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I. INTRODUCTION  

The current focus of advancement in materials chemistry 
research centers around the utilization of composite electrodes, 
rooted in atomic-level engineering and the control of multilayer 
structures. The primary area of study in the sphere of water 
splitting is the formation of inexpensive and effective electro 
catalysts. Hydrogen generation by water electrolysis is 
receiving increasing attention due to the benefits of good 
flexibility, high efficiency, and minimal production of 
carbonaceous species. Ere, several strategies such as changing 
the crystal structure and generating the microstructure are 
extensively employed to boost the inherent CA and double the 
number of vigorous positions in catalysts made of nonprecious 
metals. Particularly, the alloying of several elements into one 
phase could disclose peculiar physicochemical characteristics, 
including higher CA [1]. Effective sampling of catalyst 

materials has also advanced, and experimental catalyst 
development for a diversity of processes and constituent 
elements has actively utilised combinatorial investigation of 
vast alloy composition spaces [2]. Due to the close correlation 
between the conductivity and intrinsic activity of materials and 
the electrocatalytic performance, great efforts have been made 
to adjust electronic properties and design multilayer systems 
[3]. In the electrocatalytic water-splitting process, a very stable 
and inexpensive material is urgently needed for the OER, which 
is a vital step in both water-splitting systems and rechargeable 
metal-air batteries. [4, 5].  

The OER determines the rate of energy conversion and also 
serves as a testing ground for the manufacture of integrated 
OER electrodes with high activity and high conductivity. 
However, there is still a significant obstacle to overcome in the 
formation of low-cost, highly effective OER electrocatalysts 
that can be applied industrially on a wide scale. Similarly, the 
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formation of Oxygen (O2) and with strong O2 adsorption to favour the lessening of O2. The GBR approach is applied to build a highly 

accurate, easily generalizable, and effective ML model. The proposed work is analysed using Python software. The findings show that the 

separate charities of correlated metal atoms close to the responsive site are mixed to form the adsorption energy, which is clear from a 

thorough analysis of the data. It is suggested that a highly effective HEA catalyst composed of Co-Fe-Ga-Ni-Zn and Al-Cu-Pd-Pt be 

exploited, which is an effective method for further enhancing the ORR CA of potential HEA catalysts. An instruction manual for the logical 

design and synthesis of HEA catalysts' nanostructures is provided by the proposed research. 
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ORR is one example of a crucial response in the hydrogen cycle. 
The conception of affordable catalysts for the oxygen reduction 
process (ORR) has a significant influence on fuel cells in the 
direction of extremely effective low-emission energy 
conversion [6]. Contemporary compounds are quite far from 
perfect and cannot satisfy the requirements for manufacturing 
application that is economically feasible on a global scale. 
Further developments are therefore urgently needed to reach 
that end aim [2]. However, to close the gap between theoretical 
calculations and real necessary potentials, efficient catalysts are 
required due to the slow kinetics of the OER, particularly the 
enormous dynamic barrier caused by the four-step proton-
coupled electron transfer process. Although the excellent 
efficiency of several noble metal-based materials as OER 
electrocatalysts has been established, their high cost and 
unavailability significantly hinder their widespread 
commercialization. Better catalysts can be produced by 
customising the HEA composition to increase the supply of 
these adsorption energies. This is helpful because, to fulfil the 
rising global energy demand and battle climate change, new 
substances are particularly wanted to enhance chemical 
processes for the conversion of supportable energy. This 
motivates research on OER electrocatalysts based on non-noble 
metals [7].  

Chemically intricate catalytic materials have drawn a lot of 
consideration from researchers in the domains of materials 
science and engineering. It has been established that better 
qualities may be obtained for the custom of current catalytic 
materials in several significant applications, including 
wastewater cleanup, catalysis, energy storage, and fuel cells. 
Metallurgists have suggested a similar design strategy to 
increase the chemical complexity of alloys by synthesising 
multi-principal element alloys, commonly known as high 
entropy alloys (HEAs), for improved mechanical qualities. 
Some HEAs moreover display functional traits that are 
promising, such as super-paramagnetism and superconductivity 
[8]. HEAs, which combine five or additional rudiments into a 
solid-solution stage crystal with a steady fraternization entropy, 
have recently gained popularity as a brand-new class of 
catalytic materials. The routine of multimetal HEAs as catalysts 
for energy adaptation and water splitting, such as oxygen 
evolution processes, has been identified as a viable replacement 
for traditional noble metals and metal oxides [10]. HEAs are 
immensely developing as a new type of catalyst in the alloy 
industry with a distinctive microstructure and exceptional 
physicochemical and mechanical characteristics, which have 
produced an inordinate deal of attention worldwide [9, 10].  

It has been suggested that combining several metals into an 
alloy might provide unanticipated physicochemical 
characteristics, such as higher tensile strength, CA and 
corrosion resistance. HEAs are a novel class of materials that 
are shaped by mixing five or additional rudiments in an alloy 
with equal or nearly equivalent molar percentages (HEAs) [11, 
12]. HEA has received a ration of kindness recently and might 
offer solutions to the problem at hand [13]. ML techniques have 
been proven to efficiently search for the intended optimum and 
to discover patterns that people may supervise in the expanding 
chemical space where the structure-property connection grows 
more complicated [14, 15]. The rest of the work is organized as 
follows, section 2 reveals the literature survey of the work, 
section 3 portrays the research problem definition and 

motivation, and section 4 depicted the proposed research 
methodology. Accordingly, section 5 illustrates the 
experimentation and result from the discussion part, and section 
6 demonstrates the research conclusion. 

 

II. LITERATURE SURVEY 

Chemically intricate catalytic materials have drawn a 
portion of devotion from researchers in the provinces of 
materials science and engineering. Numerous enlightening and 
beneficial HEA practices and methodologies have been 
revealed in recent years. Though there have been roughly 
thorough reviews on the topic of HEA preparation, there is not 
much focus on the most recent HEA preparation methods for 
catalytic applications. To increase the ORR catalytic movement 
of talented HEA substances by optimising the HEA superficial 
construction, Wan et al [16] proposed an ML-assisted finding 
of extremely well-organized HEA catalysts. This 
recommendation makes custom of a highly efficient HEA 
catalyst. 

The composition of HEAs can be varied greatly to optimise 
their catalytic characteristics. Such complex surfaces have a 
large amount of multi-element atomic surface sites, which help 
to provide a nearly continuous range of reaction intermediate 
adsorption energies that characterise CA. Fan et al [17] 
proposed HEA electro-catalytic electrode for alkaline glycerol 
valorization coupled with acidic hydrogen generation. With a 
low overpotential and a strong selectivity for format products, 
this approach confirmed attractive performance for GOR 
electrocatalysis.  

Pt-based HEA nanoparticles were proposed by Chen et al 
[18] as functional electrocatalysts for hydrogen and oxygen 
evolution. ACS A bottom-up shear-assisted liquid metal 
superficial decrease technique is described for the manufacture 
of HEA nanoparticles at room temperature. An ML-aided 
optimization of HEA CA was suggested by Clausen et al [19]. 
This approach demonstrates the viability of unbiased in silico 
pre-screening and catalyst candidate development, which will 
allow us to overcome the previously intractable barrier of 
finding HEA catalysts. Computational methodology, which is 
openly accessible on GitHub, is intended to help other research 
teams rapidly find promising HEA catalysts. A HEA with Mo-
Coordination was suggested by Mei et al [20] as an effective 
electrocatalyst for the OER. Discovery establishes a procedure 
for generating effective, economical OER electrocatalysts, 
which may speed up the development of OER catalysts. 

Sharma et al [21] proposed a low-cost HEA for a high-
efficiency oxygen evolution process. The technique is an 
affordable, simple, and scalable process for making 
nanocrystalline HEA materials for an OER investigation. 
Additionally, this research will contribute to a novel, high-
performance, high-entropy OER electrocatalyst while 
improving the understanding of the mechanisms at the 
CFGNZ/electrolyte interface. This will help build OER 
catalysts that are more effective shortly. These results lend 
credence to the idea that the multi-component HEA made up of 
Co, Fe, Ga, Ni, and Zn components is a superb OER catalyst, 
with the making of metallic oxide serving as the active 
ingredient and is extremely important for the stability of 
CFGNZ alloy. 
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Li et al [22] proposed an oxygen evolution anode made of a 
single phase of the HEA (FeCoNiMnMo) working for more 
than a thousand hours in an alkaline solution. Mo is valuable for 
enhancing oxygen evolution performance; however, it dissolves 
readily in alkaline solutions. HEAs can prevent the dissolving 
of metals, although it is challenging to evenly dissolve the 
components with significant physical variations. Infinite OER 
candidates are available for effective water electrolysis due to 
the construction and enterprise of the single-phase HEA 
electrode. 

HEA nanoparticles produced from polymetallic MOF were 
suggested by Wang et al [23] as potential electrocatalysts for 
the alkaline oxygen evolution process. Due to their distinct 
features, HEA-based materials have recently been intensive 
exploration as potential catalysts in water electrolysis. The 
manufacture of reliable, effective high entropy catalysts is still 
difficult. Here, a straightforward and scalable method for 
constructing enhanced HEA nanoparticles from the 
polymetallic metal-organic framework is disclosed. Face-
centred cubic HEA is encased in a very thin carbon shell in the 
new core-shell nano-architectures. This work indicated the 
viability and benefit of using strong, long-lasting alloys with 
high entropy to catalyse the electrochemical water-splitting 
process. 

HEA with Mo-Coordination as an Efficient Electrocatalyst 
for OER was proposed by Mei et al [24]. It is the most talented 
technique for storing and converting renewable energy is 
electrochemical hydrolytic hydrogen generation. The kinetic 
sluggish OER, however, restrains the anode's ability to 
electrolyze water. Modern OER catalysts are constrained by 
their high noble metal concentration and poor OER activity. 
This technique described a method for producing stable and 
effective HEA catalysts using molecular coordination. Zhang et 
al [25] proposed a method for constructing a metal (oxy) 
hydroxide surface on a HEA for serving as an electrocatalyst for 
the OER that participates in the lattice oxygen system. By 
building metal (oxy) hydroxides in situ on the high entropy 
FeCoNiAl alloy, a lattice-oxygen-contributed OER 
electrocatalyst was produced (HEA) [26- 29]. 
 

III. RESEARCH PROBLEM DEFINITION AND MOTIVATION 

HEAs have been applied in the scope of catalysis because 
they have a large chemical space due to the tremendous 
variability of inherent surface and element mixtures 
complexity, which enables them to function as catalysts with 
greater activity, selectivity, and stability [30-33]. In numerous 
distinct processes, including the hydrogen evolution reaction 
(HER), ORR, carbon dioxide reduction reaction (CO2RR), and 
methanol oxidation, HEAs have so far been examined as highly 
effective catalysts [34-36]. These investigations have been 
primarily experimental. The lethargic kinetics of ORR and OER 
is a key issue which hinders the practical application of fuel 
cells and metal-O2 batteries [37-38]. However, the slow OER 
typically calls for a significant over-potential [39-41]. A 
catalyst with high activity is required to speed up the OER's 
kinetics and lower the reaction over potential [42-44]. 

HEAs, which make custom of large chemical space, have 
lately been utilized in the range of heterogeneous catalysis. 
Huge chemical space, however, also poses formidable 
difficulties for the thorough investigation of HEAs using 

conventional trial-and-error methods [45-46]. The ORR CA of 
a huge quantity of oversensitive sites on HEA surfaces is thus 
investigated using the ML approach. The classic DFT method 
can be significantly outperformed computationally by the ML 
approach while still predicting CA with good accuracy [47-48]. 
Additionally, by illuminating the nonlinear link between a 
material's structure and properties, ML techniques can disclose 
the intrinsic description of catalytic reactions. For dissimilar 
kinds of batteries to be commercially successful, cost-efficient, 
high-activity, and stable bi-functional catalysts for oxygen 
reduction and evolution processes (ORR/OER) are a 
requirement. Consequently, the research motivates to present of 
the ML-based optimization technique for oxygen evolution and 
reduction. 

 

IV. PROPOSED RESEARCH METHODOLOGY 

The HEA's suitability as catalysts is influenced by a total of 
variables, including their elemental content, mode of 
production, and surface shape. High entropy electrocatalyst 
applications are hampered by the prevalent high overpotential 
caused by insufficient study and uncertain catalytic mechanisms 
of HEA electrocatalysts. Developing highly efficient catalysts 
for ORR and OER is crucial for water splitting and rechargeable 
metal-oxygen batteries. Therefore, the ML technique is 
proposed to examine the CA of loads of sensitive places on 
HEA surfaces in the ORR and OER. Co-Fe-Ga-Ni-Zn and Al-
Cu-Pd-Pt are two examples of HEAs that may be employed as 
starting points to adjust the composition of disordered multi-
metallic alloys to alter the efficiency and activity of the 
reduction of oxygen to significantly decreased compounds. 

 

 
 

Figure 1. Block Diagram of the Proposed Work 

 
The block diagram of the proposed work is presented in 

figure 1. The proposed work combining DFT with a supervised 
ML model is constructed based on the GBR algorithm that 
predicted the O2 adsorption energies with a high overpotential 
of all surface sites on the two HEAs. This attains simplicity, 
generalizability, and high accuracy with the proposed 
technique. A large compositional space is provided by HEAs 
for adjusting these features. Consequently, the research reports 
the usage of the Bayesian optimization model based on HEA 
active compositions to suppress the formation of Oxygen (O2) 
and with strong O2 adsorption to favour the decrease of O2. 
Increasing the chemical complexity of the catalyst is one 
technique to adjust the CA. Typically referred to as HEAs, these 
alloys contain five or further significant components in a single 
solid solution phase. For example, Schuhmann and coworkers 
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prepared Co-Fe-Ga-Ni-Zn and Al-Cu-Pd-Pt nanoparticles 
(NPs), produced by blasting these metals into an ionic liquid, 
showed electro CA for ORR and OER that was comparable to 
Pt/C. 

 

A. High-Entropy Alloys 

The composition space for (HEAs; also known as single-
phase compositionally complicated solid solutions) is 
extremely broad, allowing for the optimisation of catalytic 
characteristics. A near-continuum of the reaction intermediate 
adsorption energies, which are indicative of CA, is produced by 
the numerous multi-element atomic surface sites present on 
such complex surfaces. The spreading of these adsorption 
energies can be enhanced by customising the HEA composition 
to provide better catalysts. This is advantageous because novel 
promoters are particularly desired to speed up chemical 
reactions for sustained energy conversion to satisfy the rising 
global energy demand and to stop climate change. The ORR is 
one example of a crucial reaction in the hydrogen cycle where 
current materials are still far from optimal and cannot match the 
requirements for economically feasible development 
implementation on a global scale. To achieve that final goal, 
more innovations are therefore urgently needed. 

An effective sampling of catalyst materials has also 
advanced, and combinatorial exploration of enormous alloy 
structure spaces has been actively exploited as a technique in 
empirical catalyst development for a change of processes and 
constituent elements. However, when the assortment of 
constituent elements rises, the combinatorially enormous 
quantity of alternative compositions also expands, making it 
impossible to complete individual point testing in a reasonable 
amount of time (see Supporting Information (SI)). As a 
consequence, it becomes necessary to sample the composition 
space more effectively, perhaps by directing the search with the 
help of a surrogate function. For intelligent sampling issues, 
Bayesian optimisation of a Gaussian process is a workable 
solution. Bayesian optimisation has also been applied to 
improve the CA for methanol oxidation of ternary alloys. To 
ascertain whether such a search is tractable in the first place, it 
is essential to establish in advance many tests would be required 
in such a compositional search. 

 

Co

Fe

Ga

Ni

Zn 

 
 

Figure 2. Geometric Structure of the HEA Catalyst 

 
The geometric layout of the Co-Fe-Ga-Ni-Zn and Al-Cu-

Pd-Pt HEA Catalyst is shown in figure 2. Few research have 
been done, therefore modelling of highly diverse and complex 
surfaces' CA is still in its infancy. Research is also being done 

on the modelling of other catalytically relevant characteristics, 
such as surface stability under reaction circumstances. We 
suggest a method to estimate the number of experimentations 
obligatory using a model that has been found to accurately 
forecast experimental trends for electrocatalytic ORR across 
hundreds of various alloy compositions within the Co-Fe-Ga-
Ni-Zn and Al-Cu-Pd-Pt system. As a consequence, we 
anticipate the model to duplicate the difficulty of a similar 
experimental search and hence be adequate as a stand-in for 
simulating the majority of the required trials. Thus, the number 
of tests required for upcoming composition optimisations can 
be approximated by sampling alloy compositions from the 
model. 

Utilising the Co-Fe-Ga-Ni-Zn and Al-Cu-Pd-Pt HEAs as 
model systems for composition optimisation, we propose alloy 
compositions for which high CA for the ORR are predicted 
using the kinetic perfect in conjunction with Bayesian 
optimisation. By doing this, one can obtain a sample of as few 
compositions as possible, and the estimated quantity of research 
essential to find activity maxima is obtained. The estimated 
optima are then put through an experimental validation process. 
Additionally, it is likely to verify with some degree of assurance 
that all local and global optimal compositions have been 
identified by the Bayesian optimisation by selecting the entire 
interplanetary of alloy arrangements with the model, for 
instance, in 5-atomic percent (%) intervals. 

1. Density Functional Theory (DFT) Method  

The theoretical investigation of the catalytic performance of 
all the sites using simply the conventional DFT method is 
greatly complicated by the millions of various active-site 
settings of HEAs and the existing restricted computational 
implementation capability. Finding new techniques or 
improving existing ones can significantly lower the overall 
computational cost, making this among the most plausible 
approaches for overcoming the processing power limit. Because 
it is so beneficial in these two areas, ML is drawing attention 
from all across the world. The ML approach can predict 
catalytic activities with excellent accuracy while drastically 
cutting the computational cost compared to the conventional 
DFT method. Additionally, by illuminating the nonlinear link 
between a material's structure and properties, ML techniques 
can disclose the intrinsic description of catalytic reactions. The 
cutting-edge ML-assisted theoretical computations method is 
now a rising star in the catalysis industry as a result. 

When compared to the full experimental materials 
screening, this combination of ML and DFT can significantly 
lower the charge of resource discovery. For ML, however, only 
the costly screening via high-throughput experiments would 
suffice. It has been claimed that binary systems successfully 
make routine of the periodic DFT to calculate both the ∆𝐸𝑓 and 

the structural information of a system. However, to concept, the 
HEA, numerous potential atomic configurations essential to be 
hypothesised and confirmed through thermodynamically 
advantageous structures. 

Even though all information can be collected, the routine 
computation using DFT alone would be time-consuming. 
However, the stability of some quandary HEA kinds was 
initially examined in this work. Then, the relationship between 
O* fascination vitalities and the ORR volcano curvature 
corresponding to the ORR CA of reactive locations on HEA 
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surfaces was developed. To estimate the O* captivation serves 
of masses of mercurial situates on various crystal facets of 
HEAs with high accuracy, an excellent ML model was built 
through suitable feature engineering, data extraction, and model 
validation techniques. To identify highly effective HEA 
catalysts and identify the source of their ORR activity, 
additional analysis of the expected findings and the ML models 
was performed. 

The details of the DFT scheming and ML forecast model 
can be founded in the following SI. The ∆𝐸𝑓 of Co-Fe-Ga-Ni-

Zn and Al-Cu-Pd-Pt-based HEAs can be calculated as equation 
(1). 

The following SI may be applied to establish the specifics 
of the DFT calculation and ML prediction model. Al-Cu-Pd-Pt 
and Co-Fe-Ga-Ni-Zn-based HEAs' ∆𝐸𝑓can be computed using 

equation (1). 

∆𝐸𝑓 = 𝐸𝑡𝑜𝑡𝑎𝑙
𝐻𝐸𝐴 (𝐶𝑜𝐹𝑒𝐺𝑎𝑁𝑖𝑍𝑁_AlCuPdPt) −

 ∑ (𝑐𝑖𝐸𝑡𝑜𝑡𝑎𝑙
𝑒𝑙𝑒𝑚𝑒𝑛𝑡)𝑖 (1) 

Where 𝐸𝑡𝑜𝑡𝑎𝑙
𝑒𝑙𝑒𝑚𝑒𝑛𝑡the total energy for each element is 

determined from its natural form and 

𝐸𝑡𝑜𝑡𝑎𝑙
𝐻𝐸𝐴 (𝐶𝑜𝐹𝑒𝐺𝑎𝑁𝑖𝑍𝑁_AlCuPdPt)is the total energy for the 

HEA system.The 𝑐𝑖 is the element concentration. 
In identical supercells and using the same DFT parameters, 

the energy of the reference molecules CO and O2 in the gas 
phase was estimated. The predicted adsorption energies for O 
and CO are 

∆𝐸 ∗𝐶𝑂 = 𝐸 ∗𝐶𝑂 − 𝐸∗ − 𝐸𝐶𝑂 

∆𝐸𝑂∗ = 𝐸𝑂∗ − 𝐸∗ −
1

2
𝐸𝑂2

 

Where ∆𝐸 ∗𝐶𝑂 and ∆𝐸𝑂∗are the adsorption energies of CO 
and O, respectively; 𝐸 ∗𝐶𝑂 and 𝐸𝑂∗are the relaxed DFT energies 
with the adsorbate; E_* is the DFT energy of the slab without 
any adsorbate; and 𝐸𝐶𝑂  and 𝐸𝑂2

are the references' molecular gas 

phase DFT energies. The DFT-calculated framework 
parameters of the constituent elements in the slab's top layer 
were preferred as the weighted average for the matrix stricture. 
The consequence of strain on a genuine HEA surface should be 
most precisely accounted for by this CA. 

 

2. Gradient Boosting Regression 

The GBR is among the most challenging models to optimise 
because of the numerous hyper-parameters involved. The 
ensemble method and the individual learners each have their 
own sets of parameters, which is due to the boosting algorithm 
in GBR and the cause of this complexity. The ideal hyper-
parameters are configured to employ a learning rate of 0.125, a 
loss of LAD, a mass tree depth of 5, a minimum sample size per 
leaf of 2, a minimum sample split of 0, and 500 estimators. Once 
the best model has been selected, the feed-forward time is about 
the same as it is for the other two algorithms. 

The model's convergence speed is governed by the learning 
rate. Thus, a learning rate that is too high could cause the model 
to converge on a local minimum rather than the ideal solution, 
whereas a rate that is too low would prevent convergence 
altogether. Hyper-parameters for the GBR and those for the 
regression trees are tuned in addition to the hyper-parameters 
defining the GBR. A grid search between 0.07 and 0.125 was 
applied to optimise the learning rate. During this grid search, a 
model was incrementally built and evaluated for parameter 

values that fell within the predetermined range, allowing for 
optimal learning rate tuning. Here, GBR makes a model in a 
forward, stage-wise manner, allowing for optimisation on any 
loss function that can be differentiated. 

 

ML Process 

Although the adsorption energies of the masses of 
combative sites on HEA may be calculated using the volcano 
bend, it is nearly impossible to bridge the CA and the adsorption 
energies of O*. It is now imaginable to ascertain the activity of 
millions of sites on HEAs appreciations to the introduction of 
ML, which links the local nuclear situation surrounding the sites 
with the adsorbate strength. For the initial dataset for generating 
ML models, 360 volatile sites on HEAs with various Miller 
index outsides and constituent rudiments were elect at random. 
DFT simulations were then used to determine the fascination 
dynamism of OH* radicals on these sites. 

The first necessary condition before any ML-based 
prediction is the identification and categorization of materials, 
or mapping them according to their characteristics (descriptors), 
which could be accomplished using ML classification models. 
For the categorization of the electrocatalyst, ML algorithms are 
exploited. Additionally, we made an effort to categorise product 
categories by grouping every potential product into two or three 
different, larger groups. Four ensembles of ML algorithms were 
assessed to examine the predictability of various models for 
locating missing data. The O2 reduction responses training data 
were utilized to train the algorithm. After that, the algorithms 
were put into practice to forecast the test dataset's faradic 
efficiency, applied potential (AP), and present density. 
Automatic hyper-parameter tuning is done with the help of the 
ML hyper-parameter optimisation module. 

Each classification method is assessed using its accuracy 
score (%), which is calculated as the proportion of correct 
predictions to all other predictions. Several statistical measures, 
including the mean squared errors (MSE) and the root, means 
squared errors (RMSE), were employed to assess each ML 
algorithm's performance for prediction. 

𝑀𝑆𝐸(𝑦, �̂�) =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛−1
𝑖=0    (2) 

𝑅𝑀𝑆𝐸(𝑦, �̂�) = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛−1
𝑖=0    (3) 

Where 𝑦𝑖  and �̂�𝑖 stand for the true and expected standards, 
respectively, and n denotes the sample size. Metallic, non-
metallic, and chemical catalysts are the three primary categories 
into which O2 electrocatalyst materials are commonly divided 
in the predictive algorithm. The physicochemical and 
electrocatalytic possessions of each group of electrocatalyst 
materials vary. The efficiency of an electrocatalyst material 
may therefore be constrained and limited to the category of 
catalyst materials to which it belongs. Here, classify various 
electrocatalyst materials into multiple categories based on their 
performance using an ML classification model. 

3. Bayesian Optimization 

Bayesian optimisation was exploited to select the samples 
for the inquiry. A technology that enables a guided search in an 
uncharted multidimensional space is Bayesian optimisation. As 
a result, it may be utilized in conjunction with trials to find a 
catalyst with the best activity speedily. This optimisation is 
utilised in this study to identify the Co-Fe-Ga-Ni-Zn and Al-Cu-
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Pd-Pt component that is most conducive to the oxygen 
oxidation reaction. The random forest regression framework 
that was developed on the experimental information was used 
in conjunction with the Bayesian optimisation to generate a 
diversity of ideas for additional research. It is crucial to first 
think about which parameters will be utilised as the parameters 
for the input and output before building this regression. 

A quantitative estimate of the oxygen oxidation affinity 
necessity be the output parameter of the equation because the 
goal of this research is to identify the best catalyst. The oxygen 
oxidation onset potential will be utilized to further examine this 
indicator of oxygen oxidation affinity. By placing a monolayer 
of oxygen on top of the nanoparticle, which was then oxidised 
by an anodic sweep in an H2-rich atmosphere, the oxygen 
oxidation onset potential was determined electrochemically. As 
a probe reaction to increase the potential at which the oxygen 
monolayer was oxidised, the hydrogen oxidation reaction 
(HOR) was exploited. When an increase of 1.5 mA mg-1 Co-Fe-
Ga-Ni-Zn and Al-Cu-Pd-Pt over the capacitive current was 
detected, this was the point at which oxygen oxidation was 
determined. The machine-learning models only considered 
catalysts that were active for the HOR beyond the oxygen 
oxidation start potential since the oxygen oxidation was 
examined using the HOR as a probe reaction. 

The model's input parameters ought to take into account the 
HEA's characteristics that affect the activity of oxygen 
oxidation. The HEA's chemical makeup, which is the most 
obvious option in this case, is its elemental makeup. It is 
impossible to systematically and swiftly evaluate the final 
composition of the manufactured nanomaterials. A specific Co-
Fe-Ga-Ni-Zn and Al-Cu-Pd-Pt particle's composition can be 
characterised by a numeral of different parameters, although the 
proportion of each precious metal utilised during synthesis is 
likely the most tightly controlled. Input parameters were 
therefore based on the metals employed in the synthesis. All 
models will be identified with the term "synthesis models" if the 
synthesis precursor ratio was utilised as an input. 

The predicted improvement acquisition function (4) was 
utilised for the Bayesian optimisation. 

[𝐼(𝑟)] =  ∫ (𝑦𝑚𝑖𝑛 − 𝑦)(𝑦; 𝜇, 𝜎)𝑑𝑦
𝑦𝑚𝑖𝑛

−∞
= (𝑦𝑚𝑖𝑛 −

𝜇)Φ (
𝑦𝑚𝑖𝑛−𝜇

𝜎
) + 𝜎Φ (

𝑦𝑚𝑖𝑛−𝜇

𝜎
)  (4) 

Here, 𝐼(𝑟) the improvement function at a point 𝑟, 𝑦𝑚𝑖𝑛 is 
the lowest current sampled so far in the optimization, 𝑦 is the 
current being integrated over, 𝑁 is the normal distribution 
function, the mean of which, 𝜇 is the Gaussian process predicted 
current at the point 𝑟, and whose standard deviation 𝜎 is the 
uncertainty predicted by the Gaussian process, Φ is the 
cumulative delivery function of the standard usual supply, and 
φ is the standard normal distribution function (i.e. with 𝜇 = 0 
and 𝜎 = 1). 

Figure 3 shows the flow diagram of the algorithm for 
Bayesian optimisation. The surrogate function was started with 
two randomly selected compositions. The following 
composition to be investigated was then suggested using the 
predicted improvement acquisition function. The anticipated 
improvement accounts for both the surrogate function's existing 
density projections and the easily accessible prediction 
uncertainty. For more information on the implementation, see 
the SI. It is a common option and a frequently used acquisition 
function, making it a logical starting point for the current 

investigation. Equations (5)–(7) of the kinetic classical were 
then utilised to calculate the CA of the selected composition and 
Bayesian inference was then employed to update the procedure. 

 

 
 

Figure 3. Flow Diagram of Bayesian Optimization Algorithm 

 
Repeating this procedure allowed us to let the updated 

acquisition function select the following composition of 
interest, and in most cases, 150 iterations of the optimisation 
were sufficient to find the compositions that were the greatest 
vigorous locally optimal compositions. 

𝑗 =
1

𝑁
∑ 𝑗𝑖

𝑁𝑎𝑑𝑠
𝑖       (5) 

1

𝑗𝑖
=

1

𝑗𝐷
+

1

𝑗𝑘,𝑖
      (6) 

𝑗𝑘,𝑖 = −𝑒𝑥𝑝 (−
|∆𝐺𝑖−∆𝐺𝑜𝑝𝑡|−0.86𝑒𝑉+𝑒𝑈

𝑘𝐵𝑇
)  (7) 

Here, 𝑁 is the number of surface atoms in the modelled 
surface, 𝑗 is the per-site recent density (in arbitrary units solely 
used for evaluating CA among compositions), and 𝑁𝑎𝑑𝑠 is the 
quantity of sites at which adsorption has occurred. (after 
considering the intersite neighbour blocking), 𝑗𝑖 is the current at 
surface site 𝑖 modelled using the Koutecky– Levich equation, 
𝑗𝐷 is the Diffusion-limited current (with a value of -1) limits the 
current at each site to sigmoidal increases only at large 
overpotentials, volcano relationship with the adsorption 
energies, ∆𝐺𝑖 i𝑗𝑘,𝑖 is the kinetically limiting current for site 𝑖 
modelled using an Arrhenius-like expression assuming a 
Sabatier s the *CO or O* adsorption free energy, ∆𝐺𝑜𝑝𝑡 is the 

optimal *CO or O* adsorption free energy (set to 0.1 eV and 
0.2 eV larger than for 𝑃𝑡(111) for *CO and O* respectively as 
suggested by theory and experiment), 𝑒 is the elementary 
charge, 𝑈𝑅𝐻𝐸  is the applied potential vs. RHE, 𝑘𝐵 is the 
Boltzmann constant, and 𝑇 is the total infection (set to 300 K). 
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V. EXPERIMENTATION AND RESULT DISCUSSION 

The constituent constituents of quinary HEAs are Co-Fe-
Ga-Ni-Zn and Al-Cu-Pd-Pt, among other transition metal (TM) 
elements. They can build several HEA kinds. These elements 
were select because they share the same crystal structure, have 
a comparable atomic radius, and have a similar lattice constant. 
As a result, nanoparticles greater than 100 nm in size were 
produced. As a result, during catalytic measurements, they are 
not anticipated to exhibit particle-size effects. The intention 
behind choosing the precursor combinations was to construct an 
unchanging network of examples in a structured space that 
could be continuously expanded. These substances were elected 
because they have the same face-centred cubic (FCC) crystal 
structure, identical atomic radii, and close lattice constants. 
Additionally, it has been noted that the corresponding elemental 
metals are very effective ORR catalysts. Nine selected elements 
have fcc structures for the most part, therefore the HEAs of FCC 
are constructed to be studied in this work. Figure 2 depicts the 
assembled HEA Co-Fe-Ga-Ni-Zn and Al-Cu-Pd-Pt supercell, 
which has 256 atoms. Numerous HEAs with the same structure 
as the one mentioned above have been synthesised and have 
encouraging catalytic activity. As a result, Python software is 
used to analyse the planned work. 

TABLE I. TABLE OF SYSTEM CONFIGURATION FOR SIMULATION 

 
Simulation System Configuration 

Python Jupiter Version 3.8.0 

Operation System Ubuntu 

Memory Capacity 4GB DDR3 

Processor Intel Core i5 @ 

3.5GHz 

Simulation Time 50 seconds 

 
Using Python software at version 3.8.0, the suggested 

methods are examined. The suggested work runs on the Ubuntu 
operating system and has 4GB of DDR3 memory. These 
specifics are shown in table 1 together with other information, 
such as the implemented work's processor being an Intel Core 
i5 @ 3.5 GHz and the duration of the simulation being 50 
seconds.  

The success of the *CO and O* adsorption energies in 
representing the catalytic reaction for the ORR via the 
associative mechanism is, thus, the foundation for this kinetic 
prototypical. When the potential is greater than 0.8 V vs. RHE, 
the dissociative mechanism, in which O2 separates on the 
catalyst surface, will not contribute to the contemporary 
density. To enable predictions of *CO and O* adsorption 
energies on any surface site of the alloy at any composition, 
thousands of *CO and O* adsorption energies were computed 

using DFT for the model's design (for further information, see 
SI). Focusing on the *OH and O* intermediates is adequate to 
predict the CA because of the linear scaling between the 
adsorption energies of *OC and O*.  

 

 
 

Figure 4. Electrochemical OER/ORR Properties 

 
Figure 4 depicts the electrochemical properties of Co-Fe-

Ga-Ni-Zn and 0.5 M, Al-Cu-Pd-Pt nanocomposites studied for 
their bifunctional CA (OER/ORR). Initially, the measurements 
were carried out to check the bi-functional electro-catalytic 
behaviour of Co-Fe-Ga-Ni-Zn and Al-Cu-Pd-Pt alloys at 
different scan rates (i.e. 10, 25 and 50 mV/s) under the applied 
potential range from -1 to +1 V as shown in the figure. 

 

 
 

Figure 5. Simulated Current Densities 

  
Figure 5 depicted the simulated current densities of the 

proposed work. When the anticipated existing density for the 
second alloy gradient-boosted model is compared to the 
identical findings from the linear model developed on the 
quinary alloys at high Pd content, both models indicate 
maximum inactivity. 
 

 
(a) Gradient-Boosted Model Trained Graph 
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(b) Linear regression model trained Graph 

 
Figure 6. Trained Regression Model on GFT 

  
Figure 6 depicted the trained regression model on DFT-

calculated samples. Except for a few three-fold Pd sites, as seen 
in figure 6(a) and (b), this activity is virtually entirely derived 
from O* bound in FCC hollow sites made up of two Pd atoms. 
The binary-trained model, in contrast to the quinary-trained 
model, maintains strong CA for a larger range of compositions, 
dropping below the activity of Pt (111) at about 45% due to the 
disparity of the model's Q prediction at on-top Pd sites. For Pd-
Pt at the equimolar composition, we would therefore continue 
to anticipate a significant CA using the two alloy model. 

 

 
(a) Sampling of 15 

Compositions 

 
(b) Sampling of 28 

Compositions 

 
(c) Sampling of 54 

Compositions 

 
(d) Sampling of 150 

Compositions 

 
Figure 7. Pseudo-Ternary Plots of the Surrogate Function 

 
Figure 7 shows the pseudo-ternary plots of the surrogate 

function following sampling 15, 28, 54, and 150 compositions 

(with Al, Cu, and Pd mutual into a single concentration). Blue 
and yellow colours denote regions with appropriately low 
absolute values of predicted modern density and high absolute 
values, respectively. The same locations in the diagram will 
invariably be occupied by greater compositions when the 
present densities across the quinary to the pseudo-ternary 
composition space are projected. The maximum absolute 
amount of the present density for overlapping compositions has 
thus been represented in the charts that are displayed. To be 
more precise, the present density is anticipated to fluctuate at 
relatively low frequencies, as evidenced by the length scale of 
roughly 0.4 that was discovered, which is disproportionately big 
in comparison to the molar fractions with values between 0 and 
1. This is also validated by the surrogate function's outlines, 
which are observed to slowly alter as the molar fractions change 
in the figure. This implies that only a small quantity of native 
optima is anticipated for this hypersurface, which will probably 
result in fewer samples being required for their detection. 

 

 
 

Figure 8. Current Densities Sampled during the Bayesian Optimization 

  
Figure 8 displays several notable minima (i.e. compositions 

that have elevated absolute values of modelled current 
densities) that are sampled throughout an optimisation run, in 
addition to the appearance of the local minima of the surrogate 
value. 

 

 
(a) 

 
(b) 

 
Figure 9. Figure for Length Scale and Hyper-Parameter for Number of 

Samples 

 
The evolution of the value of the constant and length scale 

hyper parameters as more compositions are collected is depicted 
in figure 9(a) and (b). It's important to take note of the kernel's 
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length scale, which, while not directly applicable to 
compositions, does display how frequently the present density 
is anticipated to vary with composition. To be more precise, the 
existing density is anticipated to fluctuate at relatively low 
frequencies, as evidenced by the length scale of roughly 0.4 that 
was discovered, which is disproportionately big in comparison 
to the molar fractions with ranges between 0 and 1. 
 

 
 

Figure 10. Scaling Relations between the Adsorption Energies of Reaction 

Intermediates 

  
As mentioned above, the data shown in figure 10 indicate 

that there are apparent scaling links between the oxygen 
adsorption energies on HEA surfaces. The relationship between 
∆𝐺𝑂∗ and ∆𝐺𝑂𝐻∗ can be stated as ∆𝐺𝑂2

= 2.21 ∗ ∆𝐺𝑂𝐻∗ + 1.44, 

with a high coefficient of determination (𝑅2)  of 0.91, in 
contrast to ∆𝐺𝑂∗ = 1.02 ∗= 1.02 ∗ ∆𝐺𝑂𝐻∗ + 3.31, with an 𝑅2 
of 0.85 for ∆𝐺𝑂∗ and ∆𝐺𝑂𝐻∗. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 11. Results for Error Distribution 

  
Figure 11 depicted the error distribution graph for the 

proposed work. Here, figures (a) and (b) revealed the error 
values in the testing were ±0.5𝐾𝐽/𝑚𝑜𝑙∗𝑓. 𝑢 for ∆𝐸𝑓(𝐹𝐶𝐶) and 

±1.0𝐾𝐽/𝑚𝑜𝑙∗𝑓. 𝑢 for ∆𝐸𝑓(𝐵𝐶𝐶). Due to the strong association 

between features and error values in figures (c) and (d), the error 
values appeared to be closer to zero and more accurate than the 
∆𝐸𝑓. 

 

 
 

Figure 12. Parity Plot of DFT 

  
Figure 12 depicts the parity plot of the GBR model 

compared to the entire dataset, and the GBR projected interest 
drives are in agreement with the DFT calculated energies. 
Indicating that the effective-trained GBR model attains great 
accuracy in prediction by learning significant details about the 
underlying pattern of the surrounding environment and 
adsorbate strength on HEA surfaces, closely all of the dots fell 
within the ±0.2 eV deviation range. 
 

 
 

Figure 13. Learning Curve of the GBR Mode 
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 The learning curve of the GBR model was plotted in 

figure 13. The figure depicted the learning curve of the GBR 

model with the training and testing RMSE, As the RMSE on the 

train and evaluation set continuously decreased as the training 

size increased and the convergent estimates were close to one 

another, it shows that there was no danger of overfitting. 

 

 
(a) Co 

 
(b) Fe 

 
(c) Mo 

 
(d) Ni 

 
Figure 14. High-Resolution XPS Spectra of Co, Fe, Mo, and Ni 

 
Figure 14 illustrates the results of an XPS measurement 

analysis of the NiCO2- nanocomposites' surface composition. 
NiCO2-NRs are supported by RGO sheets, as evidenced by the 
emergence of four peaks of Co, Fe, Mo, and NiCO2 at ~800, 
~728, ~240 and ~80 eV, respectively. Figure (a) shows three de-
convoluted peaks that are connected to the Co high-resolution 
XPS spectra. Figure (b) displays bands at ~725 and ~735 eV of 
Fe3+2P, respectively, from the High-resolution XPS spectrum of 
Fe3+2P. Mo's high-resolution XPS spectra are depicted in 
figure (c), which reveals two de-convoluted peaks at ~225 and 
~228 eV. Figure (d) illustrates the NiCO2 high-resolution XPS 
spectra, which exhibit two major bands with energies of ~856 
and ~875 eV of Ni 2p3/2 and Ni 2p1/2, respectively. 

 

 
 

Figure 15. Comparison Graph of the RMSE for Training Set 

 

Figure 15 illustrates the effects of model testing and 
training. Figure 12 illustrates the RFR and GBR models both 
behaved admirably on the train set despite a lower RMSE (0.1 
eV) and higher R2 score (0.95). The average metrics from the 
500-time repetitive 4-fold cross-validation on the train and test 
set were similar, indicating minimal overfitting risk. 
Furthermore, the two models' error bars were rather brief, which 
indicated strong model robustness. Regarding the well-known 
FNN model, the model's performance was poor and the error 
bar was lengthy, demonstrating the FNN model's erratic nature.  
 

 
 

Figure 16. Comparison Graph of the RMSE for Testing Test 

 
Figure 16 depicted the comparison graph for RMSE for the 

testing set. The proposed GBR model is compared with the 
existing FNN and RFR models. The small original dataset from 
DFT computations and the challenging hyperparameter 
tweaking procedure resulted in the FNN model's subpar 
accuracy. The metrics on the test set for the well-performing 
GBR and RFR models showed that the GBR model had a lower 
RMSE (0.112 eV) and a higher 𝑅2 score (0.961) than RFR 
(RMSE of 0.129 eV and 𝑅2 of 0.948). As a result, the ORR 
catalytic processes at sensitive sites on HEA surfaces and the 
fundamental structure of the native atomic environment may 
both be precisely described by the GBR model, which is the best 
ML model in this regard. 
 

VI. RESEARCH CONCLUSION 

HEAs are multi-principal component alloys that comprise 
five or other essentials, each close to equimolar proportion, and 
are frequently the complicated solid solution. In this study, with 
the help of ML, the potential of extremely active ORR 
electrocatalysts of various quinary HEA types was examined, 
taking into account the fact that the HEA surface can offer a 
near-continuum of oxygen between adsorption energies the 
distribution because of their enormous configurational and 
biological space. By using judicious model validation 
processes, feature engineering, and data extraction model 
validation processes, a well-performing GBR model with high 
accuracy, simplification and was formed. Masses of responsive 
sites on HEA surfaces with various coordination configurations, 
which are not amenable to analysis by conventional DFT 
calculations or experiments, can be accurately predicted using 
this superb GBR model. The adsorption energy on HEA 
surfaces is roughly a mixture of the different assistances of the 
metal atoms close to the mercurial site, as shown by the ML-
predicted results and additional model analysis.  

The suggested work is contrasted with the current FNN and 
RFR model, and it can be shown from the findings that the 
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suggested approach performs better than the other methods that 
are already in use. The model can predict the quantity of 
investigates prerequisites to find the best compositions in the 
enormous compositional space of quinary alloy systems while 
simultaneously suggesting the best alloy catalysts. The integer 
of experimentations essential to find the two quinary HEAs 
under study's most significant optima using the Bayesian 
optimisation of the kinetic classic applied here is around 50. The 
work is analysed using Python software. XPS measurement was 
carried out for the appearance of four peaks of Co, Fe, Mo, and 
NiCO2 at ~800, ~728, ~240 and ~80 eV, respectively. However, 
the relationship between ∆𝐺𝑂∗ and ∆𝐺𝑂𝐻∗ can be expressed as 
∆𝐺𝑂2

= 2.21 ∗ ∆𝐺𝑂𝐻∗ + 1.44, with a high coefficient of 

determination (𝑅2) of 0.91. Accordingly, the planned method 
is associated with the existing FNN and RFR models, while 
compare to these methods, the proposed higher performance. 
However, the DFT-ML scheme shows that it has the aptitude 
and potential to lead the area of HEA catalysis because it can 
successfully navigate the extremely wide configurational and 
chemical space and provide a clear, concise roadmap for the 
practical synthesis of highly effective HEA catalyst 
nanostructures. 
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