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Abstract—Social networks are becoming more prevalent all across the globe. With all of its advantages, criminality and fraudulent conduct
in this medium are on the rise. As a result, there is an urgent need to detect abnormalities in these networks before they do substantial harm.
Traditional Non-Deep Learning (NDL) approaches fails to perform effectively when the size and scope of real-world social networks increase.
As a result, DL techniques for anomaly detection in social networks are required. Several studies have been conducted using DL on node and
edge anomaly detection. However, in the current scenario, subgraph anomaly detection utilizing Deep Learning (DL) is still in its nascent
stages. This paper proposes a method called Clustering-based Deep Autoencoders (CDA) to detect subgraph anomalies in static attributed social
networks. It converts the input graph into node embeddings using an encoder, clusters these nodes into communities or subgraphs, and then
finds anomalies among these subgraph embeddings. The model is tested on seven open-access social network datasets, and the findings indicate
that the proposed model detects the most anomalies. In the future, it is also recommended that the present experiment be aimed at dynamic
social networks.
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I. INTRODUCTION

In today's world, it is impossible to contemplate not having
access to the world of internet and social media. It has evolved
into a fundamental part of who people are. It was a revolution
that changed the core framework of communication throughout
the globe. A typical web user takes up more than two hours per
day on social networks, and roughly one-third of the world's
population currently uses them [1]. It offers a wide range of
advantages. It enables and maintains human interactions on a
worldwide scale. Additionally, it assists companies in brand
promotion, therefore indirectly lowering marketing expenses. It
is also an excellent teaching resource. There are many more
perks of social networks, and with new users joining the social
network every day, it is no more the virtual world. It has now
evolved into a universe in itself, except that it is very easy to get
away with things here due to its anonymity.

Social media has many advantages, but it also raises a lot of
problems. Online information and data availability draw a
sizable number of fraudulent users and crooks. These social
networks are now used to commit various criminal acts [9][29].
Social networks are also the new tool for several current crimes
as well as the production of fresh crimes, ranging from national

IJRITCC | September 2023, Available @ http://www.ijritcc.org

terrorism through radicalization to violence against a single
person like stalking, harassment, cyberbullying, or hate speech
[18][14][16][30]. This is also because these fake individuals
benefit from social networks’ anonymity. Additionally, there is
an urgent need to develop tools to identify these users given the
degree of influence they might have on society. As crucial as it
is to identify each user, there are growing social network groups
of these fraudsters that adhere to organized crime and illicit
activity. Therefore, identifying these fraud groups among
ordinary social network users is a huge problem in today's
society.

When it comes to social networks, an anomaly is defined as
an unanticipated behaviour by a person or a bunch of users that
deviates from the norm for network users [3]. An observation (or
group of observations) that considerably differs from the other
observations in the sample [12] or that doesn't seem to fit the
other data can also be referred to as an outlier [2]. Finding certain
substructures or patterns that are unanticipated, undesired and
must be discovered to protect the networking and its users is
known as anomaly detection. A danger to the network does not
necessarily accompany an abnormality. To prevent the true
threat among them from being undiscovered, it is vital to take
note of any aberrant network units. In these circumstances, even

1646


http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 05 July 2023 Revised: 25 August 2023 Accepted: 15 September 2023

if there are some false positives, the emphasis is on finding all
anomalous units.

The most popular framework for mathematically
representing a social network is a graph, therefore developing
ways to spot anomalies in these networks is essential. A lot of
research has been done on node and edge anomaly detection.
Subgraph anomaly detection, alternatively, is a little less
explored territory. This could be because determining what
constitutes a subgraph and what is merely a linked component
requires taking into account, both attribute closeness and
structural proximity in addition to other factors. This suggests,
however, that many complicated anomalies can be found via
subgraphs, as nodes or edges that do not appear abnormal when
viewed separately may exhibit aberrant characteristics when
linked to a community. Therefore, it is essential to consider
subgraphs to find hidden abnormalities that other methods miss.

The approach for subgraph anomaly detection proposed in
this paper uses network encoders, dense autoencoders, and
clustering techniques for graph coarsening to arrive at
anomalous subgraphs using derived labels, node embeddings,
and node clusters. The presented model is examined on various
datasets, and the outputs are promising related to the existing
modern techniques.

Il. LITERATURE SURVEY

Subgraph anomaly detection is a slightly underexplored area
as there haven't been many studies done on subgraph anomaly
detection, and there are also fewer studies that employ DL
methods. However, the existing works have significantly
influenced the accomplishments in the aforementioned field up
to this point. Most NDL model-based works can be largely
classified into techniques that are enforced to dynamic or static
graphs, along with attributed or non-attributed graphs.

[6] was one of the first efforts in this area, using minimum
description length to find anomalous substructures in static
unattributed networks. This technique finds frequent
substructures using greedy beam search and rates them
according to the minimum description length [22], considering
substructures with higher description length as more anomalous
ones. [10] also used minimal description length for finding the
normative pattern in static unattributed graphs and developed
three techniques for graph-based data fraud detection and
prevention in which they categorize graph modifications into
three classes, such as alteration, vertex/edge deletion and
insertions, one for each of the algorithms. The first algorithm
identifies patterns with a lower cost of transformation and
frequency as anomalous. The second one looks for extensions of
normative patterns and considers the less probable ones as
anomalous. The third algorithm also uses transformation cost to
check for anomalous patterns amongst the ancestors of the
normal patterns as well as the highest potential substructures of
it.
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[24] distinguish the attacking group from a social subgraph
with the presence of external triangles using randomized graph
traversal in static unattributed graphs. By employing a random
selection model, the attacker node selects a cluster of victim
nodes for connecting inside a widespread assault variability on
communication networks. The prime factor that differentiates
the attacking group from a social subgraph is the presence of
external triangles, which the attacker node establishes with the
network balance and will comprise one attacker and two non-
attacker nodes. These triangle numbers will be quite less for a
malevolent node. An attacker node will be connecting to several
other attacker nodes situated all over the network to avoid being
found. Itis improbable that several victim nodes will have access
to similar good node edges in the attacker subset neighbourhood
and fewer victim nodes in the neighbourhood consisting of
attackers, victims, and fewer good nodes. Nodes present in the
neighbouring area with influential links to the subset will
therefore be a victim or attacker node. If any node consists
several triangles than a particular threshold, it is possibly an
attacker node.

[19] proposed a signal processing-based recognition theory
for discrepancies in undirected, unweighted graphs that makes
use of the L1 features of the graph's modularity matrix [20]. By
projecting the large graph into its two primary eigenvector space,
calculating a Chi-squared testing statistic, and associating the
outcome to a threshold, the principal eigenvectors evaluation of
the modularity matrix reveals the existence of a minor, firmly
associated component embedded in the larger graph. The model
computes the modularity matrix's eigendecomposition for the
graph, determines every eigenvector’s L1 norm, and later takes
away the predicted value, normalizing the output by the L1
norm. The existence of an anomalous subgraph embedding is
specified if any of these altered L1 norms falls below a
predetermined threshold.

[26] proposes a pre-processing model where a set of local
vertices with higher similarity of including the anomalous vertex
is effectively attained by subgraph search. The sparse
background graph that are modelled by the Chung-Lu random
graph consists a compact anomaly graph fitted with the Erdos-
Renyi technique. The abnormal vertex is illustrated by the priori
adjacent matrices that are utilized by the subgraph search model
is constructed for condensing the global into a small vertex set.
The largest abnormal coefficient initially determines the starting
point of each vertex set. Later, based on the largest co-efficient
amidst the revised value for every any of them, vertex from the
primary vertex’s neighbouring matrices is selected, and the
balance vertex are supplemented in the similar manner. A set
containing largest co-efficient is selected as the utmost anomaly
amidst the overall sets. This is performed for every graph
snapshot for producing various local sets that are later integrated
for creating the concluding set. A recognition statistic is
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enforced to this concluding vertex set for determining if the
graph is anomalous.

[7] recommends utilizing a weighted cumulative graph from
the dataset to estimate the similarity of occurrences and discover
activities of anomaly in volatile time-evolving unattributed
networking using the product rule for the central limit theorem.
This model primarily builds a base for standard behaviour by
discovering consistent patterns amidst the vertex that are a
collection of vertices which forms a related component and
interconnect frequently. It later duplicates a weighted
"cumulative" graph from the time-evolving network dataset that
prioritizes recent edges. It compares the activities in any
specified time with anticipated activities based on previous
behavioural trends for recognizing anomaly.

[13] proposes a max-margin framework to determine the
outliers of a subgraph which relates the margin for linked to non-
linked pairing of nodes closer to a subgraph match for
determining the outlier scoring that are employed for ranking
like subgraph outliers. By plainly listing the overall graph edges
that are covered by each match, it is easy for computing the
overall induced match sets. The match’s outlier score is
calculated by utilizing the margin for the finest feature weight
vector or the max-margin hyperplane. Afterwards the
arrangement of the matches accordingly to their outlier scores in
a non-increasing order, the topmost fewer matches might be sent
back as outliers. [23][25] suggest a generic framework which
recognizes the related anomaly property subset along with an
abnormally associated subgraph. It maximizes an anomaly score
function by implementing a sophisticated non-sequential non-
parametric scan statistic function set that are implemented for
formulating the functions utilized for estimating the anomalous
subgraph behaviour and the subsequent attribute subset. The
graph is approximated as the tree from a root node selected
randomly by employing the tree approximation priors and
finding the optimum subtree in the tree and the attributes related
with it shows the majorly anomalous related subgraph and its
associated quality.

[8] broadens the original Subdue approach to include
numerical outliers as well as K-Nearest Neighbours by
modifying the graph such that all standard edges contain a static
value while anomaly edges estimate to a value collection by
using K-Nearest Neighbours, it differentiates between anomaly
and standard values. [5] creates a list of an overall crucial
anomaly positions in a dynamic networking. It starts by outlining
the usual characteristic of the network and rank edges over time
accordingly to their abnormal behaviour. Provided with an edge
and its weight in any exact time, the timestamp percent where
the similar edge has an equal or superior weight logged on it is
computed, which decreases with an increase in abnormality.

All of them, although they are classic, NDL procedures.
Even though there were various researches on node and edge
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anomaly recognition using DL, there has been less research on
subgraph anomaly recognition in social networking.

[27] proposed DeepFD, a model that learned the unusual
occurrence depictions of users so that beginning users are
distributed across the vector space meanwhile suspicious users
who belong to a single group are closer to one another, taking
into account that user nodes related with specific deceitful
groups are most likely to have associations with similar item
nodes. It compares two users' behavioural similarities as the
fraction of common traits across all of the items they've looked
at. An autoencoder is trained to create user representations. The
distrusted dense blocks that are projected for producing dense
fields in the feature space are later identified by employing
DBSCAN [11].[31] suggested FraudNE, a model that leverages
the dense block detection technique to detect dishonest
individuals and related changed items in online review networks
represented as bipartite graphs. It groups suspicious people and
things from the same dense block together while randomly
dispersing other items instead of encoding both node types into
a shared latent space, as DeepFD works.

[17] Formalized the problem of anomalous subgraph
detection as a binary with the null hypothesis representing a
normally detected graph and the alternate hypothesis
representing a background graph containing an inconsistent
subgraph, and proposed a framework for recognizing subgraphs
by implementing Deep Neural Networks. It comprises both an
offline training stage where instances are sent to the Hidden
Layer (HL) for generating feature maps to capture the graph
state, and a training set is constructed based on the neural
network’s specific form and an online recognition phase which
construct the feature vector based on the fed input, and the
recognition statistic is determined. This statistic, when
associated to the threshold, concludes whether or not the
observed graph has an abnormal subgraph.

The proposed technique uses autoencoders on coarsened
graph node embeddings to detect subgraph abnormalities in
static attributed social networks.

I1l. CLUSTERING-BASED DEEP AUTOENCODERS

Provided a network G = {V, E}, in which G is the graph
denoting the social network, and V, E are the vertex and edge
graph sets, the study aims to identify rare subgraphs that vary
significantly from the major reference subgraphs in terms of
node structure and attribute data and also to build a DL
framework that can include non-Euclidean data about graph
structure, used to symbolize the social network for subgraph
anomaly detection. The concept is presently only applicable to
static attributed graphs.

As anomalies in real-world social networks are seldom
marked or labelled, unsupervised learning approaches were
utilized for subgraph anomaly detection in this study. The
approach embeds graphical data into low-dimensional latent
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depictions, clusters them, and then finds anomalies within the
clusters. Figure 1 depicts the abstract framework of CDA.
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Figure 1. High-Level Abstract Representation of the CDA Model
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Figure 2. The Proposed CDA Construction

CDA is broken down into three parts, an encoder, a
clustering technique, and an autoencoder. To build node
embeddings, the encoder takes into account both attribute
information and network topology. These embeddings are used
by graph-based clustering to detect similarities between nodes
and cluster them into super nodes, resulting in a coarsened
network. This stage effectively reduces the subgraph anomaly
problem to a node anomaly problem, with each super node in the
coarsened graph representing a subgraph in the original input
network. These super nodes are then sent into the autoencoder,
which determines anomalous super nodes, which are effectively
the input's anomalous subgraphs. Figure 2 denotes the model
construction.

A. Network Encoder

An encoder is a neural network that accepts an attributed
graph as input and creates feature vectors or node embeddings.
The objective is to learn node representations while retaining
structural and attribute proximity. If a link/edge exists between
two nodes, it shows structural proximity, and the attribute
juncture of the two nodes denotes attribute proximity. The
network encoder generates an NxF feature matrix, where N and
F signifies the node number in the graph and the output feature
number per node. The encoder follows the architecture of [15],
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where the encoder contains input, embedding, hidden, and

output layers as depicted in Figure 3.
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Figure 3. Network Encoder Component of CDA

The input layer is just the early fusion of the graph's structure
and attribute modelling portions. It combines the structural as
well as the attribute information from the input graph. The
attribute information is preprocessed into an array of numeric
types. This contains all processed feature information from
different types of attributes like binary, numeric, categorical,
discrete, continuous, etc. The structural information is given as
a one-hot representation of the particular node, where each node
hi is represented using a m-dimensional array where only the i-
th value is 1 and m denotes the node numbers in the network.
Hence, for each node, the inputs in the input layer are a feature
vector f and the one-hot encoded vector h.

The embedding layer encodes structural information and
attributes information into compact vectors. It comprises of two
elements. The first one converts the one-hot encoded vector h
containing the node data into a dense vector u to capture the
structural information of the input. The second part encodes the
feature vector f into a compact vector « . The weight matrix Wi,
Wa corresponds to that of the structural and feature input
respectively. Hence, the two output components of embedding
layer u and u” are calculated using the given formula:

u=YH-1hmdn 1
where h,, is the m™" entry of the one-hot representation, d,,, is
the m™ column of the weight matrix W9 and M is the node count
in the graph as portrayed in equation (1).

w' = Y1 freex )

Where in equation (2), f; is the k™ entry of the feature vector,
ey, is the k™ column of the weight matrix W2 and K is the number
of feature entries.

The HL is a single-layer perceptron which combines the two
components of the embedding layer. The output of the HL v is
an abstract representation of each node, given as follows:

u
v= [)\u’] ©)
In equation (3), where the parameter A which denotes the

associative significance of the attributes concerning the
structure, u denotes the structural component of the embedding
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layer output and u’ denotes the attribute component of the
embedding layer output.

The output layer converts the HL output v into a probability
vector o that comprises each node's predicted connection
capacity to all nodes in its neighbourhood. This is given by:

0 = [p(uy, up), p(uz, u), p(us, Uy, .., p Uy, U] (4)

exp(ijv)
P w) = 5o (5)

In equations (4) and (5),%; refers to u;’s embedding as a
neighbour from the HL output and i is the node under
consideration. The softmax probability is used to measure the
structural proximity of the node concerning all other nodes.

This encoder is then trained to optimize the likelihood
concerning the overall parameters, across all nodes using a
softmax scheme and Adam optimizer. The output of this
component of the model is an embedding matrix of 128 output
features per node.

B. Graph-based Clustering

The technique for clustering searches the graph for highly
linked components or communities using the supplied network
information. The communities are discovered in such a way that
the edge numbers connecting vertices inside a community is
crucially bigger than the edge numbers connecting vertices
across communities. Louvain algorithm [4] is a clustering
technique applied to form a coarsened graph.

Algorithm 1. Louvain Algorithm

1. Initialization: Each discrete node present in the
network is initially allocated to its community.

2. Modularity Optimization: The algorithm iteratively
optimizes the modularity score by moving nodes
between communities. Specifically, it performs the
following steps:

1) For each node, the algorithm evaluates the
modularity gain resulting from moving it to each
neighbouring community.

2) The node is then moved to the community that
yields the maximum modularity gain, if any.

3) Steps (a) and (b) are repeated for all nodes in the
network.

4) If no node can be moved to a different community
without decreasing the modularity score, the
algorithm terminates and the current community
assignments are returned as the final result.

3. Community Aggregation: In the final step, the
algorithm aggregates the communities obtained in step
2 to form a new network. Each community is depicted
by a single node, and edge’s sum of the weights between
the original communities determines the edge weights
amongst the new nodes.
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4. Repeating Steps 2 and 3: This is accomplished
repeatedly till no additional enhancement in the
modularity score can be accomplished.

Louvain is an unsupervised technique that uses modularity
optimization to extract communities from networks. Modularity
[21][28] is a network structural metric used to compute the
strength of a network's separation into modules. High modularity
networks exhibit strong and sparse connections between nodes
in similar and diverse modules. In a two-phase iterative method,
Louvain optimizes the modularity of a graph. It begins the initial
stage by allocating a diverse community to every node in the
graph. The method then examines the network’s modularity
change for each node when it is removed from its original
community and placed into the community of its neighbouring
node. This process is continued until there is no further rise in
modularity and the local maximum is reached. In the second
phase, a new graph is generated by combining all nodes in the
same community into a single node that represents the
community, with edges within the community replaced by self-
loops to the node and edges outside the community replaced by
weighted connections to other nodes. Once the new graph is
constructed, the first phase is repeated on the new graph. This is
illustrated in Figure 4.

First Pass Second Pass

Figure 4. Louvain Algorithm for Graph-based Node Clustering

After collecting the final membership list for each
community, the super node embeddings are constructed by
simple aggregation functions on each output feature utilizing this
community membership information and the resultant node
embeddings. These coarsened graph embeddings are fed into the
model's third component, the autoencoder.

C. Autoencoder

The autoencoder is designed as a dense autoencoder with
nine dense layers that are fully connected and each layer has a
ReLU activation function as shown in Figure 5. The model is
given training by utilizing an Adam optimizer, using the mean
absolute error as the loss function. The train-to-test split ratio is
7:3, and test data is also used for validation. Additionally, the
data is normalized before being sent into the autoencoder. The
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autoencoder is run for 50 epochs consisting a batch size of 512.
The data is normalized before being passed through the
autoencoder for testing.

Table 1 mentions the specifications of the encoder. The
reconstruction error is the preferred measure for distinguishing
between anomalous and normal supernode embeddings. It is
determined as the variance between the input data and the
autoencoder output. The threshold for it is the sum of the
standard deviation and mean of the loss function. All super nodes
with predictions that exceed this threshold are marked as
abnormal. The discovered anomalous super nodes, i.e., the
anomalous subgraph, and the nodes beneath each subgraph, are
therefore the output of the whole model.

~
=]
~
oa

Super node Reconstructed

embeddings embeddings
Figure 5. Autoencoder Architecture
TABLEL AUTO ENCODER SPECIFICATIONS
Model Sequential

Layer Dense
No. of Layers 9

Activation Function ReLU
Optimizer Adam

Loss Function Mean Absolute Error

Train-to-Test Split Ratio 3
Epochs 50
Batch Size 512

Hence, the anomaly is defined as all those super nodes or
subgraphs that cross the reconstruction error threshold. It can
hence be mathematically defined as:

True, r=vy
False, r<y

Where r is the reconstruction error and y is the threshold
values defined as:

y = X(Loss) + o (Loss)
Loss = A(Output, Input)

Anomaly = {

IV. RESULTS AND DISCUSSION

The proposed method is tested using seven publicly
accessible open-domain datasets from the SNAP library
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(Stanford Large Network Dataset Collection). All of the datasets
chosen are undirected, non-temporal, and have node properties,
as shown in Table 2.

Due to the scarcity of datasets containing actual anomalies,
anomalies are synthesized and injected into the aforementioned
datasets while adhering to the concept of an anomaly for this
study. In this approach, any super node that surpasses the
reconstruction error is deemed unusual. As a result, anomalies
are created that exceed the given threshold. Nodes are therefore
chosen randomly from the original datasets, and the attribute
values are adjusted to differ greatly from the original values,
implying a high likelihood of being an anomalous unit. This
adjusted dataset is fed into the model to evaluate its performance.
Because the changed values differ greatly from the original
values, they are predicted to exceed the reconstruction error
threshold and hence be identified as abnormal.

TABLE IL. DATASET DESCRIPTION
Dataset Nodes | Edges Description

Github 37700 | 289003 The social network of GitHub
developers.

Giraffe 982 9952 Wlklpedla page-page network on
Giraffes.

Chameleon | 1655 25390 Wikipedia page-page network on
Chameleons.

Facebook 22470 | 171002 Facebook page-page network with
page names.

Twitch 6549 112666 | The social network of Twitch users.

- 28281 | 92752 The social network of Deezer users
from Europe.

LastFM 7624 27806 The soc!al network of LastFM users
from Asia.

The final model was tested on all datasets, each with different
anomaly levels, that is, 10, 15, 20, 25, and 30 percent of the
original dataset size were made anomalous. The results are
observed alongside various performance measures such as
Precision, F1 Score, Recall, Accuracy, etc. The same is
represented in Table 3.

In Table 3, different percentages of anomalies were injected
into each dataset, and the model's performance was monitored in
each case. Precision represents how much of the discovered
anomalies are genuine anomalies, whereas Recall denotes how
many of the genuine abnormalities were detected by the model.
As seen in the table, this is known as the True Positive Rate
(TPR). Because the goal is to maximise the number of anomalies
found, recall is a greater weightage measure because a few
normal nodes being marked as anomalous have less influence in
applications than true abnormal nodes staying unnoticed. The
False Negative Rate (FNR) or miss rate reflects the number of
abnormalities that the model does not accurately identify. The
model is trained to maximise TPR while minimising FNR.
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TABLE III. EXPERIMENTAL RESULTS
Dataset Anomaly Ratio Precision Recall TPR FNR Accuracy
10% 0.5 1 1 0 0.9166667
15% 0.3333333 1 1 0 0.8333333
Chameleon 20% 0.6666667 1 1 0 0.9166667
25% 0.6666667 0.6666667 0.6666667 0.3333333 0.8333333
30% 1 0.6666667 0.6666667 0.3333333 0.9166667
10% 0.4375 0.875 0.875 0.125 0.8863636
15% 0.6875 0.8461538 0.8461538 0.1538462 0.9204545
Deezer 20% 0.6842105 0.7647059 0.7647059 0.2352941 0.8863636
25% 0.9285714 0.5909091 0.5909091 0.4090909 0.8850575
30% 0.9375 0.5769231 0.5769231 0.4230769 0.8636364
10% 05 1 1 0 0.9411765
15% 0.5 1 1 0 0.8823529
Giraffe 20% 0.6666667 0.6666667 0.6666667 0.3333333 0.8823529
25% 1 05 05 0.5 0.8823529
30% 1 0.6 0.6 0.4 0.8823529
10% 0.3333333 1 1 0 0.862069
15% 0.6666667 1 1 0 0.9310345
LastFM 20% 0.8333333 1 1 0 0.9655172
25% 1 0.7142857 0.7142857 0.2857143 0.9310345
30% i 0.75 0.75 0.25 0.9310345
10% 0 UNDEF UNDEF UNDEF 0.875
15% 0.5 1 1 0 0.875
Twitch 20% 0.5 1 1 0 0.875
25% 1 0.5 0.5 0.5 0.875
30% 1 0.5 0.5 0.5 0.875
10% 0.5454545 1 1 0 0.9230769
15% 0.75 1 1 0 0.9538462
Facebook 20% 1 0.9230769 0.9230769 0.0769231 0.9846154
25% 1 0.75 0.75 0.25 0.9384615
30% 1 0.6315789 0.6315789 0.3684211 0.8923077
10% 0.3333333 0.6666667 0.6666667 0.3333333 0.8611111
15% 0.5 0.8 0.8 0.2 0.8611111
Github 20% 0.7142857 0.7142857 0.7142857 0.2857143 0.8888839
25% 0.7142857 0.5555556 0.5555556 0.4444444 0.8333333
30% 0.8333333 0.5 0.5 0.5 0.8333333

To observe the techniques accomplishment and its variation
with diverse datasets, True and False Positive Rate, Accuracy,
Precision, and Recall are plotted for the model against each
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dataset as shown below. Each of these values is measured when
the datasets had 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%,
40%, 45% and 50% of the data as anomalous.
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Figure 6. Accuracy Against Noise Ratio for all Datasets

Figure 6 depicts the variation of accuracy against various
levels of noise ratio for all datasets. From the plot, it can be
observed that the accuracy is not largely affected by the anomaly
percentage. However, there is a slight in the accuracy when the
anomaly ratio is the highest. This could be due to the imbalance
in the ratio of anomalous and non-anomalous nodes.

Figure 7 depicts the variation of precision against various
levels of noise ratio for all datasets. From the plot, it can be noted
that the precision surges with an increase in anomaly percentage.
This is possible because the count of anomalies that goes
undetected when the total anomaly density is small, which is
largely visible compared to the count of anomalies that go
undetected. Except for the Twitch dataset, all other datasets have
steady progress. Twitch shows fluctuation due to the small
dataset size.
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Figure 7. Precision Against Noise Ratio for all Datasets

Figure 8 depicts the variation of recall against various levels
of noise ratio for all datasets. From the plot, it can be observed
that the recall decreases with an increase in anomaly percentage.
This is however acceptable as such high anomaly density is very
unlikely in real-world datasets. Nevertheless, the accuracy
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remains pretty much the same and does not show a lot of
fluctuation with changes in anomaly ratio. This shows the
stability of the model.
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Figure 9. TPR Against Noise Ratio for all Datasets
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Figure 9 depicts the variation of the true positive rate against
various levels of noise ratio for all datasets. From the plot, it can
be observed that the true positive rate decreases with an increase
in anomaly percentage which is possibly because the varieties of
anomalies increase with an increase in anomaly density and
becomes hard for the model to detect.

Figure 10 depicts the variation of the false positive rate
against various levels of noise ratio for all datasets. From the
plot, it can be observed that the false positive rate decreases with
an increase in anomaly percentage.

Table 3 displays the model's findings on several datasets with
varying anomaly densities. The model's average accuracy across
all datasets and noise levels is 89.41%. With more datasets and
more training time, this accuracy might increase. A variety of
factors might influence the model's performance. The type of
datasets and attribute information in them may have an impact
on the model since skewed information will influence the model
during training to be predisposed to a certain type of data that
dominates the dataset. Furthermore, because all anomalies have
been artificially introduced into the dataset, its performance may
decline to some extent because these anomalies are not
necessarily equivalent to what true anomalies would be like.
Because all information in node attributes is anonymous and
without context, anomalies injected are simply dependent on
assumptions about the weightage of each feature, which may or
may not be the ones utilized by the model to identify anomalies.
The model performs admirably with the datasets under
consideration. However, there is room for development in the
suggested model design, both in terms of performance and the
incorporation of dynamic networks.

V. CONCLUSION

This work provides a methodology for detecting subgraph
anomalies in social networks using DL techniques, in which the
input graph is coarsened to get super nodes using embedding and
clustering algorithms, and anomaly detection is conducted using
an autoencoder on this coarsened graph. The results of the
experiments reveal that the model performed well. At this time,
the model is only intended for static attributed graphs and will
not operate on dynamic graphs. In future iterations, the model
may also be extended to accommodate volatile real-time
networks. In addition, the present model takes as input a sparse
feature matrix. Because the attribute list of most real-world
datasets or networks is far more complicated, further iterations
of the model may be constructed to contain characteristics of
other sorts, such as categorical, continuous, numerical values,
and so on. Along with the structural information, this
information may be employed in the clustering component.

There are several difficulties encountered while attempting
to solve a subgraph anomaly detection problem. The issue's
complexity is increased by the range of graph types and their
high dimensionality. The lack of labels or ground truth for

IJRITCC | September 2023, Available @ http://www.ijritcc.org

anomalies in the dataset makes evaluating performance and
training even more challenging. Anomaly detection is now a
critical requirement in all social networks since it has become
the fundamental and default form of interaction in practically all
spheres of society.
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