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I. INTRODUCTION 

Retrosynthetic planning is a fundamental problem in 
chemistry for finding a pathway of reactions to synthesize a 
target molecule. Well-planned and practical retrosynthetic 
pathways are essential for the effective and ecologically 
sustainable synthesis of important compounds. Robert 
Robinson introduced retrosynthetic analysis in the tropinone 
synthesis process and E. To create target compounds, organic 
chemists employ a fundamental method called J. Corey. A 
molecule's production process is typically varied, especially for 
complex substances like natural products. Based on a collection 
of reaction rules, choices for each transformation are developed, 
and a variety of optimization algorithms then suggest potential 
reaction paths. Even if computer-assisted retrosynthetic route 
planning and reaction prediction have made significant strides, 

completely data-driven autonomous retrosynthetic route 
planning is still difficult [1] [2]. Retrosynthesis is likely one of 
the more challenging processes among the several activities 
involved. Retrosynthesis involves designing effective synthetic 
routes for a certain target. The necessity to identify a series of 
disconnections schemes, appropriate building blocks, and 
effective group protection techniques are some of the main 
justifications. 

For a long time, the most effective method used in computer 
programmes was rule-based or similarity-based. These 
approaches do not learn chemistry from data, but rather codify 
synthon creation rules, even though they indicate relatively 
efficient pathways to molecules of interest. Rule-based systems' 
fundamental flaw is the requirement for time-consuming 
manual encoding, which prevents growth as data set sizes grow. 
Additionally, when more rules are codified, it becomes more 
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Abstract: Retrosynthetic analysis often involves evaluating many potential candidate reaction pathways and molecules at multiple 

stages of the reaction, resulting in complex retrosynthesis trees that need to be searched and parsed efficiently. Computational 

approaches could significantly aid the chemist in  solving different aspects of the retrosynthesis problem, such as the graph-theoretic 

search methodologies for efficient tree traversal to identify feasible reaction pathways, dictionary-based methods to evaluate a large 

search space of precursors, and chemistry-driven heuristics to eliminate practically infeasible routes. In this research, a new single-

step retrosynthesis prediction method of the Retro TRAE SMILES-based translation technique is proposed. Accordingly, quantum 

computing with tree-tensor network topology is presented to construct an automatic data-driven end-to-end retrosynthetic route 

planning system (Auto-Syn-Route), which is presented based on the heuristic scoring function. AutoSynRoute successfully reproduced 

published synthesis routes for the four case products. The model is trained in an end-to-end and fully data-driven fashion. Unlike 

previous models translating the SMILES strings of reactants and products, a new way of representing a chemical reaction based on 

molecular fragments is introduced. It is demonstrated that the new approach yields better prediction results than current state-of-the-

art computational methods. The new approach resolves the major drawbacks of existing retrosynthetic methods such as generating 

invalid SMILES strings. The proposed method is implemented using Python software. The proposed approach predicts highly similar 

reactant molecules with an accuracy of 68%. In addition, the proposed method yields more robust predictions than existing methods. 

However, the experiments demonstrate that the proposed scheme significantly improves the success rate of solving the retrosynthetic 

problem by 97% while maintaining the performance of the quantum tree tensor for predicting valid reactions. 
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difficult to determine whether all of the current rules and the 
new ones are logically consistent with one another. Eventually, 
this complexity could lead to an insoluble dilemma [2]. 
Retrosynthesis assisted by artificial intelligence (AI) aims to 
automate this procedure by inferring new predictions from past 
chemical reactions. Even though several models have shown 
that they can be used for automated retrosynthesis, much more 
work needs to be done to improve prediction accuracy to a level 
that is more useful [3]. A molecule's production process is 
typically varied, especially for complex substances like natural 
products. Planning a target molecule's efficient and 
environmentally friendly path in some way heavily depends on 
the expertise of professional chemists [4]. 

Nevertheless, apart from the use of some straightforward 
heuristics, it is difficult to systematically rank strategic 
pathways due to the lack of a comprehensive pathway 
evaluation mechanism. A dynamic tree-structured long short-
term memory (tree-LSTM) model is utilized in [5] to assess the 
relative strategic levels of retrosynthesis pathways. A unique 
Graph Transformer architecture is created to adaptively learn 
discriminative and chemically relevant molecule 
representations by incorporating chemical knowledge as prior 
information, showcasing the great capability in molecule 
feature representation learning [6]. However, these are currently 
too sluggish to be employed for virtual screening procedures 
that identify possible bioactivity before screening the synthetic 
viability of millions of created or enumerated molecules. Here, 
we present a method based on machine learning (ML) that can 
determine whether such a synthetic route may be determined for 
a given molecule [7]. In advance, depth-first proof-number 
search (DFPN) algorithm [8], deep highway networks [9] and 
deep learning models [10] are investigated the retrosynthesis 
model. With off-policy data, it develops a neural search bias 
while maintaining the search as an AND-OR tree. Then, under 
the guidance of this neural network, it efficiently executes the 
best-first search during fresh planning episodes [11]. 

Machine learning methods frequently concentrate on 
presenting high-accuracy statistics for the one-to-one mapping 
of molecules in reaction data to the template extracted from the 
observed event [12] when prioritising reaction templates or 
molecular transformations. Fully data-driven automatic 
retrosynthetic route design is still difficult, despite significant 
advancements in computer-assisted retrosynthetic route 
planning and reaction prediction. With the help of the multi-
head attention-based transformer architecture, that has proven 
effective in machine translation tasks and each reaction 
prediction challenge as a data-driven sequence-to-sequence 
problem [13]. Substructure-level decoding models are proposed 
[14] in which the substructures can be automatically extracted 
using a fully data-driven technique and are reaction-aware. The 
performance can be increased much more if the substructure 
extraction's accuracy is increased. Despite the existence of 
reaction databases, it is challenging to explore reaction 
information, leading to a path explosion issue because of the 
vast search area. Based on a hybrid generative exploration and 
exploitation of reaction knowledge graphs storing massive data 
of patented reactions ML-based retrosynthetic prediction, an AI 
system that facilitates synthetic path creation at the fundamental 
stages of research and process design [15]. The present work 
reduces the gap between the widely used supervised learning of 
single-step retrosynthetic models and the goal of retrosynthetic 

planning. The proposed work presented a Retro TRAE 
SMILES-based translation technique for a single-step 
retrosynthesis prediction method. However, quantum 
computing with tree-tensor network topology is used for 
constructing an automatic data-driven end-to-end retrosynthetic 
route planning system. The rest of the papers are organized as 
follows, section 2 reveals the literature survey of the study, and 
section 3 exhibits the problem definition and motivation of the 
study. Section 4 portrays the proposed research methodology, 
section 5 displays the experimentation and result discussion, 
and section 6 demonstrated the research conclusion. 

II. LITERATURE SURVEY  

An ongoing difficulty in organic synthesis is creating 
effective synthetic routes for a given target molecule. Atom 
environments are the perfect, independent, chemically 
significant building pieces that offer a high-resolution 
molecular depiction. In contrast to other cutting-edge neural 
machine translation-based methods, Ucak et al [16] has been 
developed a new single-step retrosynthesis concept called 
RetroTRAE, which was free from all SMILES-based 
translation problems, achieves top-1 accuracy of 58.3% on the 
USPTO test dataset and top-1 accuracy of 61.6% when highly 
similar analogues are taken into account. To employ fragmental 
and topological descriptors as natural inputs for retrosynthetic 
prediction tasks, Their methodology proposed a novel scheme. 
The choice and creation of appropriate synthetic pathways are 
crucial decisions that influence the productivity and economics 
of chemical operations, including reactions and the search for 
novel compounds. Even with reaction databases, exploring 
response information is challenging, leading to path explosion 
because of the vast search space and opposing constraints like 
economics, safety, efficiency, etc. As a result, Jeong et al [17] 
proposed the ASICS (Advanced System for Intelligent 
Chemical Synthesis) intelligent system, which supports 
synthetic path design based on the hybrid generative 
exploration and exploitation base, and ML-based retrosynthetic 
prediction. 

Computer-aided retrosynthesis has the potential to help 
chemists build synthetic routes, although at the moment it is 
laborious and yields findings of poor quality. To carry out a 
retrosynthesis prediction task taught by using the Transformer 
neural network architecture, Zheng et al [18] constructed a 
template-free self-corrected retrosynthesis predictor. The 
method converts the planning of retrosynthesis into a machine 
translation issue between the reactants' and products' molecular 
linear notations. The high-throughput synthesis technique is 
hampered by the cost and time involved in this type of 
technology. Therefore, a framework for retrosynthetic analysis 
was developed in [19] using hybrid reaction templates and GC-
based thermodynamic models. Using the Breadth-First Search 
(BFS) algorithm, putative retrosynthesis paths that were 
thermodynamically viable were found. To demonstrate the 
viability and dependability of the suggested framework, three 
case studies using aspirin, ibuprofen, and zatosetron were 
presented. 

The RetroPrime approach, proposed forth by Wang et al 
[20], integrates the chemists' retrosynthetic strategy of breaking 
down a molecule into synthons and producing reactants by 
adding leaving groups. For these two levels, flexible 
Transformer models were used. It was previously recognised 
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that the Transformer-based retrosynthesis model's outputs 
frequently suffer from a lack of diversity and a high degree of 
chemical implausibility. RetroPrime was made to address these 
issues. The suggested framework can be used to determine 
synthesis routes that take thermodynamic feasibility into 
account. To demonstrate the viability and dependability of the 
suggested framework [21], two case studies utilising aspirin and 
ibuprofen were presented. 

Zheng et al [22] created BioNavi-NP, a navigable and user-
friendly toolset, to forecast the biosynthetic routes for both NPs 
and NP-like chemicals. First, end-to-end transformer neural 
networks are used to train a single-step bio-retrosynthesis 
prediction model employing both conventional organic and 
biosynthetic reactions. The toolbox, curated datasets, and 
learning models were all freely available to help with the 
reconstruction and elucidation of NPs' biochemical processes. 
The deterministic inference, which contradicts the concept that 
many compounds can be produced through a variety of reaction 
types with distinct sets of reactants, causes the majority of them 
to have difficulty identifying various chemical reactions for the 
desired outcome. He et al [23] used the discrete latent variables 
to boost reaction diversity and produce a range of reactants. 
This led to the development of a novel sequence-based method 
called RetroDVCAE, which integrates conditional variational 
autoencoders into single-step retrosynthesis and links discrete 
latent variables to the generation procedure. 

A data-driven CASP application created by Ishida et al [24] 
incorporates numerous retrosynthesis knowledge components 
and presented the information as programmable factors in the 
assessment of potential search routes. According to the 
experimental findings, ReTReK successfully sought synthetic 
routes depending on the supplied retrosynthesis knowledge, 
showing that these routes were preferred over those that were 
not. It was anticipated that a data-driven CASP application will 
improve the performance of both completed and upcoming 
data-driven CASP applications. Jiang et al [25] offered a chance 
to address some common problems, such as the need for 
substantial expertise, the sub-optimality of routes, and the high 
cost of calculation. Also, they have discussed the state of AI-
driven retrosynthesis prediction at the moment [26, 28]. Then 
go through related AI methods and new developments that 
allow for retrosynthesis prediction [29-30]. 

 

III. RESEARCH PROBLEM DEFINITION AND MOTIVATION 

Planning the reaction pathways of organic molecules is a 
central component of organic synthesis. The idea of reducing 
the complexity of a desired organic molecule by considering all 
logical disconnections forms the basis of the retrosynthetic 
approach [31-34]. The retrosynthetic approach aims to suggest 
a logical synthetic route to generate a target molecule from a set 
of available reaction building blocks [35-37]. A conventional 
retrosynthetic approach acts recursively on a target molecule 
until chemically reasonable pathways are identified. From a 
broader perspective, existing predictors for forward and 
backward reactions can be classified into those that rely on 
known reaction templates and those that are template-free, data-
driven networks trained in an end-to-end fashion [38-39]. 

Template-free methods have emerged as an effective means 
to complement the following issues of template-based methods. 
Exploring the space of possible reaction templates is 

challenging because of the vast size of the chemical space [40-
42]. If only a limited number of reaction templates are used, 
template-based methods may not be able to provide novel 
disconnections [43-45]. On the contrary, if a large number of 
reaction templates are considered, the computational burden to 
find a proper template increases significantly [46-47]. 
Currently, templates are either hand-crafted by experts or 
generated from reaction databases with heuristic algorithms. 
Thus, the degree of template generality/specificity can lead to 
either low-quality or incomplete recommendations [48-49]. 
Lastly, reaction templates are extracted based on atom mapping, 
which remains a challenging issue for all template-based 
methods. Atom mapping quality also affects model 
performance. Considering the complexity of retrosynthetic 
analysis, an efficient representation of source-target data 
structure is critical for accurate predictions. In this study, the 
research shows that representing molecules using sets of atom 
environments (AE) is an efficient alternative approach to 
conventional SMILES-based approaches for devising a 
retrosynthetic prediction model. 

 

IV. PROPOSED RESEARCH METHODOLOGY 

Automation of the task of obtaining transition state 
structures and related reaction paths has been one of the 
significant subjects in computational chemistry. Recent 
advances made it possible to construct a complex reaction path 
network consisting of thousands or more paths based on DFT 
calculations. Consequently, the study mimics chemical 
reasoning and predicts reactant candidates by learning the 
changes in atom environments associated with the chemical 
reaction. Through careful inspection of reactant candidates, the 
study demonstrates atom environments as promising 
descriptors for studying reaction route prediction and discovery. 
Here, the research proposed a new single-step retrosynthesis 
prediction method, of Retro TRAE SMILES-based translation 
technique.  Further, constructed an automatic data-driven end-
to-end retrosynthetic route planning system (Auto-Syn-Route) 
using quantum computing with tree-tensor network topology 
with a heuristic scoring function. AutoSynRoute successfully 
reproduced published synthesis routes for the four case 
products. 

 

 
 

Figure 1. Block Diagram of the Proposed Method 
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Figure 1 represents the block diagram of the proposed work. 

The proposed work consists of a single-step retrosynthetic 
prediction method. It is predicted using the Retro TRAE 
SMILES-based translation technique. The SMILES 
representations of molecular structures are typical inputs for the 
sequence-to-sequence-based models. However, none of the 
previously reported models has focused on translation at a sub-
structural, fragment, level. Accordingly, a quantum tree-tensor 
network topology is used for constructing an Auto-Syn-Route 
planning system. 

 

A. Atom Environments 

The concept of circular AEs is employed to represent the 
molecules in the reaction dataset. Circular environments are 
defined as topological neighbourhood fragments of varying 
‘radii’ containing all bonds between the included atoms. They 
are centred on a particular atom, called the central atom. The 
‘radius’ refers to the maximum allowed topological distance 
between the central atom and all covalently bonded atoms. The 
topological distance between two atoms was measured as the 
number of bonds on the shortest path between them. Thus, an 
AE of radius “𝑟” contains all the atoms in a molecule with a 
topological distance 𝑟 or smaller from the central atom and all 
bonds between them. 

 

1. Single-Step Retrosynthesis 

The goal of single-step retrosynthesis is to predict sets of 
molecules that react to a given product. Since a molecule can be 
synthesized in various ways, this represents a one-to-many task. 
Performance in this setting is usually measured by reactant top-
k accuracy using a reaction database. This metric measures the 
fraction of samples for which, given the product of a recorded 
reaction, the recorded reactants are among the top-k predictions. 
Given the one-to-many setting, small values of 𝑘 might not be 
an optimal choice as there might exist scenarios where a good 
model receives low scores. Choosing a large 𝑘 might result in a 
metric that is overly easy to optimize. Accordingly, the 
retrosynthesis reaction process is presented in figure 2. 

 

 
 

Figure 2. Retrosynthesis Reaction Process 

 
Template-based approaches predict reactant sets via 

reaction templates. A reaction template encodes atom 
connectivity changes during a chemical reaction and can be 

used to transform a product molecule into reactants, 𝑚
𝑡

→ 𝑟, 
where 𝑚 is a product molecule, 𝑟 represents a set of reactants 
and 𝑡 a reaction template. The product side of a template 
encodes at which position in a molecule the template can be 
applied. A necessary condition for this is that the product side 

of the template is a substructure of the molecule of interest. If 
this is the case, a template is said to apply to the molecule. The 
product subgraph is then transformed according to the reactant 
side of the template and an atom mapping between the two 
sides. Templates can be either hand-coded or automatically 
extracted from reaction databases, which yields an ordered set 

of 𝐾 unique templates 𝑇 = {𝑡𝑘}𝑘=1
𝐾 . 

Template-relevance prediction aims to predict which 
templates result in a feasible reaction given a product. If this is 
the case, a template is relevant to a molecule. While 
applicability is a necessary condition for relevance, it ignores 
the context of the whole molecule and thus substructures that 
might conflict with the encoded reaction. To evaluate template-
relevance predictions, use template top-k accuracy, which given 
the product of a recorded reaction measures the fraction of 
samples for which the template extracted from the recorded 
reaction is among the top-k predicted ones. 

 

 
 

Figure 3. Single-Step Retrosynthesis with Two Possible Reactions 

 
Figure 3 illustrates the single-step retrosynthesis by the 

Reduction reaction or by the C-C bond formation reaction. 
Given relevance predictions for a product, reactant sets are 
obtained by executing top-scoring templates. Do not permit 
relevance prediction to rely on applicability calculations, 
because it is relatively slow to compute. Via this constraint, 
template top-k accuracy also incorporates information about the 
model’s ability to filter out non-applicable templates. This 
information might be lost in reactant accuracy as template 
execution relies on a check for applicability. Other differences 
between the reactant/template accuracy can arise from multiple 
locations in which the correct template may be applied or 
incorrect templates leading to the correct reactants. Multistep 
retrosynthesis can be achieved by applying single-step 
retrosynthesis recursively. One can decompose the desired 
molecule into less-complex molecules until only readily 
available precursor molecules remain. 

 

2. RetroTRAE SMILES-Based Translation Technique 

SMILES has been widely used for both forward synthesis 
prediction and retrosynthesis prediction in the current literature. 
However, this work, argues that the general-purpose SMILES 
is deficient for the synthesis prediction problem. Since SMILES 
is generated by a depth-first traversal of the molecular graph, a 
molecule can have multiple valid SMILES representations, 
which leads to the existence of multiple correct output SMILES 
for a given input SMILES. The one-to-many mapping between 
input SMILES and output SMILES renders synthesis prediction 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    2115 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

extremely challenging as the computational model should learn 
not only the chemical rules for chemical reactions but also the 
SMILES syntax for SMILES string validity. Several 
canonicalization methods can be adapted to generate canonical 
SMILES that ensure a one-to-one mapping between molecules 
and SMILES. However, these methods are designed for each 
molecule without considering the relationship between product 
and reactant molecules, resulting in the large input-output 
SMILES discrepancy. The large input-output SMILES 
discrepancy leaves the search space of reactants huge, 
degrading the performance of synthesis prediction models. 
Moreover, the canonical SMILES are incompatible with some 
data augmentation techniques where multiple SMILES are 
needed for one molecule to bypass the data scarcity issue, as the 
concept of “canonical SMILES” is violated by multiple 
SMILES for one molecule. 

In this study, a RetroTRAE SMILES-based translation 
technique is presented. RetroTRAE is starting from a product 
molecule, it is decomposed into a set of unique integer values. 
Each AE, a SMART pattern, is associated with a unique integer 
value. The lists of AEs were provided as input sequences for 
RetroTRAE. RetroTRAE is trained to predict the proper AE 
sequences of reactants corresponding to the true reactants. The 
molecular graph topology is largely unaltered from reactants to 
products as the molecular changes usually occur locally during 
chemical reactions. RetroTRAE, using fragment-based 
tokenization and the Transformer architecture. RetroTRAE 
mimics chemical reasoning and predicts reactant candidates by 
learning the changes in atom environments (AEs) associated 
with the chemical reaction. AEs are the ideal stand-alone 
chemically meaningful building blocks providing a high-
resolution molecular representation. Besides yielding a high 
level of overall accuracy, the proposed method does not suffer 
from SMILES-based translation issues such as invalid 
SMILES. Additionally, the attention matrices of RetroTRAE 
are shown to capture chemical changes around reaction sites 
successfully. Through careful inspection of reactant candidates, 
AEs are promising descriptors for studying reaction route 
prediction and discovery, which has been underexplored yet. 
 

B. Automatic Data-Driven End-to-End Retrosynthetic Route 

Planning System 

An automatic data-driven end-to-end retrosynthetic route 
planning system (AutoSynRoute) using quantum computing 
with tree-tensor network topology with a heuristic scoring 
function. AutoSynRoute successfully reproduced the published 
pathways for the four case products, demonstrating its potential 
for retrosynthetic pathway planning. AutoSynRoute can be 
applied step-by-step and iteratively with user inputs. To 
demonstrate this application, predicted the top-10 
disconnections for each of the ten reaction classes and 
reproduced the published retrosynthetic pathways for four 
examples. To further demonstrate the power of AutoSynRoute, 
successfully used it to perform automatic retrosynthetic route 
planning for the above four examples. 
 

 
 

Figure 4. Automatic Retrosynthetic Pathway Planning 

 
Figure 4 represents the automatic retrosynthetic pathway 

planning [1]. Unlike other template-based methods, which 
either rely on experts’ laborious work or simple, contextless 
rule-based systems, the approach is fully end-to-end and 
naturally incorporates the global molecular context of the 
reaction species. Demonstrated a template-free approach that 
can be used to perform automatic retrosynthetic route planning 
and reproduce the published synthesis routes of valuable 
compounds. 

 

1. Quantum Computing with Tree-Tensor Network Topology 

The quantum-computing variants are still a nascent variety, 
the bulk of the applications to be discussed will involve classical 
ML algorithms on quantum data even though the focus will 
certainly be on how the capabilities in each domain can be 
augmented with the former in the arsenal. 

Qubits: The qubit is the basis for all quantum computing, 
similar to its classical counterpart, the bit. But, there is a 
significant advantage of the qubit. Unlike the classical bit a 
qubit stores a mix of two states together, which is called 

superposition. For a single qubit, the states |0⟩ = [
1
0

] and |1⟩ =

[
0
1

] are called basis states. It is from these basis states that 

almost all quantum computation stems. 
Quantum Gates: Quantum gates are operations that are 

performed on qubits, similar to classical gates. These quantum 
gates are used to change the state of the qubits on which the 
operation is being performed. They typically are represented in 
the form of unitary matrices which operate on some initial qubit 
state. The most common quantum gates are the Hadamard (H), 
Bit flip (X) and Rotation gate (RX, RY, RZ) which are all single 
qubit gates. While the Controlled Not (CNOT) is a two-qubit 
gate. These gates allowed to perform almost all of the basic 
encodings of data in the quantum state, allowing for meaningful 
computation of quantum information. 

In the gate model of the quantum computing paradigm, 
transformations between states are achieved using unitary 
matrices which are represented as ‘quantum gates’. Since all 
quantum gates are unitary, the inverse of such gates necessarily 
exists and hence transformations using quantum gates alone are 
always reversible. The way to incorporate irreversibility into the 
paradigm is through making projective measurements that 
disturb the state vector irrevocably making it lose its present 
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memory (interactions with the environment induce 
irreversibility too in the form of qubit decoherence. Then return 
to this point later). Commonly used quantum gates and their 
matrix representation in the computational basis. For 
visualization of the operations of single-qubit gates. However, 
for 𝑅𝑛(𝜃) the axis of rotation n can be either {𝑥, 𝑦, 𝑧} and that 
decides the accessible state space for a given initial state. For 
Hadamard transformation, the operation can be viewed as 

rotation about the axis (𝑛𝑥, 𝑛𝑦 , 𝑛𝑧)
𝑇

= (
1

√2
, 0,

1

√2
) through an 

angle of 𝜋 and hence creates the state 
|0⟩+|1⟩

2
 starting from |0⟩. 

The S-gate (𝑃 (
𝜋

2
)) and T-gate (𝑃 (

𝜋

4
)) control the relative 

phases of |0⟩ and |1⟩. These operations are commonly used to 
entangle two or more qubits in a quantum circuit.  

 

Tree Tensor Networks (TTNs) 
Tree tensor networks provide another approach to model 

quantum states by arranging the local tensors in a tree-like 
pattern. A TTN can be formed from an 𝑛-qubit quantum state 
using the tree-Tucker decomposition. Like other tensor 
networks, TTNs are used as an ansatz to simulate the ground 
state of the local Hamiltonian. Tensors in TTNs form the nodes 
of the tree which are connected through bond indices. The 
physical indices appear on the leaf nodes. On contracting the 
bond indices, the TTN has n free indices which represent the 
physical degree of freedom of the state. TTNs are a 
generalization of MPS and can in principle be non-binary as 
well. An MPS can be thought of as a flattened TTN such that 
each parent node has one successor (bond indices of MPS) and 
another leaf node (physical indices of MPS). 

The structure of TTN is inspired by the spatial 
renormalization group. At every layer of TTN, coarse-graining 
is carried out between neighbouring sub-trees. Unlike MPS, the 
local tensors with access to physical indices in TTN are not 
connected directly to each other, the correlation between qubits 
is represented through the layers. The local correlation 
information is stored in the lower layers while the upper layers 
store long-range correlation information. 

Each node in a TTN is a three-dimensional tensor (except 
the root/uppermost node) with at most one upper index 𝛼 and 
two lower indices 𝛽1 and 𝛽2. The tensors can be written as 
𝑤𝛽1𝛽2

𝛼 . The space required to store a TTN grows as 𝑂(𝑁𝐷3), 

where 𝑁 is the number of physical indices and 𝐷 is the bond 
dimension of the local tensors. Each tensor in TTN is an 
isometry satisfying the following condition: 

∑ (𝑤)𝛽1,𝛽2

𝛼 (𝑤∗)𝛼
𝛽1,𝛽2

𝛽1,𝛽2
     (1) 

Choosing an isometric tensor as in equation (1) is 
advantageous in numerous ways. It simplifies the optimization 
of TTN and calculation of the expectation values of local 
observables and it is also known to provide numerical stability 
to TTN algorithms. TTN can very well be generalized to higher 
dimensions by appropriately placing isometries across local 
physical indices and hierarchically merging sub-trees through 
more isometries. 

Tree tensor networks form the basis of the multi-layer multi-
configuration time-dependent Hartree methods which are used 
to perform quantum molecular dynamics simulations. 

 

Evaluation Procedure 

To evaluate the performance of the translation model, a 
suitable metric was required to measure the similarity between 
predictions and the true reactants. The Tanimoto (𝑇𝑐) and the 
Sørrensen-Dice coefficient (𝑆) as two of the special cases of the 
Tversky index were the similarity metrics used in this study. 
The exact form of the Tversky index is as follows: 

𝑆(𝑋, 𝑌) =  
|𝑋⋂𝑌|

|𝑋⋂𝑌|+𝛼|𝑋−𝑌|+𝛽|𝑌−𝑋|
    (2) 

Here, α, β ≥ 0 are the parameters of the Tversky index. 
Setting α = β = 1 leads to the Tanimoto coefficient; setting α = 
β = 0.5 leads to the Sørrensen-Dice coefficient. The Tanimoto 
and Dice coefficients measured between two molecules range 
between 0 and 1. The value of zero represents the total 
dissimilarity, whereas a value of 1 represents the exact match. 

Unlike SMILES-based methods, small prediction errors of 
the AE representation do not yield invalid predictions. Thus, 
multiple degrees of accuracy can be calculated due to the native 
design of this model. The results were computed with four 
different cutoffs, which can be categorized as (a) hard 
thresholds, and (b) soft thresholds. Here, define hard thresholds 
as the discrepancies of one or two fragments. Call arbitrary 
thresholds based on the Tanimoto coefficient soft thresholds 
such as 𝑇𝑐 ≥ 0.85. These measures are conventionally used to 
screen similar molecules. For example, molecules having 𝑇𝑐 ≥
0.85 tend to exhibit similar biological activities. 

Hard thresholds offer the following advantages over soft 
thresholds. First, hard thresholds do not depend on sequence 
length. Second, contrary to soft thresholds, easily find the type 
and number of fragments that deviated from the ground truth. 
Finally, by using hard thresholds, any risk of losing high-quality 
reactant candidates can be avoided which could be excluded 
with soft thresholds. This suggests that high-quality predictions 
with low and medium complexity, relatively smaller molecules, 
have a higher chance of being excluded by soft thresholds. For 
example, a high-quality double mutated prediction with 
medium complexity represented with 13 AEs could be 
overlooked by a bio-actively similar threshold (𝑇𝑐 ≥ 0.85). 

In this study, a top-1 prediction is used as the best 
recommendation to report the performance of the model, as well 
as for molecular search and retrieval. Since there are many ways 
to decompose a molecule, retrosynthetic prediction tools can 
procure many different possible synthetic routes. However, the 
analyses showed that only 6% of the USPTO dataset has at least 
two sets of reactants. Thus, using top-1 accuracy is a legitimate 
measure to assess a single-step retrosynthesis predictor trained 
on the USPTO dataset. Top-N accuracy for evaluating 
retrosynthesis prediction has recently been disputed because, 
with each prediction, a model tends to find the next frequently 
observed answer among reactions in a dataset rather than 
making a chemically more meaningful prediction. A few 
alternative metrics were newly suggested, such as Round-trip, 
and MaxFrag. 

 

V. EXPERIMENTATION AND RESULT DISCUSSION 

The transformer connects the encoder and decoder units to 
translate between sequences by effectively employing a multi-
head attention mechanism on each unit. Input and output 
sequences for the proposed model are the lists of AEs. 
Accordingly, tested several different schemes to convert 
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molecules into a list of fragments, such as MACCS keys, and 
AEs. AEs are fragments consisting of a central atom and its 
covalently bonded neighbours with a predefined radius. They 
can be considered the basis of constructing molecules, similar 
to the pieces of a jigsaw puzzle. 

 

TABLE I. TABLE OF SYSTEM CONFIGURATION FOR SIMULATION 

 
Simulation System Configuration 

Python Jupiter Version 3.8.0 

Operation System Ubuntu 

Memory Capacity 4GB DDR3 

Processor Intel Core i5 @ 3.5GHz 

Simulation Time 50 seconds 

 
The proposed methods are analysed using Python software 

with version 3.8.0. The operating system of the proposed work 
is Ubuntu and its memory capacity is 4GB DDR3. The 
processor of the implemented work is an Intel core i5 @ 3.5 
GHz, and their simulation time is 50 seconds, these details are 
presented in table 1. 
 

Performance of RetroTRAE 

Prediction performance, as a function of different similarity 
thresholds for RetroTRAE. RetroTRAE has reached top-1 exact 
match accuracies of 67% trained with 10 times augmented uni- 
and bimolecular datasets. Augmentation slightly improved the 
results and stabilized the model’s learning since more data and 
randomness were added to the network. Although the AE 
representation is permutation invariant, the models with 
positional encoding perform better than those trained without 
using positional information. 

One of the advantages of using AEs over SMILES is that a 
few errors do not lead to invalid predictions. Thus investigated 
how much the success rate can be improved by easing the 
threshold without losing the functionality of the retrosynthetic 
framework. When single mutations (SM) were allowed, the 
success rates of uni-molecular and bi-molecular reactions 
increased to 58.1 and 60.9%, respectively. The corresponding 
numbers for double mutations (DM) were 60.5 and 62.7%. To 
quantify how low the probability of finding such extremely 
close neighbours of molecules is in a large database, performed 
extensive analysis by using AEs. Considering the cumulative 
distribution function of AEs obtained with 1.3 million 
molecules in the USPTO database, only 13 pairs were found to 
have a 𝑇𝑐 value of 0.76 or higher. With a threshold of 0.9 or 
higher, most molecules in a typical database would be 
singletons with no near neighbours. 

The mean 𝑇𝑐 of all predictions of the uni-molecular test set 
was found to be 0.88, which is highly statistically significant 
with a 𝑝 -value < 10−5. This indicates that even non-exact 
predictions made by RetroTRAE are still highly similar to the 
ground truth. 

 

Model Interpretability 

It is often difficult to attribute meaning to the outcomes of 
deep learning methodologies. Accordingly, identified that the 
proposed model successfully learned the changes in chemical 
environments around reaction centres. In contrast to this work, 

in SMILES-to-SMILES translations chemical changes mostly 
occur via rearrangements of SMILES tokens rather than actual 
transformations of chemically meaningful tokens, which 
hampers chemical interpretability and explainability. 

 

 

 
 

Figure 5. Interpretability of RetroTRAE for Uni-Molecular Ring-Opening 

Reaction 

  
The attention weight matrices and the fragments with the 

highest attention values of uni-molecular ring-opening reaction 
are visualized in figure 5. The AE that changes the reaction has 
the highest attention value with its changed counterpart. 
Likewise, the AEs that remain intact tend to have the highest 
attention. The column-wise summations of attention weights 
indicate the mostly attended AEs of a product by RetroTRAE. 
To show this, the AEs in products that changed during the 
reactions and their attention on the reactant side is highlighted. 
Indeed, the model pays more attention to altered AEs near the 
reaction centres as exemplified by ring opening and dissociation 
reactions. These examples clearly show that AE tokens are 
chemically meaningful and fully interpretable by themselves as 
opposed to SMILES tokens. 
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Figure 6. Interpretability of RetroTRAE for Bi-Molecular Dissociation 

Reaction 

 
Figure 6 portrays the attention weight matrices and the 

fragments with the highest attention values of Bi-molecular 
dissociation reaction. RetroTRAE operates at the level of AEs 
predicting transformations from products to reactants in a single 
step. The main reason for focusing on single-step reactions is 
that the mechanistic descriptions of reactions are not provided 
in the USPTO database. However, there is no intrinsic 
limitation for the model to predict multi-step synthetic routes. 
The model would be able to predict multi-step synthetic routes 
when it is combined with a proper algorithm. In its current form, 
RetroTRAE can be used in any single step of a multi-step 
retrosynthesis. 
 

Retrosynthesis Predictions 

The candidate reactants with 𝑇𝑐 > 0.85 are similar enough 
to their true counterparts. To validate this assumption, assessed 
the quality of candidate reactants by comparing them with true 
reactants. The accuracy of side-substituents is regarded as less 
significant for matching the reactants’ functionality, especially 
when they are simple alkyls. In addition to exact predictions, 
investigated how much singly and doubly mutated predictions 
are similar to the ground truth. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 7. Exact RetroTRAE Predictions 

  
The exact prediction based on RetroTRAE is presented in 

figure 7 (a). RetroTRAE predicted 58.1% of the reactions in the 
test set accurately. The single and double fragment mutations 
together account for 3.3% of the total predictions. In single 
mutation cases, atom and connectivity types must be preserved, 
therefore only two types of structural changes are possible. 
First, a new environment may appear (or an existing 
environment may disappear) due to a misplaced single 
environment (e.g., at the ortho/para/meta position). With this 
change, all connected atom types must be preserved in figure 7 
(b) which is a hard threshold. Second, a single existing AE can 
be added or subtracted at terminal sites. Double mutations are 
characterized by a misplaced branching AE or a single atom 
substitution shown in figure 7 (c). If a mutation happens in the 
middle of a molecule, the AE centred at the mutated site and its 
direct neighbours are highly likely to be changed, leading to at 
least three AE mutations. 

As indicated in the similarity maps of hard thresholds, none 
of the atoms of the reactant candidates negatively contributed 
(red) to the similarity value. With the AE representation, the 
length of simple aliphatic chains might be incorrectly predicted, 
because the length of an aliphatic chain cannot be accurately 
described using a set of unique fragments. Based on this 
observation, SM and DM predictions are much more similar to 
the ground truth than conventional structural analogues 
implying differences in certain substructures, functional groups, 
or several atom types. We believe that these small discrepancies 
are easily amendable through a visual comparison with a 
product. When soft thresholds are used, several AEs can be 
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altered, making the generalization of errors highly difficult. 
After inspecting the bio-actively similar predictions, the most 
significant aspects of the retrosynthetic analysis concluded, 
such as bond disconnections, reactive functional groups, and 
core structures, were correctly predicted. Nevertheless, unable 
to generalize the characteristics of the predictions beyond DMs, 
albeit within the bounds of bioactive similarity space. 
 

 
 

Figure 8. Number of Matches at Different Numbers of Epochs 

  
The evolution of prediction accuracy concerning threshold 

values along the training epoch for the single reactant validation 
set is illustrated in figure 8. In particular, it is demonstrated that 
the network successfully learned reaction rules by capturing the 
alterations of molecules at a sub-structural level. The number of 
exact matches (𝑇𝑐 = 1.0) increased rapidly during the first 10 
epochs. After 20 epochs, the value became almost tripled. The 
likelihood of making a better prediction for each fragment 
becomes higher during training. This is a clear indication of 
successful training. The improvement in exact matches appears 
to be a result of the respective declines in non-exact matches 
except extremely bad predictions (𝑇𝑐 < 0.5). The quality of bad 
predictions did not improve probably due to the insufficient 
information, complexity, and noise contained in the data. This 
observation was similarly repeated for all the other datasets. 

 

 
 

Figure 9. Invalid Predictions for Top 10 Predictions with Known Reaction 

Classes 

 

The fraction of invalid predictions across the various known 
reaction types for top-10 analysis is presented in figure 9. To 
further understand the performance of the proposed model 
across reaction classes, the granularity of the analysis and 
compute the five metrics– accuracy, fractional accuracy, 
MaxFrag accuracy, similarity score, and syntactic validity 
across the 10 reaction classes are increased. This behaviour is 
not trivial since the corresponding top-10 prediction accuracy 
does not follow the same trend across reaction classes. 
Moreover, the percentage of invalid predictions shows only 
minor variations across the two scenarios with known and 
unknown reaction classes. This observation again highlights the 
ability of this proposed Retro TRAE SMILES-based translation 
technique generates correct predictions, irrespective of the other 
factors. 

 

 
 

Figure 10. Invalid Predictions for Top-10 Predictions without Reaction Class 

 
Figure 10 reveals the invalid percentages for Top-10 

predictions without reaction class. The above trend indicates 
that except for reaction class 6 (deprotections) and the 
surprisingly accurate predictions on reaction class 10 
(functional group addition) when the reaction class is unknown, 
all the reaction types result in nearly the same percentage of 
invalid predictions. The high percentage error in deprotection 
reactions could be attributed to several factors that could be 
specific to the reaction class and could be analysed through 
chemistry-driven heuristics that envision as a hybrid 
explanation-generation system, respectively. 

 

 
 

Figure 11. Results of Chemical Retrosynthesis 
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The chemical retrosynthesis results based on training the 
small amount of chemical sample limited data set of a single 
reaction type (reaction type 1) is presented in figure 11, where 
quantum can reach reasonable accuracy. Here, train the 
quantum and tree-tensor network topology. The promising 
results in this figure show that the quantum approach, while 
unable to match the results of the classical approach, can 
converge to an accuracy of 68% and a loss of 0.1, respectively. 
 

 
 

Figure 12. Chemical Retrosynthesis Results for Training Huge Number of 

Chemical Samples  

  
The results in figure 12 show that the classical loss never 

reaches a point of convergence, whereas the quantum loss also 
doesn’t reach convergence nor does it reach the same level as 
the classical. These results hold for accuracy, where the 
classical domain reaches 65% and the quantum domain reaches 
55%. While there is a small performance gap, the task of 
identifying a common substring within the predicted reactants, 
and quantum can nearly match classical performance during 
training. Validation is run once every 5 epochs during training 
and here, there is a flip of performance. 

 

 
 

Figure 13. Success Rate under Reaction Model 

The results for evaluating the performance of the proposed 
framework and baselines are in figure 13. Compare the 
framework with existing RetroGNN [26] and RetroSynx [19]. 
While compare to these existing methods, the proposed work 
significantly outperforms the RetroGNN and RetroSynx. 
However, the proposed Retro-TRAE SMILES achieves a 
success rate of 97% with a computation limit of 𝑁 = 500. 
While the other two methods like RetroSynx and RetroGNN 
achieve 90.65% and 86%. In terms of other evaluation metrics, 
e.g., the length and the cost of discovered reaction pathways. 
Therefore, such a result demonstrates the effectiveness of the 
proposed framework for retrosynthetic planning. 

On the other hand, the backward reaction model does not 
suffer from a drop in TOP-k accuracy. Instead, they even 
outperform the backward reaction model trained on the reaction 
dataset 𝐷𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 in terms of TOP-10 accuracy. An 
improvement in the TOP-10 accuracy comes from “diverse” 
solution candidates generated by the proposed model, which is 
encouraged by being trained on a large variety of samples, e.g., 
augmented reactions. The performance of the proposed method 
may be saturated when the backward reaction model 
appropriately adapts to the search algorithm. This highlights the 
importance of training an appropriate backward reaction model 
for retrosynthetic planning. 
 

 
 

Figure 14. Top-10 Accuracy under Multiple Iteration 

 
Figure 14 reveals the top 10 accuracies for numerous 

iterations. The performance of the proposed model for finding 
the reaction pathways over multiple iterations. The result 
demonstrates that iterating the framework improves the success 
rate of finding a reaction pathway while maintaining the 
accuracy of the backward reaction model. This indeed validates 
that the proposed framework is effective without compromising 
the ability to model realistic reactions. The proposed method is 
compared with the existing RetroGNN [26] and RetroSynx 
[19], when compared to these methods, the proposed work 
produces higher accuracy. 
 

VI. RESEARCH CONCLUSION 

Retrosynthesis analysis is a challenging problem since it 
involves predicting the precursors with limited information, 
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searching a combinatorially large number of possible synthesis 
pathways, and approximating an often complex multi-step 
analysis as a single-step prediction problem. Naturally, 
incorporating additional information about the reaction or the 
molecules involved would be of considerable use given the 
complexity of the task and the limited information often present 
for making the predictions. In this study, RetroTRAE SMILES-
based translation technique is proposed for a single-step 
retrosynthetic prediction by associating the AEs of the reactants 
with the products. Throughout the study, AEs are regarded as 
the basis of molecules and employed in the prediction 
workflow. The proposed design enables to capture of chemical 
changes by focusing on fragments related to the reaction 
centres. Subsequently, the research presents a quantum tree-
tensor network topology with a heuristic scoring function for 
constructing an Auto-Syn-Route planning system. The 
AutoSynRoute successfully reproduced published synthesis 
routes for the four case products. The system is analyzed on a 
Python software platform. 

❖ To accurately generate the reactant candidates for a 
target molecule, the proposed model is used. Therefore, the 
proposed work showed that the proposed model achieves a top-
1 exact matching accuracy of 68%.  

❖ The overall accuracy increased to 73% by adding 
extremely similar predictions. These results are better than 
those of the existing methods, without suffering from problems 
associated with the SMILES representation. 

❖ RetroTRAE showed comparable or improved 
performance compared to other state-of-the-art models like 
RetroGNN and RetroSynx. 

❖ The retrieval process converts a set of fragments into a 
molecule concerning coverage, degeneracy, and resolution. 
RetroTRAE predicted reactant candidates with an exact match 
accuracy of 73%.  

In addition to the exact match accuracy, highly similar 
reactant candidates with single and double mutations were 
exceptionally similar to ground truth. The overall accuracy with 
singly and doubly mutated predictions was 73%, therefore, the 
proposed research work outperforms the state-of-the-art 
methods. The proposed findings will open new possibilities for 
the development of different models for chemistry using 
sequential data, not only for retrosynthetic prediction but also 
for reaction and property predictions, respectively. 
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Pruszyński, Y. Bengio, and M. Segler, “RetroGNN: Fast 
Estimation of Synthesizability for Virtual Screening and De 
Novo Design by Learning from Slow Retrosynthesis 
Software,” Journal of Chemical Information and Modeling, 
vol. 62, no. 10, pp.2293-2300, 2022. 

[37] A.P. Senthil Kumar, S. Yuvaraj, S. Janaki, “Experimental 
investigations of Co3O4, SiO2, cotton seed oil additive 
blends in the diesel engine and optimization by ANN-SVM 
process,” Journal of Ceramic Processing Research, vol. 21, 
no. 2, pp. 217-225, 2020. 

[38] S. Yuvaraj, A.P. Senthil Kumar, M. Muthukumar, K. Sadesh, 
S. Janaki, “Certain studies on influence of nano catalysts 
Co3O4, SiO2 blended with CME-diesel in combustion,” 
Materials Today: Proceedings, vol. 51, pp. 1612-1618, 2022.  

[39] Tarun Kumar Kotteda, Manoj Kumar, Pramod Kumar, Rama 
Bhadri Raju Chekuri, “Metal matrix nanocomposites: future 
scope in the fabrication and machining techniques,” The 
International Journal of Advanced Manufacturing 
Technology, 2022. https://doi.org/10.1007/s00170-022-
09847-0 

[40] Tarun Kumar Kotteda, Rama Bhadri Raju Chekuri, Naga 
Raju, Prasada Raju Kantheti, S. Balakumar, “Analysis on 
Emissions and Performance of Ceramic Coated Diesel 
Engine Fueled with Novel Blends Using Artificial 

Intelligence,” Advances in Materials Science and 
Engineering, 2021, https://doi.org/10.1155/2021/7954488 

[41] R.K. Pattanaik, S. Mishra, M. Siddique, T. Gopikrishna, S. 
Satapathy, “Breast Cancer Classification from Mammogram 
Images Using Extreme Learning Machine-Based 
DenseNet121 Model,” Genetics Research, pp. 2731364, 
2022. 

[42] S.K.  Mohapatra, S. Prasad, G.M. Habtemariam, M. Siddique, 
“Identify determinants of infant and child mortality based 
using machine learning: Case study on Ethiopia,” Big Data 
Analytics and Machine Intelligence in Biomedical and Health 
Informatics: Concepts, Methodologies, Tools and 
Applications, pp. 21–45, 2022. 

[43] M. Siddique, D. Panda,  “Prediction of stock index of tata 
steel using hybrid machine learning based optimization 
techniques,” International Journal of Recent Technology and 
Engineering, vol. 8, no. 2, pp. 3186–3193, 2019. 

[44] M. Siddique, D. Panda, “A hybrid forecasting model for 
prediction of stock index of tata motors using principal 
component analysis, support vector regression and particle 
swarm optimization,” International Journal of Engineering 
and Advanced Technology, vol. 9, no. 1, pp. 3032–3037, 
2019. 

[45] S. S. Reddy, N. Sethi, R. Rajender, & V.S.R. Vetukuri, “Non-
invasive diagnosis of diabetes using chaotic features and 
genetic learning,” In Third International Conference on 
Image Processing and Capsule Networks, pp. 161–170, 2022.  
Cham: Springer International Publishing. 

[46] S. S. Reddy, L. Alluri, M. Gadiraju, & R. Devareddi, 
“Forecasting Diabetic Foot Ulcers Using Deep Learning 
Models,” Proceedings of Third International Conference on 
Sustainable Expert Systems, pp 211–227, 2023. 

[47] R. S. Shankar, D. R. Babu, K.V.S.S. Murthy, & V. Gupta, 
‘An approach for essay evaluation using system tools,” 2017 
International Conference on Innovative Research In 
Electrical Sciences (IICIRES). IEEE. 2017. 

[48] R. Shiva Shankar, & D. Ravibabu, “Digital report grading 
using NLP feature selection,” In Soft Computing in Data 
Analytics,615–623, 2019.  Proceedings of International 
Conference on SCDA 2018. 

[49] Reddy, Shiva Shankar, M. Gadiraju, & V.V.R. Maheswara 
Rao, “Analyzing student reviews on teacher performance 
using long short-term memory,” In Innovative Data 
Communication Technologies and Application, pp. 539–553, 
2022.  Singapore: Springer Nature Singapore. 

 
 

http://www.ijritcc.org/
https://doi.org/10.1007/s00170-022-09847-0
https://doi.org/10.1007/s00170-022-09847-0
https://doi.org/10.1155/2021/7954488
https://www.scopus.com/authid/detail.uri?authorId=57210743801
https://www.scopus.com/authid/detail.uri?authorId=23098147000
https://www.scopus.com/authid/detail.uri?authorId=57210743801
https://www.scopus.com/authid/detail.uri?authorId=23098147000

