ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

Design and Development of a High Performance Hybrid Patch Antenna with Enhanced Bandwidth for Wireless Communication

¹Neera Agarwal, ²Kalyan Acharjya, ³Ramendra Singh

¹Department of electronics and communication engineering Mahirishi University of Information Technology
LucknowUttarpradesh, India
neeraa960@gmail.com

²Department of electronics and communication engineering
Mahirishi University of Information Technology
LucknowUttarpradesh, India
Kalyan.acharjya@muit.in

³Department of Computer Science Engineering(IOT)
Raj Kumar Goel Institute of Technology
Ghaziabad Uttarpradesh, India
ramenfio@rkgit.edu.in

Abstract—In the current scenario of modern antenna design, patch antennas have emerged as a fundamental component in modern wireless technology due to their compact size, low profile, and versatility in diverse applications. However, to meet the ever-increasing demands for higher data rates, extended bandwidth, and improved radiation characteristics, innovative design approaches have become essential. In conclusion, this research paper showcases the current state of modern patch antenna design, emphasizing the significant improvements in performance and versatility. The research work introspects into the design of a hybrid patch antenna with a modified cutting-edge design employing an optimization techniques resulting in a high performance Patch antenna with better bandwidth and high gain in comparison to its counterparts. The results obtained insights provided in this study will be valuable for researchers, engineers, and designers in the field of antenna technology, paving the way for the development of more efficient designs in hybrid antenna technology.

Keywords-Bandwidth, defected ground structure efficiency, hybrid patch antenna and reconfigurable antennas

I. INTRODUCTION

A Microstrip patch antenna came into existence in the middle of twentieth century. Within a span of two decades, this antenna became so popular due to its inherent advantages that were quite appreciated by the researchers [1]. Furthermore, printed circuit technology was effectively employed in the Microstrip patch antenna that paved ways for integration of antenna within existing wireless systems. This resulted in the fabrication of standalone systems comprising of an array of such elements arranged in a particular pattern [2]. .Recent years have shown a tremendous utilization of Wireless data transmission networks resulting in expansion of Wi-Fi distribution. In order to address the increasing demand of consumers, antennas with higher bandwidth and smaller dimensions are best suited. Figure 1 represents the basic structure of a patch antenna. It primarily comprises of a Rectangular patch coupled with a feed line. In order to facilitate the analysis prediction of the fabricated antenna, the patch shape is generally selected as rectangular circular, triangular, elliptical or some other regular shape[3] Usually for a rectangular patch, the length of the patch ranges from 0.33λ to $0.5\lambda[4]$.

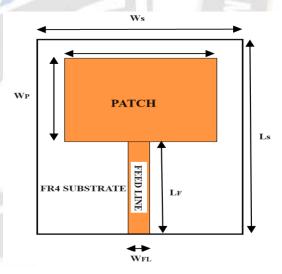


Figure 1. A front view of the proposed Rectangular Microstrip patch Antenna. with dimensional details provided in table 1

Table 1 represents the dimensional details and the design parameters applicable to a conventional patch antenna. This article proposes a hybrid patch antenna design using a combination of T-Shaped and F-shaped patches. The proposed antenna has been fabricated and achieves a bandwidth and gain enhancement by a marginal factor.

II. DESIGN PROCEDURE

This section provides the design description of the proposed Hybrid rectangular patch antenna using FR-4 operating at design frequencies

A. Adopted Procedure

Figure 2 shows the steps initiated for designing a patch antenna using software simulation techniques. In this paper antennas have been designed at a frequency of 70 GHz. All the four elements have been designed by modifying the patches using a combination of T-shaped and F-shaped elements as shown below. The design makes use of FR4 as a substrate with a permittivity of 3.3[5]. It comprises of two rectangular patches of T and F shape that are fabricated on the sides of the patch. The length of the patch is designated as L. In order to estimate the performance comparison of the antennas have been constructed with two different thicknesses. One antenna with a thickness of 0.65mm and 1.35mm for a frequency band of 15 GHz and with thickness of 0.15mm and 0.30 mm for a frequency band of 75 GHz.

The design specifications employed in the proposed design are represented in Table 2.

B. Design Specifications

The proposed patch antenna topology is represented in the Figure 3 below. It comprises of F-shaped and T-shaped slots organized in a symmetrical structure. In Figure 3, the proposed design specifications are represented as L-Length of the patch,

Table 1. Typical design parameters of a Rectangular patch antenna employing FR4

Parameter (symbol)	Details	Typical value	
Ws	Width of the substrate	20mm	
$\mathbf{W}_{\mathbf{P}}$	Width of the patch	18mm	
$\mathbf{L}_{\mathbf{P}}$	Length of the patch	14mm	
L_{S}	Length of the substrate	30mm	
$\mathbf{f_o}$	Operating frequency	7GHz	
&r	Permittivity of the material	4.5	

width of the patch, W_T is the thickness of the Microstrip transmission line.

III. MODELLING TECHNIQUES AND TOOLS

Prior to hardware implementation, circuits and componentsto be used in filter design are simulated in a three dimensional environment known as Field Solvers.. Theseelectromagnetic field solvers provide reliable simulationresults that finally match with the experimentation resultson actual hardware. This aids in reducing the EM designcosts and provide valuable analytical data through whicha designer can visualize how microwave componentsactually behave. This speeds up the design convergenceand leads to design convergence and optimized designselection by validating number of design options in a lessertime. Commercial EM tools currently available amounts totremendous compactness in component size and hence theresultant structure. Trimming techniques are carried out toremove excessive roughage in multilayered devices beforeactual simulation is carried out. Simulation Field solver techniques can be virtually applied to all microwave components but they render efficientresults for filters. The following field solver techniques have been used forDesign optimization and enhancement in the EBGgeometries for producing efficient devices and components:

A. IE3D

IE3D software is the first scalable Electromagnetic designand verification platform. It is attributed to high modelingaccuracy both for the high-frequency circuit design and signal integrity engineers across multiple design domains. The high design capacity requirements posed by current technological advancements are addressed by IE3D bothat circuit and component level. This simulation is powered with multi-threaded and distributed simulation architecture providing cost effective solutions coupled with compact designs and parametric enhancements. It delivers the design accuracy. IE3D has been extensively used for antenna design

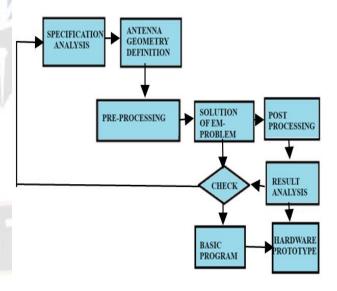


Figure 2. Design steps followed in modern Hybrid patch antenna design

Table -3 represents the design specifications employed in the proposed structure tested for two sets of fabricated antenna configurations.

This is effectively carried out by designing high capacity unit array cell and the cell is replicated tocreate a large antenna array structure. It also satisfies theboundary conditions and

offers space optimization desiredfor a large array antenna. It is also used for RFID designthat combines antenna and embedded passive design. Using accelerateddesign closure capabilities of this software, the performance of the resulting RF-ID tag can be improvised. Furthermore, it can be implemented for complete designing and validation of multichip system architectures exploring full 3D capabilities.

B. HFSS

HFSS(High frequency structure simulator) is a 3D simulation software for designing and simulation of high frequency devices such as antennas, filters, IC packages Printed circuit boards. This software is most suitable forhigh frequency circuits suitable for fabricating radars, satellites, Internet of Things (IOT). This software is integrated with versatile solvers and abrilliant Graphic user interface (GUI) for introspectionin 3D EM problems. It is loaded with tools such asthermal, structural and fluid dynamics that are suitable for multi-physics analysis. HFSS is categorized in the gold standard accuracy range due to its adaptive meshingand sophisticated solving techniques. This is superior as itenhances the quality of design, improves product reliability, compactness and performance.

C. CST Studio

CST(Computer Simulation Technology) studio is capableof simulating and solving problems in all segments of Electromagnetic spectrum ranging from low frequency applications to high frequency, microwave and optical frequencies. It comprises of seven different studios namely- Microwave Studio, EM Studio, Design Studio, Particle Studio,

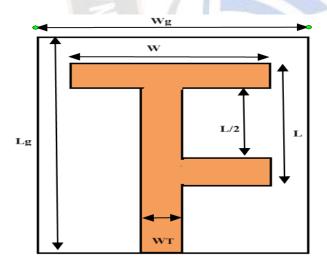


Figure 3. A hybrid patch antenna with T and F shaped rectangular patches for bandwidth enhancement

MPHYSISCS Studio, Cable Studio and PCB Studio. Each studio is utilized for designing of a specific area of application. It provides accurate, efficient computational solution for EM designs. This software can be coupled to performhybrid simulations and the whole system can be visualized and analyzed in terms of components. It facilitates shorter

development cycles and reduced costs. The current areasof interest in which this software is used potentially are-Performance improvement in filters and Antenna circuits, Electromagnetic Interference (EMI), Exposure to fields, Thermal effects in high power devices.

IV. RESULTS

Table 2 presents the results obtained in terms of bandwidth enhancement The parametric details of the incorporated dielectric material, feeding method used and the type of simulation software employed in design-1.In this case the FR-4 substrate with a resonant frequency of 4.06 GHz produces a return loss of -6.4 dB whereas glass epoxy operating at a resonant frequency of 4.1 GHz produces a return loss of -10.4 dB. It is observed that the bandwidth of the antenna in the design is enhanced drastically by around 300 MHZ which is quite phenomenal. It is observed that in the proposed methodology, the simulated and measured values of the return loss display a close agreement which is a figure of merit.

Table 2 Results of antenna performance with two different operating frequencies and dimensions

	Dimensions in mm					Frequency band	
	L	W	LT	Wt	fr		
Antenna 1	28	33	25	5	3	15GHZ	
Antenna 2	28.5	33	25.1	5.8		75GHz	

The set of fabricated antenna s is shown below in Figure 4

V. CONCLUSION

The presented work has highlighted the use of a hybrid combination of elements to fabricate a Patch antenna. The antennas were tested on a set of operating frequencies and different dimensions. It has been established that a trade off between the bandwidth and gain has to be worked out. With increasing gain, we have to compromise with bandwidth and vice-versa.

ACKNOWLEDGMENT

The authors are thankful to the Mahirishi University of information Technology for providing the necessary logistic support

CONFLICTS OF INTEREST

The authors state that there is no conflict of interest regarding the publication of this paper.

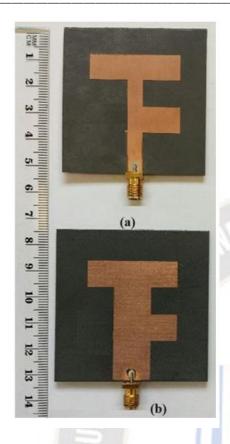


Figure 4. Fabricated antennas with a combination of T and F elements

FUNDING STATEMENT

For this assignment, no funds have been received from any organization

REFERENCES

- [1] U. Chakraborty, A. Kundu, S. K. Chowdhury, and A. K.Bhattacharjee, "Compact Dual-Band Microstrip Antenna for IEEE 802.11a WLAN Application," IEEE Antennas and Wireless Propagation Letters, Vol.13, pp.407-410, 2011
- [2] K. L. Wong, and W. H. Hsu, "A Broadband Rectangular Patch Antenna with a Pair of Wide Slits," IEEE Transactions on Antennas and Propogation, Vol. 49, No. 9, pp. 1345-1347, September 2001
- [4] Feibiao, D, Limei, X, Wenbin, L & Tiahong, Z 2017, 'A Compact Wide-Band Hybrid Dielectric Resonator Antenna with Enhanced Gain and Low Cross-Polarization' Hindawi International Journal of Antennas and Propagation, vol. 61, no 2, pp. 960-964.
- [5] Feibiao, D, Limei, X, Wenbin, L & Tiahong, Z 2017, 'A Compact Wide-Band Hybrid Dielectric Resonator Antenna with Enhanced Gain and Low Cross-Polarization' Hindawi International Journal of Antennas and Propagation, vol. 61, no 2, pp. 960-964.
- [6] Sohel, R, Bijoy, KS, Tanjil, AM and Mostafizur, R 2023, 'A 2.45 GHZ Microstrip Patch Antenna design, Simulation, and Analysis for Wireless Applications' Bulletin of Electrical Engineering and Informatics, vol. 12, no.4, pp. 2173-2184.
- [7] Firoz, A, Hasnat, K, & Touhidul, I 2023, 'Design of a Compact Patch Antenna with Bandwidth and Efficiency Improvement for UWB Applications' Multidisciplinary Science Journal.
- [8] Mouaaz, N. 2022, 'Design of a High-Gain Dual-Band LI-Slotted Microstrip Patch Antenna for 5G Mobile Communication Systems'

- [9] Journal of Radiation Research and Applied Sciences, Elsevier , pp. 1-8.
- [10] Satyanarayana, R and Shankaraiah , N 2018 , Performance Enhancement of Rectangular Microstrip Patch Antenna using Multiple DGS Technique' International Journal of Applied Engineering Research, vol. 13, no 6, pp. 3867-3880.
- [11] Dhawan S, Aditi ,T and Viranjay,MS 2018 , 'Miniaturization and Gain Enhancement of Microstrip Patch Antenna Using Defected Ground with EBG' Journal of Communication, vol. 13, no 12, pp. 730-736.
- Communication, vol. 13, no 12, pp. 730-736.

 [12] Rahul, DM and Promod, KS 2016, 'Miniaturization Gain Enhancement of Rectangular Microstrip Patch Antenna Designed for Exposure System Using Microstrip Array' International Journal of Signal Processing, Image Processing and Pattern Recognition, vol. 9, no 5, pp. 417-430.
- [13] Amit, S and Kamal, N 2016, 'Miniaturization A Review on Performance Improvement of Microstrip Patch Antennas Using Slotting
- [14] Techniques' International Journal of Scientific Progress and Research, vol. 20, no 3, np. 417-430.
- Research, vol. 20, no 3, pp. 417- 430.

 [15] Shrawan, KP 2015, "Improvement of Efficiency Parameter of a Microstrip Patch Antenna operating at 2.4 GHz for WLAN" 2015 National Conference on Advances in Engineering ,Technology and Management(AETM-15),India , pp. 1-7.
- 15), India, pp. 1-7.
 [16] Janebi, L, Vinod, KS and Shahnawaz, A 2014, "Bandwidth Improvement of Microstrip Patch Antenna operating for WLAN applications" International Journal of Engineering and Technical Research, Special issue, pp. 44-46.
- [17] Mohit, MF, and Manasi, D 2014, 'Bandwidth Enhancement of Microstrip patch Antenna using Suspended Techniques for Wireless Applications' International Journal of Engineering Research & Technology, vol. 3, no 5 pp. 470-473.
- [18] Abolfazl, A 2011, 'A New Super Wideband Fractal Microstrip Antenna', IEEE Transactions on Antennas and Propagation, vol. 59, no. 5, pp. 1724-1727.
- Propagation, vol. 59, no.5, pp. 1724-1727.

 [19] Ahmed, K, Kai, FL, Fan, Y & Atef, ZE 2013, 'Circular Polarisation Reconfigurable Wideband E-shaped Patch Antenna for Wireless Application', IEEE Transactions on Antenna and Propagation, vol. 61, no 2, pp. 960-964.
- Antenna and Propagation, vol. 61, no 2, pp. 960-964.

 [20] Ching, FT & Cheng, LH 2009, 'A Wideband Cross Monopole Antenna', IEEE Transactions on Antennas and Propagation, vol. 57, no. 8, pp. 2464-2468.
- Propagation, vol. 57, no. 8, pp. 2464- 2468.

 [21] Hongjiang, Z, Yasser, A, Regis C, Marc, T, Thierry, M & Bernard, J 2012, 'Low-Profile and High-Gain Yagi Wire-Patch Antenna for WiMAX Applications', IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 659-662.
- Patch Antenna for WiMAX Applications', IEEE Antennas and Wireless Propagation Letters, vol.11, pp. 659-662.

 [22] Horng, DC, Chow, YDS, Jun, YW &Tsung, W 2012, 'Broadband High-Gain Microstrip Array Antennas for WiMAX Base Station', IEEE Transactions on Antennas and Propagation, vol.60, no.8, pp. 3977-3980.
- Propagation,vol.60, no.8, pp. 3977-3980.

 [23] Hsien, WL, Chia, HK & Chang, FY 2010, 'Novel CPW-Fed Planar Monopole Antenna for WiMAX/WLAN Applications', IEEE Antennas and Wireless Propagation Letters, vol.9, pp. 240-243.
- [24] Huda, AM, Mohamad, KAR, Mohamad, RH, Noor, AM and Mohd, FI 2013, 'Frequency Reconfigurable Microstrip Patch Slot Antenna', IEEE Antennas and Wireless Propagation Letters, vol.12, pp. 218-220.
 [25] Hui, Z, You, QL, Xi, C, Yun, QF &Nai, CY 2009, 'Design of Circular (Dual Fraguency Linear Polarization Antennas
- [25] Hui, Z, You, QL, Xi, C, Yun, QF &Nai, CY 2009, 'Design of Circular/Dual-Frequency Linear Polarization Antennas based on the Anistropic Complementary Split Ring Resonator', IEEE Transactions on Antennas and Propagation, vol. 57, no.10, pp. 3352-3355.
 [26] Jaegeun, H, Kyeol, K, Youngki, L &Jaehoon, C 2010,
- [26] Jaegeun, H, Kyeol, K, Youngki, L &Jaehoon, C 2010, 'Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell', IEEE Transactions on Antennas and Propagation, vol. 60, no 2, pp. 1143-1147.
- [27] Javad, P, Changiz, G & Javad, N 2011, 'Novel Modified Pythagorean Tree Fractal Monopole Antennas for UWB Applications', IEEE Antennas and Wireless Propagation Letters, vol.10, pp. 484-487.

- [28] Lin, D, Zhen, YL, Yong, JX, Gao, LN & Jun, F, 2010, 'A Compact Microstrip Slot Triple-Band Antenna for WLAN/WiMAX Applications', IEEE Antennas and Wireless Propagation Letters, vol.9, pp. 1178-1181.
 [29] Lin, YF, Liao, PC, Cheng, PS, Chen, HM, Song, CTP & Hall, PS 2005, 'CPW-Fed Capacitive H-shaped Narrow Slot Antenna', Electronics Letters, vol. 41, pp. 940-942.
 [30] Roberto, C, Andrea, AS, Marcos RP, Paolo, N & Giuliano, M 2010, 'A Wideband Slot-Coupled Stacked-Patch Array
- M 2010, 'A Wideband Slot-Coupled Stacked-Patch Array for Wireless Communications', IEEE Antennas and Wireless Propagation Letters, vol.9, pp. 986-989.
 [31] Shatarupa, N, Anup, KB & Partha, PS 2014, 'Size Reduction
- of Rectangular Microstrip Antenna', Microwave Optical Technology letters, vol. 56, no.1, pp. 244-248
- [32] Shing, LSY, Ahmed, AK & Kai, FL 2008, 'Frequency Reconfigurable U Slot Microstrip Patch Antenna', IEEE Antennas and Wireless Propagation Letters, vol.7, pp. 127-
- [33] Shynu, S, Gijo, VA, Aanandan, CK, Mohanan, P &Vasudevan, K 2005, 'A Reconfigurable Dual Frequency Slot-Loaded Microstrip Antenna Controlled by PIN diodes', Microwave Optical Technology Letters, vol. 44, pp. 374-
- [34] Zhongkum, M & Guy, AEV 2012, 'Low Cost Wideband Microstrip Arrays with High Aperture Efficiency Frequency Reconfigurable Antenna', IEEE Transactions on Antennas and Propagation, vol. 60, no.6, pp. 3028-3034.

