been studied before. 

Note that no set of studied units gives a viable neural network. 

The use of modules in the construction of neural networks of 

various architectures requires the introduction of certain rules 

and restrictions. The rules for using modules when building 

neural network architectures will be discussed in subsequent 

publications. 

Of particular interest are the problems of training modular 

networks with an arbitrary composition of modules. In an 

arbitrary network, some modules can be trained with a 

teacher, some without, and some modules may not require 

training at all. The latter type includes the principal 

component method, which allows one to reduce the 

dimension of the original feature space. 

Most developers train modules separately and obtain a 

general solution to the problem as a combination of solutions 

from individual networks. However, cooperative learning is 

of great interest, when the results at the outputs of some 

modules are interpreted as signals for learning others. We see 

the continuation of theoretical research in the field of modular 

neural networks, in particular, the study of cooperative 

learning methods. 
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