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Abstract—In recent days air pollution has been an essential issue affecting the environment nature leads to various natural causes. 

Especially the Covid-19 pandemic period has a variation environment changes due to vehicle controls and industrial facts at regular intervals. So 

air pollution has different scaling factors before and after the pandemic, period produces non-scaled data features. Many methodologies provide 

the differential solution to analyze the air quality measurements under various conditions to make warnings to avoid air pollution. By the impact 

of exiting forecasting, ML approaches do not provide the accuracy in precision levels because feature dependencies are non-relevant in high 

dimension nature. To create the best Air quality index, we need to improve the feature analysis and classification objectives to produce higher 

prediction performance. This paper proposes a new forecasting model based on the Multi-objective Staked Feature Selection Approach (MoSFS) 

using the Deep Featured Neural Classifier (DFNC) model to predict air pollution. Initially, the Successive Feature Defect Scaling Rate (SFDSR) 

was carried out Auto Regressive Integrated Moving Average (ARIMA) rate for finding variation dependencies. The multi-objective relational 

successive feature index was scaled using the Spider Herding Algorithm (SHA) to select the features based on these variations in feature limits. 

Then the chosen features get activated to logical activation function with Long Short Term Memory (LSTM) and trained with a Fuzzified 

Convolution Neural Network (F-CNN) to predict the class by variance. This resultant factor proves the performance of RMSE values attaining 

the best level to forecast the features and in precision rate produce higher performance in classification accuracy compared to the other system. 

Keywords: air quality prediction, staked feature selection, deep learning classifier, CNN, ARIMA, LSTM, forecasting analysis. 

I. INTRODUCTION 

Air quality forecasting is an important step taken by the 

government as it is a significant concern as it affects human 

health. In today's developing world, there are many air 

pollutants, including Carbon Dioxide (CO2), Nitrogen Dioxide 

(NO2), vehicle smoke, burning of unnecessary materials like 

polythene, factories, and carbon monoxide. This pollution 

causes acute diseases like cancer, respiratory problems, and 

heart diseases. Thus, Air Quality Index (AQI) is used to know 

the air pollution through which it can be known whether the 

air pollution is high or low every day. 

Air pollution is difficult to detect by government and 

private companies worldwide. Machine learning (ML) 

methods are used to identify AQI. However, these approaches 

are very challenging tasks for predicting AQI. This paper 

addresses the problems of detecting AQI and reducing air 

pollution before it becomes unfavorable. 

To date, several computational models ranging from 

statistical and ML and Deep Learning (DL) have been 

compared to demonstrate the accuracy of predicting air quality 

standards. Pollution levels in some parts of the world remain 

uncontrollable due to various sources and causes. Many 

studies are being conducted in this area, but they have not 

yielded accurate results regarding pollution. Air pollution data 

is available on the Kaggle site, divided into two parts, training 

and testing. ML algorithms such as Support Vector Machine 

(SVM), Random Forests (RF), and Artificial Neural Networks 

(ANN) are used to predict AQI. 

AQI shows the quality of air pollution, whether the air is 

clean or not. The major constituents of air pollutants are 

hybrids such as NO2, CO2, and CO. This paper analyzed the 

air quality measurements from various sensors, including 

PM2.5, PM10, O3, CH4, temperature, pressure and CO2. 

Previous methods have made the detection of air pollution a 

challenging task. The Deep Learning (DL) algorithm is the 

best method to predict air pollution and gives more results 

than previous methods. Figure 1 shows the proposed model 

and process of air quality analysis. 
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Figure 1. Process of Air quality analysis 

The feature selection and classification are essential in the 

machine learning approach. The features get important for 

reducing classification burdens. All over the decision are 

carried out fuzzy rules. Fuzzy rules fix the condition rules 

based on logical redundancy. The feature index returns 

marginal weights and input to the neural network. The training 

samples are trained and tested in a hidden layer to categorize 

the result. The searching links remain the timing and neuron 

weightage class principles to progress the classification 

accuracy. 

This paper is structured as follows: First it describes 

previous methods for air pollution prediction. Next explains 

the materials and methods in detail, followed by next section 

which describes the detailed simulation results and the 

simulation tool. Finally, the paper describes the conclusions. 

II. RELATED WORK 

Phuong et al. (2016), focuses on AQI during the covid-19 

lockdown. The AQI prediction used DL-based LSTM, and 

Recurrent Neural Network (RNN) approaches to identify the 

AQI level. Similarly, X. L. L. et al. (2016) the author 

introduces DL-based techniques for AQI. Yet, these 

techniques challenge the process during classification. 

Huang et al. (2018), concentrated on PM2.5 pollution in 

smart cities. So the study expresses the CNN-LSTM technique 

to predict the AQI. Likewise, Thanongsak Xayasouk et al. 

(2020), describes an LSTM-DAE approach used to analyze the 

AQI. The study enhances prediction accuracy and precision. 

Yang et al. (2017), introduces Fuzzy logic for early air 

prediction and AQI assessment. Similarly, Munawar et al. 

(2017), presented Neuro-Fuzzy (NF) technique to predict AQI 

based on some factors like NO2, CO2, O3 and PM2.5. However, 

these methods didn't provide satisfactory results about AQI. 

1D convnets and bidirectional GRU designed by Tao et al. 

(2019). The suggested method produces air forecasting based 

on such factors as temperature, speed, and wind. Similarly to 

Pardo et al. (2017), used a DL-based LSTM technique to find 

air forecasting based on NO2. However, these methods 

produce a high false rate during air prediction. 

Ghaddar et al. (2018) novel focuses on dimensional, and 

classification features using the SVM technique. However, the 

study produces the challenging task of analyzing the best 

elements of air prediction. 

Liu et al. (2017), concentrated on urban air quality index 

forecasting using SVR. The suggested method improves 

accuracy and reduces the false rate performance during 

classification. 

ML-based LR technique was implemented by Aditya et al. 

(2018). The suggested method analysis vital features of PM2.5 

to identify the AQI. Zhili Zhao et al. (2020), introduces 

combing forward with the RNN method to predict air 

forecasting based on polluted factors NO2, CO2, and SO2. 

Zhang et al. (2019), focused on reducing the air dataset 

dimensionality by using light Gradient Boosting Machine 

(GBM). It improves the classification results and selects useful 

polluted air information. B. Liu et al. et al. (2019), introduces 

Sequence-to-Sequence (S2S) and RNN techniques for air 

forecasting. However, this study didn't provide better 

performance. 

Chen et al. (2020) explored Adaptive Kalman Filtering 

(AKF) technique for reducing noise and removing unwanted 

data to change air dataset structure. P. W. Soh et al. (2018), 

aims to predict air forecasting using multiple classifiers like 

CNN, LSTM, and ANN methods. The study extracted polluted 

air information from the dataset. 

Fazziki et al. (2017), focused on roadside AQ control using 

agent-based traffic. Similarly, Gu et al. (2018), expresses a 

heuristic Recurrent Air Quality Predictor (RAQP) for AQ 

prediction. However, these techniques take much more time 

during classification. 

Mokhtari et al. (2021), introduced DL-based ConvLSTM 

techniques for AQI prediction. Likewise, Yang et al. (2022), 

expressed LSTM and GRU techniques to predict the AQI 

based on polluted factors PM2.5, NO2, SO, and CO. 

III. PROPOSED SYSTEM 

The development progress of the AQI prediction models 

by intent the feature analysis and classification objectives to 

produce higher prediction performance. Figure 2 shows the 

proposed architecture of MoSFS-CNN. Initially, the 

Successive Feature Defect Scaling Rate (SFDSR) was carried 

out with an Autoregressive Integrated Moving Average 

(ARIMA) rate to find variation dependencies. Based on these 

feature limit variations, the multi-objective relational 

successive feature index was scaled using the spider Herding 

algorithm (SHA) to select the features. Then the chosen 

features get activated to logical activation function with LSTM 

and trained with a Fuzzified Convolution neural network (F-

CNN) to predict the class by variance. This resultant factor 

proves the performance of RMSE values attaining the best 

level to forecast the features and in precision rate produce 

higher performance in classification accuracy compared to the 

other system. 
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The intention of an adaptive deep neural network consists 

of three consecutive optimization models, i.e., LSTM, Fuzzy 

membership function and convolution layers. The features are 

analyzed by a spider hardening algorithm, which they despond 

on foraging search models for fitness evaluations. The selected 

features are selected by trained progress in the optimization 

process. The rest of the section defines the implementation 

progress of the proposed system. 

 

Figure 2. Proposed architecture of MoSFS-CNN 

A.  Data preprocessing  

In this stage, the presence of a collective dataset is from 

Air quality features observation in various locations. It 

contains time series data at regular intervals holding scaling 

index values, which verifies the features of present cases, label 

counts, and missing values prediction. This can quickly treat it 

as an outlier training model and convert it to the normalized 

negative value. The second step is to create class labels before 

preparing using the data wrapping model. To make noise 

fewer data by verifying the threshold margins and scaling 

interval range from the features points. 

B. Successive Feature Defect Scaling Rate (SFDSR) 

Based on the preprocessing margins, the AQI features F' 

contains the variation relative features F", Features to be 

integrated to choose the threshold range based on the class. 

This estimates the mean average feature weight depends on the 

feature defects rate. 

 

Step 1: Initialize data source from AQI Input features 

Step 2: For all Preprocessed features, Ps 

Step 3: Create margin Cluster class (Mcls) 

 For each class l Mcls 

Step 4: Create a Decision Tree support index for each class 

Step 5: Compute For each Decision node, create a feature 

vector 

 If  

size(N)

Fv(Pl) ∈ s
i = 1

, then choose the Feature variance 

           Select Count features = count +1 on each class. 

           Select the marginal weights Fli= 
Fv(pi+AmR)

Fv(marginal weight)
× Fv(NI) 

                End If 

              End for 

Step 6:  Estimate Intensive feature points (IrPl). 

 If max supportive limits for each class 

                                              IrPl = 
Fv(l−1)(Lower limit)

Fv(l−1)(marginal weight)
×

Fv(l − 1)(NI) 

     Identify the 

Feature Limits IR = CI
IrPl⁄  

                               Return Ir as Feature vector→  Vs class 

                    End if  

  End for 

 

The above algorithm predicts the successive scaling of the 

Air quality ranges, which supports upcoming feature 

variations under the moving average limits. Also, the source of 

feature limits has Max-Min difference limits marginalized to 

get an average mean rate. The difference variation is selected 

from Euclidian distance estimation. 

C. Autoregressive Integrated Moving Average (ARIMA)  

This ARIMA model creates the average moving index 

structural rate to find the approximation of upcoming feature 

weights. It defines the Auto regressive successive rate of 

average terms at difference variance between current and 

moving feature variables. Let us consider the average moving 

parameter consideration from 'Vs' by assuming L as the Lag 

point  is the autoregressive moving rate,  

 (1) 

Based on the Normal distribution, the error rate is 

identically distributed from the average feature rate to vary 

feature terms with zero mean rates. 

 
Depending upon the Regressive model (p,d,q) is the 

current at the successive moving rate ‘S’ respectively at 

Difference D in varied as ‘d’, and Lag error difference is the 

‘q’. Let's consider,  

∅(𝐵) = 1 − ∅1𝐵 − ∅2𝐵2−, … … . − ∅𝑝𝐵𝑞   

𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑝𝐵𝑞  
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Φ(𝐵) = 1 − Φ1𝐵 − Φ2𝐵𝑠
2 − ⋯ − 𝜙𝑝𝐵𝑠

𝑝 

Θ(𝐵) = 1 − Θ1𝐵 − 𝜃2𝐵𝑠
2 − ⋯ − 𝜃𝑄𝐵𝑠

𝑄
 

𝜔𝑡 =  ∇𝑠
𝐷 ∇𝑑𝑦𝑡   

The forecasting cycles be formed at the successive rate of 

the feature vectors by the consecutive difference at each 

feature variance limit. The ARIMA model discretely finds the 

different terms between the mutual differences; also, the 

variation of feature difference is formed based on the duty 

cycle terms. By finding the average moving rate between the 

current Features 𝐻𝑓(𝐴) 𝑎𝑛𝑑 𝐻𝑓(𝐵) , the equivalence series of 

moving index reparative equivalent to relational time series 

features be considered as,  

𝐻𝑓(𝐴) =

 ∑
𝑛𝑖 (𝑋𝑖) == 1 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 𝑠𝑒𝑟𝑖𝑒𝑠𝑃(𝐴𝑖) log 2𝑝(𝐴2),
𝑛
𝑖   

Get Equivalence difference, between 

𝐻𝑓(𝐵) =

 ∑
𝑚𝑖(𝑋𝑗) == 1 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠

 𝑒𝑞𝑢𝑒𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑟𝑒𝑎𝑙𝑡𝑖𝑜𝑛𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 𝑠𝑒𝑟𝑖𝑒𝑠𝑃(𝐵𝑖) log 2𝑝(𝐵2)
𝑚
𝑗   

The joint features from source on A and B state equivalent 

{A, B} = {a1b1, a1b2, ⋯, anbm}, this generates joint distribution 

outside the total weightage among the two states {A, B}. 

|
𝑎1𝑏1 𝑎1𝑏2 … 𝑎𝑛𝑏𝑚

𝑝(𝑎1𝑏1) 𝑝(𝑎1𝑏2) … 𝑝(𝑎𝑛𝑏𝑚)
|  

The joint feature data correlation between the behaviours is 

the entropy value A and B. 

𝐻𝑓(𝐴, 𝐵) = 1 − ∑ ∑ 𝑝(𝑎𝑖𝑏𝑗)𝑙𝑜𝑔2(𝑎2𝑏𝑗)𝑚
𝑗=1

𝑛
𝑖=1   

The independent feature from A and B is the Relation 

Feature (RF) is  

𝑅𝐹 (𝐴, 𝐵)

= 𝐻(𝐴) + 𝐻 (𝐵)

− 𝐻 (𝐴𝑏)𝑟𝑒𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (0, 1)𝑗𝑜𝑖𝑛𝑡 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 

This returns the average moving index variation by getting 

the real probability of air quality difference in the upcoming 

strategy. Also, this progress the feature difference of 

supportive margin index at independent variables. 

D. Spider herding algorithm (SHA) 

This stage analyzes the collective feature weight, which 

highly supports the maximum average index. The particular 

feature is communications via low-frequency vibrations with 

other elements in the genus are related spider population,  

feeding feature weights are search objects, The formed with 

neural layers, the spiders from max weightage features are 

selected from the centroid closest weight, even average index 

feature rate observed by maximum frequency of relative 

features get closer to the centroid value. However, the aligned 

weights are trained with decision tree classification with 

randomized aligned neurons by weightage of fitness value. 

 

 

 

Algorithm: SHA 

Step 1: Attain Vs ARMIA Margin 𝑅𝑙 (𝐴, 𝐵) 

Step 2: To collect (Herding) marginalized features 

F( 𝑅𝑙 (𝐴, 𝐵)) 

Step 3: For all F’→{Sum of Feature relative class} 

               Check all variance distance and difference D." 

                           Vd→    ∑ 𝐹′(𝐷"(𝑅𝑙 (𝐴, 𝐵)))𝑛
𝑖=0  

                      Return support values 

 Step 4: Create spider Layer Centroid (Vd) point in 8*8 layers 

                          Yi (Vd..x-Init i+b)= 1-€𝑖, €𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛 

 Step 5: Compute fitness weight Ft’(’x’ features and ‘y’ 

variance) 

 Step 6: Compute the Fitness by Min Weight ‘w’  

                                  min  
1

2
 ||𝑤|| + 𝑐 ∑ €𝑖𝑛

𝑙=1  

 Step 7: compute the population limit Ci clans spider limit for 

each layer 

 Step 8: For all Min →w to Process Ci at layer J at Ci  

               Train the Moving Index features at Max→ci, at each 

layer ‘j.'  

                   Choose the best case fitness at Maxnew, ci,j  

                                      Xnew,ci,j=Xci,j+ά*(Xbest,ci-Xci,j)*r 

                    Attain spider feed data weight if xci,j=xbest, ci, 

then  

                                      Xnew,ci = β*Center,ci 

                End For 

Step 9: Assign the closest weight at centroid in the current 

layer to get Feature weight in the best case 

                        For all  xci,j and generate xnew,ci,j  

                                     Xcenter,ci,d = 
1

𝑛𝑐𝑖
 ∑ 𝑥𝑐𝑖, 𝑙, 𝑑𝑛𝑐𝑖

𝑙=1  

               End for  

 Step 10: For all best weights to form Cluster Clan ci choose 

amx weight 

                                  Xworst,ci=Xmin+(Xmax-Xmin+1).rand 

                End For 

 Step 11: Update cluster clans Cls. 

 Step 12: Return best class clans →Cls 

 

The above algorithm produces analysis the feature weight 

which highly support maximum value index. After gaining 

autonomy over their structure, spiders can adequately 

represent the different environments of their offspring and 

support the maximum possible trait variation. Along with 

integrating their feature community, the air quality retains the 

best cases ‘Cls’ of match case results. In this case, the model 

operator performs a separate update to group the classes 

according to the index level. 

E. Convoluted LSTM 

The convoluted linear has 16 layers by constructing 12 

consequent pooling layers with a gated projection of Fuzzy 

formation. The pooling layers are active by linearity 
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characterization with 2 × 2 kernels for feature observation. 

Then 3×3 convoluted layers for feature extraction are defined 

by the logical activated ReLu function for fuzzified 

convolution. By constructing the convoluted linearity 

subscriptions, the features are carried out through Input gates 

by convoluted progress get trained to receive data. The 

processing gate conditionally varied the Logical level current 

feature index to the output gate. The LSTM principles are,  

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

Let us  𝐶̃𝑡 and  𝐶̃𝑡−1  𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 based on current 

and moving index heuristically ℎ𝑡−1 at ‘x’ series of input data 

at each weight ‘w’ in corresponding states be constructed as, 

 𝐶̃𝑡  =  tanh(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶̂𝑡 

The process gate is convoluted to the pooling layer to 

choose the max supported heuristic index in best case index 

level 𝑏𝑡 in ReLu activation. Then the relative feature weights 

are selected by the probability from '𝐶𝑡’ to get maximum 𝑊𝑡 to 

offset σ variation features to get Maximum support values. 

𝑓𝑡 = 𝜎(𝑊𝑡 ∙ 𝑀𝑎𝑥[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑡) 

The output gate gets the maximum support index class 

required from ℎ𝑡−1 𝑎𝑛𝑑 𝑥𝑡  from 𝐶𝑡 and 𝑓𝑡 to decision vectors, 

                                                     𝑂𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)  

ℎ𝑡 = 𝑂𝑡 tanh(𝐶𝑡) 

The features trained to produce class at best-optimized 

𝑏𝑜 𝑎𝑛𝑑 𝑊𝑜 maximum support levels, respectively, the 

consecutive LSTM Bias. 

F. Adaptive Fuzzification  

The fuzzy creates a conditional membership function for 

choosing marginal values logically to bound air quality 

moving average features. It establishes a fuzzy set class to 

rank the variations of the element. This optimizes LSTM 

regressive gated outputs at maximum supported values.   

𝑋̂ = 𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  (𝑥𝑖𝑗|𝑐𝑥𝑖𝑗) 

Let assume, i, j, are component indices x in input matrix X, 

in addition to input fuzzy membership function centre cx. 

𝑥𝑖𝑗 = 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦  (𝑥𝑖𝑗|𝑀𝐹𝑖𝑗̂) =  𝑚𝑎𝑥𝑥𝜖𝑋(𝑀𝐹𝑖𝑗̂𝛿(𝑥 − 𝑥𝑖𝑗)) 

𝑊ℎ𝑒𝑟𝑒 𝛿(𝑥 − 𝑥𝑖𝑗) 𝑖𝑠 𝑡ℎ𝑒 𝑘𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑡 𝑑𝑒𝑙𝑡𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛.  

Each fuzzy convolutional layer has two processing stages: 

the fuzzy convolution stage and the pooling stage. The fuzzy 

convolution stage is applying a fuzzy convolution filter to the 

original 1D data, as shown in equation (4), where the 

calculation of the fuzzy convolution filter Wμ is done by 

Equation (5), where W is the original convolution.  

𝑥𝑖 = 𝑏𝑖 + ∑ 𝑊𝜇

𝑚−1

𝑎=0

 𝑥(𝑖+𝑎) 

𝑊𝜇 = 𝑓𝑢𝑧𝑧𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (𝑊) 

This stage downscales the input to the subsequent blurring 

convolutional layer to keep the translation of the input 

unchanged. In this work, ReLu functional layer will be used 

for the pooling layer. The rectified linear unit is a commonly 

used activation function in deep learning models. If the 

process receives any negative input, the function returns 0, but 

for any positive value xx, it returns that value. 

𝑓(𝑥) = max (0, 𝑥) 

Where f(x) is the activation function of the convolutional 

layer, feature reduction is primarily achieved by autoencoders, 

which aim to learn efficient data encodings in an unproven 

way and are viewed as a type of artificial neural network. 

Φ: 𝑋 → 𝐹 

Ψ: 𝐹  →  𝑋  

Φ, Ψ =  𝑎𝑟𝑔 min
Φ,Ψ

‖𝑋 − (Φ, Ψ) 𝑋‖2 

Let us assume a single hidden layer in which an 

autoencoder stage results in the input 𝑥 𝜖 𝑅𝑑 = 𝑋, in addition, 

maps it to ℎ 𝜖 𝑅𝑝 = 𝐹   

Consider a single hidden layer in simple, the encoder stage 

of an autoencoder ensues the input 𝑥 𝜖 𝑅𝑑 = 𝑋 in maps it to 

ℎ 𝜖 𝑅𝑝 = 𝐹   

ℎ =  𝜎(𝑊𝑥 + 𝑏) 

The fully connected layer of the FCNN is working as a 

classifier with input features being the crisp value 𝑧𝑖fetched 

𝑧𝑖 = 𝑑𝑒𝑓𝑢𝑧𝑧 (𝑥𝑖)   =  
∑ 𝐶𝑦𝑥𝑖

∑ 𝑥𝑖

 

𝑦𝑖̂ =  𝑊𝑓𝑐𝑧𝑖 

Where the 𝐶𝑦- defuzzification membership function centre. 

𝑦𝑖̂ -  Classifier output and  

𝑊𝑓𝑐-  Fully connected layer weight matrix. 

The output error evaluation is done through cross entropy 

which refers to the loss function as revealed in equation 9, 

where y represents target ^ y denotes classifier output N 

notates the number of samples. 

𝐸 =  −
1

𝑁
∑[𝑦𝑛 log(𝑦̂𝑛) +  (1 −   𝑦𝑛)

𝑁

𝑛=1

log(1 −  𝑦𝑛̂)  ] 

The conventional backpropagation learning algorithm is 

extensively utilized along cross-entropy loss function for 

training model parameters. The weight update as presented in 

equation10 

𝑊𝑓𝑐(𝑘 + 1) = 𝑊𝑓𝑐(𝑘) − 𝑎𝑓𝑐

𝜕𝐸

𝜕𝑊𝑓𝑐

 

The updating of defuzzification membership function 

centre 𝐶𝑦(𝑘) is performed through equation (11) where 

𝑎𝑐𝑦denotes updating centre 𝑦𝑘+1 𝑎𝑛𝑑 𝑦𝑘+1̂ are output target 

and model's actual output, respectively, 

𝐶𝑦(𝑘 + 1) =  𝐶𝑦(𝑘) + 𝑎𝑐𝑦∇𝐶𝑦 

The fuzzification gets a membership to the targeted level to 

return feature supportive of deciding on the convoluted layer  

G. Fuzzified Convolution neural network (F-CNN) 
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This work uses CNNs to extract features from an air 

quality feature index. The convolutional layer is trained with 

threshold margins based on ARIMA, LSTM and Fuzzification. 

To generate an actual scaling index of the feature set, be 

trained into the feature margins. Next, selective features are 

developed based on the fuzzy inference system. Finally, the 

CNN model trains internal information and external 

communication. The purpose of using network model training 

data is to continuously adjust the parameters used in the 

network to achieve model optimization. Figure 3 shows the 

Illustration of adaptive LSTM-F-CNN.  

 

 

Figure 3. Illustration of adaptive LSTM-F-CNN 

CNN has two stages forward transfer and reverses transfer. 

For the forward transfer stage, a 3*3 convolution kernel is 

used to process the convolution layer's internal information 

and accident information. A dependent parameter is added to 

the convolution of the upper layer feature map to obtain the 

lower layer output as a function of the activation function. 

Algorithm: Adaptive (F-CNN) 

Step 1: Construct an F-CNN layer with a pooled feed-forward 

layer with softmax activated  

LSTM depending on the mean-variance rate. 

Step 2: Train the feature weights to each pooled layer with 

attained margin class rate and choose the  

selective LSTM Gated result    

Φ: 𝑋 → 𝐹(𝑓𝑡)  

Ψ: 𝐹  →  𝑋 (𝑂𝑡) 

Step 3: Attain the Pooling spread features to select the margin 

dependencies to  

get the importance of extracted features  

Step 4: Apply the convoluted cross-layer margins at each step 

𝑥𝑖 = 𝑏𝑖 + ∑ 𝑊𝜇

𝑚−1

𝑎=0

 𝑥(𝑖+𝑎) 

Step 5: Compute ReLu activation function on convoluted 

input features fuzzification𝑓(𝑥) = max (0, 𝑥) 

Step 6: Selective feature weights difference vector in 

argument feature array is  

calculated by Minimum threshold margin on non-active class 

Φ, Ψ =  𝑎𝑟𝑔 min
Φ,Ψ

‖𝑋 − (Φ ° Ψ) 𝑋‖2 

Step 7: To marginalize defuzzification based on Upper and 

Lower bound difference vector to regret weight 

𝑦𝑖̂ =  𝑊𝑓𝑐𝑧𝑖( Φ, Ψ) 

Step 8: Construct the F-CNN Layer from LSTM optimized 

Feature weights on getting  

training threshold margins to get optimized output. 

                             𝐶𝑦(𝑘 + 1) =  𝐶𝑦(𝑘) + 𝑎𝑐𝑦∇𝐶𝑦→ (ft, Ot ) 

Step 9: Select the Max-Margin Threshold rate. If the class for 

all feature get a supportive margin,  

the feature will attain the class by training. 

Step 10: Return Output class by category 

 

The results are classified as a class by AQI prediction 

levels. This gets categorized based on the fully connected 

layers to provide outputs, and the LSTM gates optimize the 

results to get Membership conditions. The logical activation 

prefers the augmented feature substances from the AQ to 

predict the importance of the feature class to predict the result. 

It attains higher performance which is discussed in the result 

and discussion. 

IV. RESULT AND DISCUSSION 

The results are evaluated with a real-time collective dataset 

observed from seasonal air quality measurements by Central 

Pollution Control Board (CPCB). The proposed algorithms 

were tested using a python framework with Deep learning 

libraries with an indexed quality assessment threshold margin 

rate from the Government of India. Table 1 shows the 

processed dataset values parameters used and environmental 

issues taken for the proposed study and its consideration. 

TABLE I.  ENVIRONMENT SETUP AND ITS CONSIDERATION 

Parameters 

used 
Values processed 

Tool 

Processed 
Jupiter Notebook 

Dataset Log AQI Dataset 

Language 

environment 
Python Framework 

Features 

considered 
Random attributes <=20 

Quality By 

class 
Year by Index class. 

 

The progressive results are tested with confusion metrics. 

The performance results consider the resultant testing 

parameters such as precision accuracy, recall, rate, F-measure, 

false rate, time complexity and loss rate function are calculated 

by confusion matrix. The Mean Absolute Error (MAE) is 

represented by, 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1  and Root Mean Squared Error 

(RMSE) is represented by, 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1  is used to evaluate the 

performance evaluation by considering the loss rate. 
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By verifying the performance, the loss rate deficiency is 

considered an uncertainty principle, depending on prediction 

interval coverage probability (PICP), i.e. the mean error rate 

respectively at 𝑦𝑖  𝑎𝑛𝑑 𝑦𝑖̂ scaling dependent feature values. 

Also, the mean prediction interval width (MPIW) has the 

superior prediction level on probability at scaling features. The 

evaluation be carried out,  

 𝑃𝐼𝐶𝑃 =  
1

𝑛
    ∑ 𝑐𝑖

𝑛
𝑖=1        𝑤𝑖𝑡ℎ {

𝑐𝑖   = 1, 𝑖𝑓  𝑦𝑖   𝜖 [𝐿𝑖 , 𝑈𝑖]

𝑐𝑖 = 0, 𝑒𝑙𝑠𝑒 
 as 

respectively mean interval point in,  

𝑀𝑃𝐼𝑊 =  
1

𝑛
 ∑(𝑈𝑖 − 𝐿𝑖)

𝑛

𝑖=1

 

 The difference function is calculated between the Upper 

bound ground truth variation  𝐿𝑖𝑎𝑛𝑑 𝑈𝑖 respectively 𝑦𝑖  and 

lower bound as same as fuzzy membership function. 

The figure 4 shows the actual Air quality rate in recent 

definitions under NO2, CO, and SO2, which is marginalized 

under the ratio 0 to 0.25 mean level.  

 

 

Figure 4. Actual successive rate of Air Quality 

Figure 5 shows the successive feature variation state and 

seasonal variation trends; the upcoming prediction will be 

increased depending on parameters NO2, CO, and SO2 

consecutively. 

 

 

Figure 5. Successive feature variation state and seasonal variation trends 

The average mean rate is varied according to the F-CNN 

classifier by the ARIMA rate. Figure 6 shows the successive 

feature variation state and seasonal variation trends. 

 

Figure 6. Successive feature variation state and seasonal variation trends 

The subsequent rate differs from the feature index, which 

makes a linear index of variation in the Year, as shown in the 

figure. Also, the residual observation creates mutual feature 

scaling depending on seasonal trend the average rate be 

conditionally increased. 

Figure 7 shows the Successive loss rate Function. The drop 

ratio scaling is 0.25 margin related to feature threshold values 

based on the error rate evaluation. 

 

Figure 7. Successive loss rate Function  

So the fuzzification reduces the Loss depending on the 

failure rate in the proposed system to attain high performance 

with a low loss rate. This proves the low-level loss rate in high 

performance in Prediction accuracy. Figure 8 defines the 

overall performance of classification accuracy. 
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Figure 8. Classification accuracy of records 

The classification results process the results of the 

proposed system. The proposed MoSFS-CNN attains the 

province average mean rate of sensitivity and specificity rate 

carried by provenance security. Table 2 shows that the 

accuracy of the classification, which is compared in different 

ways, offers the best performance with the recommended 

accuracy of the crop. 

TABLE II. CLASSIFICATION ACCURACY IN PERCENTAGE FOR ALL RECORDS 

Methods 

/dataset 

records 

Classification Accuracy in % 

NFIM 
MDC-

SVR 

CNN-

LSTM 

FF-

RNN 

MoSFS-

CNN 

100 87.3 91.1 93.1 93.8 94.6 

500 89.5 92.2 93.6 94.2 94.7 

1000 91.3 92.7 93.8 94.4 95.7 

2000 92.1 92.5 94.2 95.2 95.4 

3000 92.6 92.9 94.2 95.6 95.9 

 

An additional mutual measurement process for categorical 

evaluation is compassion. An actual positive, further 

correlation to the true value of the negative range. Sensitivity 

ratings were performed as well as other methods. Figure 9 

describes the sensitivity advancements for dissimilar dataset 

record findings in functional approximations to classify results 

with higher presentation rates of the intentional method than 

prevailing additional methods. 

Table 3 describes the sensitivity analysis of the proposed 

algorithm and the existing algorithm comparison presented. 

Figure 10 defines the specificity performance the proposed 

and existing algorithm result present in the graph. 

In the graph x-axis presents number of data and y-axis 

presents performance in %. The proposed method produces 

high performance than existing methods. Table 4 represents 

the variability of the singularity governed by different datasets 

creates different representations differently. 

 

 

Figure 9. Sensitivity analysis 

  TABLE III. SENSITIVITY ANALYSIS 

Methods/No 

of records 

Sensitivity Analysis in % 

NFIM 
MDC-

SVR 

CNN-

LSTM 

FF-

RNN 

MoSFS-

CNN 

100 86.7 87.1 88.3 89.9 90.2 

500 88.5 88.6 89.6 92.2 92.6 

1000 89.3 89.2 89.8 91.4 92.4 

2000 89.4 91.2 91.2 92.6 93.4 

3000 90.3 91.5 92.2 93.6 94.8 

 

 

Figure 10. Specificity Evaluation 

TABLE IV. SPECIFICITY EVALUATION 

 

Methods/No 

of records 

Analysis of Specificity in % 

NFIM 
MDC-

SVR 

CNN-

LSTM 

FF-

RNN 

MoSFS-

CNN 

100 82.3 87.3 89.3 91.3 91.4 
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500 83.8 87.6 91.2 91.8 92.1 

1000 84.2 88.5 92.6 92.8 93.2 

2000 85.3 88.9 92.8 93.2 94.6 

3000 86.3 90.2 93.5 94.5 94.8 

 

Measurements represent coherent representations of true 

positives and false negatives and depend on accuracy and 

recall.  

Figure 11 shows that the difference between the false rate 

generated by different approaches and the predicted method 

produces a lower F-number than the remaining additional 

approaches. 

 

Figure 11. F-measure Evaluation 

 Table 5 defines the comparison ratio based on the number 

of actual positive values and records. 

TABLE V. F-MEASURE EVALUATION 

Methods/No 

of records 

Analysis of False classification in % 

NFIM 
MDC-

SVR 

CNN-

LSTM 

FF-

RNN 

MoSFS-

CNN 

100 6.6 6.3 5.9 5.3 4.6 

500 7.2 7.1 6.8 5.5 4.9 

1000 8.3 7.8 6.3 5.7 5.1 

2000 8.6 7.5 6.6 6.2 5.4 

3000 8.8 7.9 6.9 6.4 6.1 

 

 Figure 12 shows the execution of the time complexity of 

number of records of various networks. 

The execution complex nature during feature selection and 

classification takes time for evaluation. The performance time 

is referred to as feature screening and classification time 

during the overall time taken. The proposed system produces 

the best performance than other methods 

  

 

Figure 12. Time complexity Evaluation 

TABLE VI. TIME COMPLEXITY EVALUATION 

Methods/No 

of records 

Analysis of Time Complexity (ms) 

NFIM 
MDC-

SVR 

CNN-

LSTM 

FF-

RNN 

MoSFS-

CNN 

100 8.3 9.3 8.7 7.2 6.5 

500 8.8 9.6 9.2 8.7 7.8 

1000 10.3 9.8 9.1 8.8 8.1 

2000 11.2 11.1 10.3 9.8 8.5 

3000 11.8 11.4 10.2 9.5 8.7 

 

The time complexity representation of the proposed 

MoSFS-CNN system produces high performance than existing 

approaches. The hybrid model combines the feature evaluation 

and classification in redundant time taken verified with O(n) 

time complexity measure by completing the execution. Other 

methods produce high performance compared to the other 

system. Table 6 represents the time complexity evaluation.  

V. CONCLUSION 

To conclude, the proposed system produces higher 

compared to the previous design. The air quality progress 

attains a higher importance rate in classification accuracy by 

predicting usage based on Air quality prediction. This Multi-

Objective Staked Feature Selection Approach (MoSFS) is 

applied to indicate the importance of the feature to reduce the 

dimension. The Deep Featured Neural Classifier (DFNC) 

model predicts air pollution. y the Successive feature defect 

scaling rate (SFDSR) was carried out Autoregressive 

Integrated Moving Average (ARIMA) rate for finding 

variation dependencies supported for high-performance 

evaluation to predict the air quality index. The proposed 

MoSFS-CNN system improves the higher performance in 

classification accuracy, precision rate, recall rate and 

redundancy in false rate and time complexity. 
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