
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2046

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Topological Data Analysis for Software Test Cases

Generation

Mani Padmanabhan
Associate Professor- SSL

Research Guide - School of Computer Science Engineering and Information Systems

Vellore Institute of Technology (VIT), Vellore, India

e-mail: mani.p@vit.ac.in

Abstract—The escalating development of digital technologies over the last several decades has given rise to an accompanying surge in

data analysis.The software based smart applications increase the importance of behaviour analysis. Software testing of expert systems such as

electronic health records, health information system and software as a medical device (SaMD) refers to detect the difference between expected

behaviour and actual outcome during healthcare expert systems development. Test cases are the core source of effective software testing. Test

cases generation for expert systems are discover challenges of identifying the expected behaviour of the system, where the decision logic is

obtained via a data –driven paradigm. In the traditional system software object oriented expected behaviour, provide the clear test cases does

not change the flow such as in the healthcare system. Intelligent software test case generation approach required for smart health systems. In

this research contributes key performance indicators from massive data sets, node –link diagrams from decision trees, test cases from adjacency

matrix are elaborated. The experimental results of healthcare expert systems provide empirically evidence that topological data analysis are

compact contribution for software requirement validation.

Keywords- Topological data analysis;Software requirement validation; Key Performance Indicators; Test Case Generation

I. INTRODUCTION

A variety of software development methodologies have been
created over the past few years to support the creation of
effective smart system software that fulfils requirements of ever
increasing complexity [1]. While these methodologies have
allowed for development of demanding software solutions in
healthcare, they were not designed to support the data-driven
software solutions which have recently become in high demand.
A higher number of expert systems are data-specific process that
uses conditional statements to provide the solution in the
decision-making field [2]. Data analysis is the process of
supporting decision making in the smart systems using activates
of filtering, transforming, and modeling of data to discover
useful solution. Data sets are useful information to extract
decision making conditions.

Measuring the performance of software products using

massive data sets create software tester aware of source code-
related parameters and to increase test cases through timely
control statements in the coding [3]. Software source code for
smart systems is appropriate massive data representation.
Massive data sets transformation mainly classified into three
categories: key performance indicators (KPI) based, tree based,
graph based. Every node and links are different tree structure of
the source code to a specific data sets in the smart systems.

The virtual data representations can then be inserted in a test

cases so that they can use source code as input for test case
generation. The software programming are the text encoding
representing of source code for smart system. Set of instruction
transfer into different representations forms for software
requirement validation [7]. The massive data sets can

representing in three aspects such as KPI, tree structure and
graph. The transferred mapping structure are the representation
of the set of instruction. Figure 1 shows the example of Python
programming using conditional statement as a running example
in this research paper.

Figure 1. Sample Python code (Control Statement).

Topological Data Analysis (TDA) is to assign topological

invariants to data. TDA representation treats code as free text.
Thus, it converts the code into a list of key performance
indicators, such as alphanumeric characters is consider as KPI
(eg. ‘for’, if , ‘else’) . The special character also consider as KPI
KPI (eg. ‘{’, “” , ‘()’). The special character is not the part of
the word. The set of instructions for smart system software is
mapped to one KPI, then KPI values are resembles a topological
representation. Hence the topological flow is often taken into the
field of software test case generation.

The second representation captures the decision tree of the
source code. Decision trees are a kind of topological
representation. In the software test case generation methodology

http://www.ijritcc.org/
mailto:mani.p@vit.ac.in

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2047

IJRITCC | September 2023, Available @ http://www.ijritcc.org

is commonly used the tree representation for transformation of
source code. Topological decision trees are a powerful and
popular code transformation technique for classification kinds of
problems in software testing. A decision tree is a topological data
analysis where an internal node corresponds to attributes. The
branch (or edge) represents a decision rule, and each leaf node
denotes the classification outcome. Test case is a series of input
values, implementation prerequisites and expected results,
generated for testing objectives viz., to execute path(s) in a
program or to check compatibility with software requirement. It
requires the execution of a set of test paths in the program under
testing. Figure 2 shows the electronic health test path in the
topological decision trees classification based on age group. The
decision trees classification is adopt in this research paper for
test cases generation.

Source code to be represents as a graph with different levels.
The levels of graph shows the control statements in the
programming instruction. Thus, the graph levels is determined
by conditional statements, e.g., in the figure 1 shows the if
statement for conditional testing of given number in python
coding. In the control flow graph, nodes denote statements and
conditions in the each level of programming, and directed edges
connect them to indicate the transfer of control among the user
defined functions.

Figure 3. (A) CFG with Self-Loop (B) Control Flow Tree

This research paper is structured as follows. Section 2 is the

literature review, In Section 3 describes the healthcare datasets

and decision tree algorithm. Node-link extraction methodology.

Examines the process of proposed software test case generation

using three end-end healthcare software are elaborated with

results are described in the graphical representation in section

4. In Section 5 outlines the conclusions and plans for future

work on the topics of this paper.

II. RELATED WORK AND RESEARCH DIRECTION

This section provides a description of the previous research

in the field of software test case generation. Relevant systematic

review were identified by searching in the e-library database

this search string written related to the proposed approach 253

papers in total after removing duplicates research specific

relevant paper are identified in total 28 the majority of the

papers focused on adaptation of agile methods like global

software development. Software test case generation bases on

white box testing are limited in the number. Alkhazi et al used

multiple objective search for test case selection this approach

identity the conditional factor maximum rule coverage and

minimum execution time the Pareto algorithm was validated

using different transmission of programs but in this proposed

research paper aims to be identify the maximum test cases based

on the key performance indicators (KPI).Figure 3 describe the

control flow graph.

Honfi et al. presented a method for testing the artificial

intelligence based robots this method uses optimization for

selecting the minimal test cases using method data driven

development in this MDD model identity the domain specific

language. The prototype tool supports test case identification

approach based on domain specific language however in this

proposed research paper is focused on applying Artificial Bee

Colony (ABC) algorithm for transmission of node –link

diagram to adjacency matrix.

Naslavsky et al presented the test case generation approach

based on modification to the model rather than extract the

source code. The approach identity the connectivity between the

model elements using UML class diagram and sequence

diagram for extracting the test case. Our previous research work

2018,2019,2022 test case are generates based on specification

diagrams for embedded system, test cases for chatbot, test cases

for smart system agriculture devices and test cases for web

applications are used the model transmissions approach. In past

research achieves 98% of test case.

Related traceability approach was implemented by Troya et

al this approach for debugging for fault identification in the

traceability approach when the test cases failed the approach

Figure. 2 Test path in the decision trees classification.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2048

IJRITCC | September 2023, Available @ http://www.ijritcc.org

change the rules according to the fault identification. They

purpose an approach for automatically test the ATL model

when the rule is executed a traceability can be automatically

identified the trace links according to the rules.

The majority of the massive date sets based software

development testing are used the specification model and

traceability approach covers the code based testing and high

coverage criteria in the system software. In this proposed

research paper implemented the traceability matrix approach.

The source of inputs are optimized using key performance

indicators (KPI).

 To evaluate the proposed approach in this paper conducted

several experiment using three different health care software

programmes this section starts with research questions that the

experiments attempt to address the research question. The

objective of the research question validate the need of presented

approach in the emerging field of data sets based health care

software development.

RQ1 How does proposal approach select the path for

test case generation?

RQ2 What is the size of the time effective in the

proposed approach?

RQ3 How cost effective during the regression test

selection?

Investing research questions the experiments are tested with

the comparison of existing our approach with code coverage

cost effectiveness time consuming number of reduced test case.

In the experiments result want to ensure that the fault deduction

of test case is better than existing methodology in the following

section provides test case identification methodology for health

care system software, based on our unique approach to achieve

the effective optimized test cases using topological data

analysis.

III. PROPOSED METHODOLOGY

The proposed research work differs from the above-

mentioned research on the following grounds: the proposed

algorithm will observe the KPI filter components from massive

data sets; then, the node –link flow graph will be consider; and

finally, ABC Algorithm based test case generation track the

event during the implementation, the bee flows are transferred

to the test path to generate the possible test cases for the smart

system software. However, the approach tackles the challenges

of test case generation of smart system software with

undetermined input from massive date sets.

In the massive data sets, the data is defined the flow of

application operation. For example, online consultation software
as a medical device in healthcare have different modules like,

make an appointment, select doctor and select your preferred
doctor, proceed with the booking, face –to –face video
consultation, electronic health records retrieval, health
information system analysis based on data specific metrics by
the patient, providing treatment may be allowed or may be
prohibited. These algorithms are incorporated into a type of data-
driven software. In the parallel operation from same set of data
sets need more potential algorithm to solve a critical stage of
conditional statements. To accomplish this parallel operation,
the proposed research chose to adapt of key performance
indicators (KPIs) for anomaly detection approach.

The optimized KPI are well suitable for test case generation,

node –link diagram are well-established source in the software

testing, by combining a novel specification based test case

generation and KPI clustering algorithm that are used for

adaptive the intelligent test case generation strategy. Proposed

approach for software test case generaton describe in figure 4.

A. KPI Encoding and filtering

Smart systems services produce a massive number of

data sets in recent years. Key performance indicators (KIP)

filtering is the necessary from the parallel data sets. Define

parallel operation of KPI source data sets as the graph adjacency

matrix A, its defines the direct sum K= QJQ-1 where Q=

[Qi,Qi…….Qn], i=1,2,3…N are eigenvectors of adjacency

matrix A.

 Matrix of GFT (Q) =

𝑛1. . 0 … 0

0… . 𝑛2 1.

0 … . 0 … 𝑛3

Algorithm 1: KPI Model library Mining

1: Calculate the graph adjacency matrix A

2: Identify the Graph Fourier transform of A

3: Select the first Node Q1

Figure. 4 Proposed approach for software test case generaton

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2049

IJRITCC | September 2023, Available @ http://www.ijritcc.org

4: Q= Q1….Qn

5: While new node from KPI do

 Calculate the detection error (Ne) for new GFT

 Calculate new GFT node until the error =0

 6: Detect the GFT model and store as the optimizing KPI

library.

 7 : If new node are normal then

 Update the GFT model

 8: End if

 9: End while

KPI parallel identification and mining algorithms are

based on topological data analysis. In this proposed algorithm 1

calculate the adjacency matrix from massive KPI. And select

the first node and process it as Q1. The node is validated using

new node condition and change to topological graph (GFT).

Detect the GFT model and store as the optimizing KPI library.

The GFT is updated until all the node visited in massive date

sets for node-link extraction.

In this research paper propose a node-link framework,

an efficient node-link graph conversion framework from

massive data sets. The proposed framework consists of two

stages: transfer KPI and duplicate date sets detection. GFT

model undergo for the anomaly detection using clustering

process. The parameters of effective (E) , deployed state (D)

and termination stage(s) will be calculating the time leg (Q) for

the node to node connection in the topological tree structure. In

the clustering process, we extract NL models, split them into

segments, and utilize Node link diagrams with hierarchical

agglomerative clustering. Proposed framework for node-link

extraction shows in the figure 5.

Finally, the node link extract stage hyper parameter with

topological data calcification to calculate the conditional
statement in the second stage of the framework. The unique node
–link topological structure is the core source for the test case
generation methodology.

B. Transformation of Node link Graph

The first process of graph approach is to convert the

topological node link to test matrix. Node link graph provides

a moderate extraction of the path, branch distance and time leg

with combination of nodes and edges. The Cyclomatic

complexity provide the approximated number independent

path. V(G) denote the Cyclomatic complexity of the topological

KPI structure. E describe the number of edges in the topological

KPI and N denotes number of nodes in the topological KPI tree

mining.

 V(G) =E - N+2 (1)

NC= CCi ∩ CCj (2)

Here CCi denotes the Cyclomatic complexity of the

effective date sets and CCj describe the Cyclomatic complexity

of the deployed data sets. NC is a metric of approximated

statistics value of independent new test cases during software

testing. To find the accurate number of test cases Adjacency

matrix to be formulated. The below flow chart describe the

process of adjacency matrix creation from node-link graph. The

topological KPI node link is formulated based on the proposed

algorithm the adjacency matrix denoted as Adj(Matrix of GFT).

Adj(Q) =

1 1 1 0 0 0 0 0 1
1 1 0 1 1 0 0 0 1
1 1 0 1 0 1 1 0 1
1 1 0 1 0 1 0 1 1
1 0 0 0 0 0 0 0 1

The adjacency matrix is generated from node-link

diagram contains all the test cases. All these test cases are

equalized with pre-condition, data, post condition.

C. Test cases generation

Test case expected output generation is often made more

difficult by decisions made during requirements specification

and software design. A method of assessing the testability of

Figure. 5 Proposed framework for node-link extraction

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2050

IJRITCC | September 2023, Available @ http://www.ijritcc.org

requirements specifications based on adjacency matrix help to

further reduce the time and cost of software testing.

A single objective finder need in the adjacency matrix that

is artificial bee colony (ABC) algorithm, the random searches

in the adjacency matrix carried out by employee bee. The actual

outcome and expected outcome are identify by onlooker bee.

The scout bee occurred the new path.

Algorithm 2: ABC Algorithm based test case generation

Step 1: Initialization of programming flow

Step 2:Scout bee are search the node (0,0) for new space

Step 3: Onlooker bee are save the flow in the expected

outcome on their respective path.

Step 4: Track possible node with employed bee.

Step 5: Save the position trace (path) for test cases selection

(precondition, data and post condition)

Step 6: Repeat until all the node are visited.

The proposed test case generation methodology for

validating the software requirement has its advantage over other

methodology. The experimental evaluation for three end –end

health care software programming code in python are provides

the accuracy of the proposed methodology in the next section.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To demonstrate the proposed approach, three phases of

health care expert system programing instructions are pre-

owned. Python programming instructions has been applied for

the extraction of KPI. The methodology to be divvied in the five

phases of execution. The objective of the experiments provided

in the table 1.

First phase KPI filter is executed. In the second phase

node -link diagram extraction. Phase three adjacency matrix to

be formulated. Fourth phase test cases are generated. In the final

phases software requirement has been validated. In this five

phases provide the full code coverage in the health care expert

systems.

Table 1 Experiments and Objectives

Phase

NO.

Automatic

health care

expert

system

Objectives

1 Automated

body

monitoring

system

Automated body monitoring

system for human body identify

the temperature and blood

pressure.

2 Smart chatbot

Discussion

If the limit exceeded chatbot

dissuasion will be enable and ask

for the hospital booking.

3 Hospital

Appointment

booking

Based on the past record of the

patient nearest hospital has been

booked with the stored record.

The datasets form automated body monitoring system

are converted as the key performance indicators (KIP) based on

the proposed approach. In the node-link diagram have the E1 to

E14 unique datasets in the healthcare system. The ABC

algorithm based node to be extracted for test cases. In the ABC

algorithm based node provide the pre and post condition.

Figure 6 shows the Sample code for AI based body monitoring

system.

Figure 6 Sample code for AI based body monitoring system.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2051

IJRITCC | September 2023, Available @ http://www.ijritcc.org

The following adjacency matrix based sample test cases are

provided in order to assess the outcome of the experiments and

hence they were recorded for every path in the healthcare

system. Table 2 provide the KPI Encoding and filtering. Table

3 shows the sample test cases and table 4 are the Node –link

extraction for Path 1 to Path 3. The temperature identificaton

based on the proposed algorthms of ABC emplyee bee saved

the position trace (path) for test cases selection (precondition,

data and post condition) are provided in the table 3

Table 4 Node –link extraction for Path 1 to Path 5

Data sets: ID ABC based node visit

Path _1 : Temperature

identification

E2→E5→E9→E7→E4→E11

Path _2 : BP

monitoring

E5→E6→E7→E8→E4→E11

Path _3 : Record

searching

E5→E6→E7→E8→E11

In order to verify the performance of the proposed

approach in this research paper, Three different healthcare

Table 2 KPI Encoding and filtering

Data Sets ID Test Scenario Test case ID Precondition(Q1) Input(new node) Output(GFT)

Path _1 : Temperature

identification

Input value : Temperature Test Case1 Waiting Signal identify the limit Compare the limit .

Path _2 : BP

monitoring

BP range Test Case2 Sensor Input Sensor IP(x) Speed cal(x)

Path _3 : Record

searching

Search based on unique ID Test Case3 Get signal(x) Sorting Capture/ find

Path _4 : Smart

chatbot discussion

Limit trigger: voice all Test Case4 Message If message > yes Call message

Path _5 : Hospital

appointment booking

Message:/Accept/ Reject Test Case5 Get signal(x) If (Accepted) booking; Else;

Wait()

Store the record

TABLE 3(a) Test Cases for Path _1

Test

case ID

Node Pre Data Post

TS1 (0,0) E1 Trace1=

(M>10)

E2

TS2 (3,1) E2 Trace

2=(M<10)

E3

TS3 (0,5) E5 Invalid data E7

TABLE 3(b) Test Cases for Path _2
Test

case

ID

Node Pre Data Post

TS1 (0,0) E4 Trace1=

(bP>90)

E5

TS2 (5,1) E6 Trace

2=(bp<130)

E7

TS3 (1,6) E8 Bp(<40>50) Invalid

data

TABLE 3(c)Test Cases for Path _3

Test

case ID

Node Pre Data Post

TS1 (3,0) E1 Trace1=

(ID>’ ’)

E2

TS2 (1,5) E2 Trace

2=(X<10)

 E6

TS3 (1,2) E5 ID not

match

E8

TABLE 3 (d) Test Cases for Path _5

Test

case

ID

Node Pre Data Post

TS1 (4,0) E1 Trace1=

(Num.>10)

E4

TS2 (2,1) E2 Trace

2=(Num.<10)

E4

TS3 (3,2) E7 Book ID E2

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2052

IJRITCC | September 2023, Available @ http://www.ijritcc.org

experiments were conducted with five path. Literature shows

that the Control Flow Graph (CFG) testing is more robust than

testing like statement and branch, but it has some limitations

too. Testing all paths in a complex program is practically

difficult to achieve. Instead of testing all paths, testing a subset

of paths based on coverage criteria helps in achieving the testing

goal with lesser efforts required to be put in.

Figure. 7 Effitiveness of proposed approach.

The proposed approach for generating test case based

on topological data analysis and ABC alogorthm using node –

link exteractoin approach yields efficient test cases. It also

shows how to created Node –link extraction for saved the

position trace (path) from KPI provded more code coverage.

Effitiveness of proposed approach provided in figure 7. Some

concluding observations from the research are given below.

• The proposed algorithm is very effective for

converting KPI Model library Mining.

• The method for test case generation based on

ABC algorithm achieves high test coverage from massive data

sets.

• It has been illustrated with the various

experiments of smart systems by using massive data sets which

further shows the behaviour of the system.

• The outcome of the proposed approach

indicates the possible test path to generate the test cases for

smart sysems.

 It is observed that the proposed approach with

validation technique, presented in this paper is able to generate

test cases with high requiremnt coverage, optimized test cases

and low failure test cases. The detailed concluding observations

from the experiments are given in the next session.

VI Conclusion

In this research contributes topological data analysis

using key performance indicators from massive data sets, node

–link diagrams from decision trees. Effective test cases from

adjacency matrix are elaborated. The proposed approach

provide the node-link based test case generation. Proposed

methodology to select a subset of paths (known as unique paths)

from the set of all paths of a smart systems. The experimental

results of healthcare expert systems provide empirically

evidence that optimized data sets are a compact contribution for

software requirement validation. Test case generation based on

topological data analysis technique achieves 99.9% of the code

coverage. In future, the test case generation of proposed work

could be tried with other datasets with fully automate process.

References

[1] L. V. Sartori, H. Waeselynck, and J. Guiochet, “Pairwise

Testing Revisited for Structured Data With Constraints,”

in 2023 IEEE Conference on Software Testing,

Verification and Validation (ICST), Dublin, Ireland:

IEEE, Apr. 2023, pp. 199–209. doi:

10.1109/ICST57152.2023.00027

[2] G. H. Subramanian, P. C. Pendharkar, and D. R. Pai, “An

Examination of Determinants of Software Testing and

Project Management Effort,” Journal of Computer

Information Systems, vol. 57, no. 2, pp. 123–129, Apr.

2017, doi: 10.1080/08874417.2016.1183428.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 2053

IJRITCC | September 2023, Available @ http://www.ijritcc.org

[3] A. Nayak and D. Samanta, “Automatic Test Data Synthesis

using UML Sequence Diagrams.,” The Journal of Object

Technology, vol. 9, no. 2, p. 115, 2010, doi:

10.5381/jot.2010.9.2.a2.

[4] M. Chen, P. Mishra, and D. Kalita, “Efficient test case

generation for validation of UML activity diagrams,”

Design Automation for Embedded Systems, vol. 14, no. 2,

pp. 105–130, Jun. 2010, doi: 10.1007/s10617-010-9052-4.

[5] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-

Walawege, “A Systematic Review of the Application and

Empirical Investigation of Search-Based Test Case

Generation,” IEEE Transactions on Software Engineering,

vol. 36, no. 6, pp. 742–762, Nov. 2010, doi:

10.1109/TSE.2009.52.

[6] M. S. AbouTrab, M. Brockway, S. Counsell, and R. M.

Hierons, “Testing Real-Time Embedded Systems using

Timed Automata based approaches,” Journal of Systems

and Software, vol. 86, no. 5, pp. 1209–1223, May 2013,

doi: 10.1016/j.jss.2012.12.030.

[7] Mani Padmanabhan and M. Prasanna, “Validation of

automated test cases with specification path,” Journal of

Statistics and Management Systems, vol. 20, no. 4, pp.

535–542, Jul. 2017, doi:

10.1080/09720510.2017.1395173.

[8] G. H. Subramanian, P. C. Pendharkar, and D. R. Pai, “An

Examination of Determinants of Software Testing and

Project Management Effort,” Journal of Computer

Information Systems, vol. 57, no. 2, pp. 123–129, Apr.

2017, doi: 10.1080/08874417.2016.1183428.

[9] P. M. Jacob and P. Mani, “Software architecture pattern

selection model for Internet of Things based systems,” IET

softw., vol. 12, no. 5, pp. 390–396, Oct. 2018, doi:

10.1049/iet-sen.2017.0206.

[10] M. Azizi and H. Do, “Graphite: A Greedy Graph-Based

Technique for Regression Test Case Prioritization,” in

2018 IEEE International Symposium on Software

Reliability Engineering Workshops (ISSREW), Memphis,

TN: IEEE, Oct. 2018, pp. 245–251. doi:

10.1109/ISSREW.2018.00014.

[11] Mani Padmanabhan, “Rapid medical guideline systems for

COVID-19 using database-centric modeling and

validation of cyber-physical systems,” in Cyber-Physical

Systems, Elsevier, 2022, pp. 161–170. doi: 10.1016/B978-

0-12-824557-6.00012-1.

[12] Mani Padmanabhan, Prasanna M, “Test Case Generation

For Embedded System Software Using UML Interaction

Diagram”, Journal of Engineering Science and

Technology, Vol.12, NO.4, pp. 860-874, 2017.

[13] Mani Padmanabhan,“ Test Case Generation for Arduino

Programming Instructions using Functional Block

Diagrams. Trends in Sciences, 19(8), 3472.

https://doi.org/10.48048/tis.2022.3472.

[14] Mani Padmanabhan, Prasanna M, “Test Case Generation

for Real-Time System Software using Specification

Diagram”, Journal of Intelligent Engineering and Systems,

Vol.10, No.1, pp. 166 – 175, 2017

[15] Mani Padmanabhan, “Regression Test Case Optimization

Using Jaccard Similarity Mapping of Control Flow

Graph,” in Innovations in Computational Intelligence and

Computer Vision, Lecture Notes in Networks and

Systems, vol. 680. , Singapore: Springer Nature

Singapore, 2023, pp. 545–558. doi: 10.1007/978-981-99-

2602-2_41.

[16] A. Shahbazi and J. Miller, “Black-Box String Test Case

Generation through a Multi-Objective Optimization,”

IEEE Transactions on Software Engineering, vol. 42, no.

4, pp. 361–378, Apr. 2016, doi:

10.1109/TSE.2015.2487958.

[17] G. H. Subramanian, P. C. Pendharkar, and D. R. Pai, “An

Examination of Determinants of Software Testing and

Project Management Effort,” Journal of Computer

Information Systems, vol. 57, no. 2, pp. 123–129, Apr.

2017, doi: 10.1080/08874417.2016.1183428.

[18] S. Mirjalili, “SCA: A Sine Cosine Algorithm for solving

optimization problems,” Knowledge-Based Systems, vol.

96, pp. 120–133, Mar. 2016, doi:

10.1016/j.knosys.2015.12.022.

http://www.ijritcc.org/

