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Abstract 

 The diagnostics of medical pictures are essential for recognizing and comprehending a wide range of medical problems. This work introduces 

the Direction Coupled Magnitude Histogram (DCMH) as a novel structure picture descriptor to improve diagnostic accuracy. One of DCMH's 

unique selling points is its ability to include the edge oriented information  that are oriented in any way inside a frame, enabling the expression 

of delicate nuances using various gradient features. The proposed method applies cartoon texture based textural loss  and DCMH based 

structural loss to identify and analyse structural and textural information during the denoising time. A major contribution that improves the 

interpretability of images by emphasizing structural aspects that is inherent to the image. The proposed DCMH_3D_GANaverage results show 

exceptional performance, with an SSIM of 0.972995 and PSNR of 48.74, highlighting the effectiveness of the DCMH-based method in 

enhancing medical picture diagnosis. The capacity of Structured Loss to improve picture interpretability and lead to a more precise diagnosis is 

unquestionably advantageous. The newly developed DCMH-based approach, which includes texture loss and structured components, is a 

promising development in healthcare image processing that will enable better patient care through enhanced diagnostic abilities. 

 

1. Introduction 

Modern healthcare cannot function without the use 

of medical pictures, which are vital instruments for patient 

diagnosis and follow-up. One of the best medical imaging 

technologies is magnetic resonance imaging (MRI) [1], 

which uses imaging to provide extremely detailed 

information on the human body's live organs and tissues, 

including pathological and physiological changes. Two-

dimensional body segments with proper tissue location, 

contrast, and orientation are provided by the MRI scans. 

Increased prediction accuracy and early diagnosis of many 

central nervous system disorders can be facilitated by high-

resolution magnetic resonance imaging (MR) pictures with a 

high signal-to-noise ratio (SNR) [2-4]. 

Direct sampling from the spatial frequency domain 

yields the desired information from MRI pictures. 

Nevertheless, the quality of this data may be compromised 

by several thermal noise sources and artefacts. Because of 

the serious issues it raises, noise in MRIs is a serious 

concern that can mislead and result in patients having the 

wrong diagnosis. Quantitative MRI imaging is complicated 

by noise, which also visually deteriorates the retrieved 

images. Magnetic resonance imaging (MRI) is less helpful if 

a tissue or area has a poor signal to noise ratio (SNR). 

Denoising techniques are therefore needed to improve both 

qualitative and quantitative MRI measurements through an 

efficient MRI reconstruction process. 

When an area or particular tissue has a poor signal 

to noise ratio (SNR), the efficacy of MRI falls. 

Consequently, an effective MRI reconstruction process is 

needed, where noisy images are processed using denoising 

algorithms to improve both quantitative and qualitative MRI 

measures. Since the MRI processing relies on previously 

processed data, noise in the data will negatively affect it. 

Furthermore, noise is unavoidable since it often arises 

throughout the MRI's recording, processing, and storing 

stages. Noise reduction and removal are therefore essential 

in this field [5]. Denoising offers a broad research potential 

since inadequate noise reduction can result in visual blurring 

or the appearance of new difficulties. Denoising offers a 

broad research potential since inadequate noise reduction 

can result in visual blurring or the appearance of new 

difficulties. 

Medical image processing introduces a variety of 

MRI denoising techniques, including statistical models 

[6,7], spatial domain filtering [8], transform domain 

thresholding [9,10], isotropic diffusion methods [13], 

random fields [11,12], sparse representation and dictionary 
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learning methods [14,15] and hybrid methods 

[16].Morphological analysis, order statistics, spatial adaptive 

filters, stochastic analysis, statistical estimators of all types 

[17], and statistical estimators of all kinds are some 

important additional denoising approaches[18,19]. Even 

though various methods for denoising have been discovered, 

there are several challenges that require on-going 

investigation, such as texture restoration and detail retention. 

The Generative Adversarial Network (GAN) variation used 

in this work has demonstrated good performance in image 

reconstruction challenges by using an adversarial loss to 

force produced pictures to be as similar to real images as 

feasible. The suggested method has been used to fill in the 

gaps in the GAN network's denoising of MRI images by 

including textural loss and a novel structural loss approach. 

2. Related works 

 Medical imaging systems require the image 

processing task of denoising. Medical professionals may 

begin the required therapy by looking at noisy medical 

photos that have been cleaned in some way, which would 

increase the quality of diagnosis. Numerous studies are 

attempting to enhance the quality of the images by lowering 

the noise level. Many artificial techniques are finding 

success in illness detection, prediction, and image-based 

diagnosis very quickly.  

this article presents a novel approach consisting of 

denoisingfol-lowed by segmentation. The objective of 

these proposed methods was visual eminence 

improvement of medical images to examine tumor 

extent using an adaptive partial differential equation 

(APDE)-based analysis with soft threshold function in 

denoising. The fourth order, nonlinear APDE was used 

to denoise the image depending on gradient and 

Laplacian operators associated with the new 

adaptiveHaar-type wavelet transform. A second 

approach was the new conver-gent K-means clustering 

for segmentation. The convergent K-means procedure 

diminishes the summation of the squared deviations of 

structures in a cluster from 

A unique method that consists of segmentation 

after denoising was reported by Kollem et al. [20]. Using the 

gradient and Laplacian operators linked to the novel 

adaptive Haar-type wavelet transform, the picture was 

denoised using the fourth order, nonlinear APDE. By 

employing a fuzzy hexagonal membership function in 

conjunction with a bilateral filter, Kala et al. [21] suggested 

adaptive rician noise reduction that maintains fine structures 

and edges while enhancing denoising efficiency at varying 

noise variances. A texture-preserving denoising method was 

proposed by Zhao et al. [22]. It groups comparable texture 

patches using 1adaptive clustering, then applies PCA and a 

suboptimal Wiener filter to each group. In order to eliminate 

the additive white Gaussian noise, Wang et al. [23] created a 

fusion picture denoising filter. This filter is the result of 

combining the curvelet transform technique with total 

variation (TV). 

The boundary and form of the image have been 

extracted using a morphological process. Three distinct 

filters, including the median filter, mean filter, and adaptive 

median filter, were used by Bin-Habtoor et al. [24] to 

eliminate speckle noise from medical pictures.A hybrid 

denoising technique based on two sparsely denoted 

morphological components and one residual portion was 

created by Zeng et al. [25] for MR images. First, use MCA 

to break down a noisy MR picture into its texture, cartoon, 

and residual portions. Next, denoise each component 

separately using the Wiener filter, wavelet hard threshold, 

and wavelet soft threshold. A fusion picture denoising filter 

was created by Wang et al. [26] to eliminate the additive 

white Gaussian noise. This filter is a combination of the 

curvelet transform technique and total variation (TV). 

A novel BM3D [27] picture denoising method 

based on k-means clustering and adaptive filtering was 

presented by Yahya et al. [28]. Initially, the usual hard-

thresholding of the BM3D filter is replaced with an adaptive 

filtering mechanism.  The suggested adaptive filtering 

function is then applied using an adaptive threshold. Block 

matching is compelled to look inside the reference patch's 

boundaries by using k-means clustering, which lowers the 

likelihood of poor matching. To overcome the issues in 

BM3D, a generative adversarial network with a wiener filter 

and block matching with 4D filtering (BM4D) were the 

foundations of Zhang et al.'s [29] proposed picture denoising 

technique in the 3D shearlet transform domain.The BM3D 

and BM4D methods, however, are unable to adjust to 

different image contents since they both use orthogonal 

transformations. To enhance the denoising performance, Xu 

et al. [30] suggested a novel MNF–BM4D denoising method 

based on guided filtering. In order to discern between the 

main component and the noisy component, the Minimum 

Noise Fraction (MNF) technique is presented.   

Deep learning has recently shown to be a very 

successful strategy in the field of medical imaging. Blan et 

al. [31] devised an approach that uses deep convolution and 

soft thresholding iterative techniques. Prior and sparse 

representation theory is used to get the retrieved features for 

picture reconstruction. DnCNN, a feed-forward denoising 

convolutional neural network was introduced by Zhang et al. 

[32] to incorporate the advancements in extremely deep 

architecture, learning algorithms, and regularisation 
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techniques with Gaussian denoising. To be more precise, 

batch normalisation and residual learning are used to 

increase speed and denoising performance. An autoencoder 

with skip connections was put into practise by Bermudez et 

al. [33] Gaussian noise was used to a T1-weighted brain 

MRI dataset of healthy individuals in order to evaluate their 

methodology. In order to solve the DCE-MRI denoising 

issues, Benou et al. [34] introduced a unique spatio-temporal 

framework based on Deep Neural Networks, which was 

achieved by an ensemble of expert DNNs built as deep 

autoencoders. To reduce MRI Rician noise, Jiang et al. [35] 

suggested using a multi-channel approach together with 

residual learning and 10 convolutional layers in a neural 

network. For MRI image denoising, Tripathi et al. [36] 

suggested a unique CNN-DMRI. The network uses an 

encoder-decoder structure to save the image's salient 

elements and discard its superfluous ones. 

Different Generative Adversarial Networks (GAN) 

models were utilised to address some of the problems with 

the earlier methods. To denoise compressed sensing 

magnetic resonance imaging, Eun et al. [37] presented 

CycleGAN, a cycle generative adversarial network. To 

eliminate motion artefacts from MRI images, Tripathi et al. 

[38] updated Pix2Pix, a well-known conditional Generative 

Adversarial Network. They adjusted the settings and made 

structural changes to the original network. A brand-new 

technique for picture denoising, called Wasserstein distance 

and perceptual similarity generative adversarial networks 

(GANs), was presented by Yang et al. [39].Using a Multi-

scale Generative Adversarial Network (SMGAN), Chenyuet 

et al. [40] assessed the structural sensitivity of the images. 

3. Proposed Work 

3.1 Advancement in Medical Image Diagnosis 

Combining the DCMH and 3D_GAN Model 

 To improve medical picture diagnostics, this work 

presents a unique method based on a new structure image 

descriptor called the Direction Coupled Magnitude 

Histogram (DCMH). Understanding how important 

structural characteristics are for medical image processing, 

DCMH makes a special addition by including gradient and 

magnitude features of the slice.  

Here are the main contributions: 

1. Innovative DCMH Operator: By taking into 

consideration a different co-ordinate based gradient 

features to effectively preserve the structural 

information during the denoising process.  

2. Quantitative Analysis: A way of figuring out how 

far apart the produced image   from the original 

image. This research helps determine how much 

important structure and texture knowledge is 

preserved by the suggested DCMH operator along 

with cartoon texture pattern. This quantitative 

evaluation establishes the effectiveness of DCMH 

in gathering and preserving critical information for 

medical evaluation. 

3.  An efficient discriminator is designed for MRI 

denoising is presented in this model. The 

discriminator is designed with the squeeze-and-

excitation block with residual mode and along with 

convolution operation.  The new model of 

discriminator integration with DCMH offers an 

excellent path for improving medical picture 

denoising methods. 

 

Figure 1: DCMH_GAN Workflow Architecture 
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The first step is giving the MRI scan as an input 

data of the DCMH_GAN Workflow Architecture, which is 

shown in Figure 1. Beginning with a convolutional layer 

with 32 filters, a 3x3x3 kernel size, a stride of 1, and one 

pixel of padding, the input is subjected to a succession of 

convolutional layers and ReLU activations. Then, using 

different kernel sizes (5x5x5, 7x7x7, and 3x3x3) and 

different padding, three sets of three convolutional layers 

and two ReLU activations are performed. The last sequence 

consists of a ReLU activation after a a Convolutional Layer 

with a single filter, 3x3x3 kernel size, stride of 1, and 1-

pixel padding. An output consisting of Generator Loss, 

Texture Sensitive Loss, and Direction Coupled Magnitude 

Histogram is produced by the generator. 

The Discriminator receives this Generator output as 

an input, which starts the Discriminator Loss computation. If 

the Discriminator finds differences, backpropagation is 

applied to the whole process. By refining the network 

iteratively, this feedback loop maximizes its capacity to 

produce outputs that meet the intended requirements. A 

crucial feedback mechanism in the DCMH_GAN design is 

formed by the interaction between the Generator and 

Discriminator as well as the related loss functions. This 

mechanism improves the DCMH_GAN architecture's ability 

to produce insightful results from MRI scans. 

3.2   Generator 

To boost textural and structural information retention 

while synthesizing new data from pre-existing sources, the 

proposed DCMH_GAN model uses a modified multi-scale 

3D CNN model as its Generator (G). G is essential to the 

framework since it not only makes it easier to create new 

data but also minimizes image noise in the feature domain. 

The architecture, shown in Figure 2, offers a graphic 

depiction of the structure of the DCMH_GAN Generator, 

which is intended for MRI denoising. The model's capacity 

to generate excellent denoised images while preserving 

important characteristics and structures seen in the original 

data is enhanced by the use of this advanced generator.

 

 

 

Figure 2:  Generator Layer Architecture of DCMH _GAN Model 

In the Figure 2, network architecture uses a 

generator that has several levels, each with thirty-two filters. 

There are five levels in the structure. The first level has a 

single convolutional layer with 3x3x3 filter size and one 

padding. On to the second level, where three convolutional 

layers with a padding of two and 5x5x5 filter size are used. 

Three convolutional layers with three pudding sand 7x7x7 

filter size make up the third level. A convolutional layer 

with 3x3x3 filter size and one padding is introduced in the 

fourth level. Lastly, a convolutional layer with 3x3x3 filter 

size and one padding is used in the fifth level. The Rectified 

Linear Unit (ReLU) activation function is applied after 
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every convolutional process. By using different filter sizes 

and padding procedures at each level to increase the 

network's representational capacity, this hierarchical 

approach seeks to extract hierarchical features from the 

input data. 

3.3 Discriminator 

The Discriminator (D) network is essential to 

compare images that have been denoised and those that have 

not denoised. Its main goal is to distinguish between 

denoising-affected photographs and their original, 

undamaged equivalents. The D network provides 

information about the similarity between the denoised and 

clean images by computing a probability metric. This 

likelihood is a measure of how similar the two kinds of 

images are to one another. The discriminator layer model's 

architecture is illustrated graphically in Figure 3 (b), which 

also shows how the network is structured and how it works 

to discriminate across clean and denoised images. 

Squeeze-and-Excitation (SE): These blocks 

concentrate on key characteristics to improve the 

performance of convolutional neural networks (CNNs) in 

the working model, as shown in Figure 3 (a). The "squeeze" 

phase in these blocks lowers computing costs by 

compressing spatial data. The next "excitation" phase uses 

channel-wise weights that have been learned to highlight 

pertinent characteristics. This allows the network to 

adaptively refocus its attention in order to optimize 

information flow and raise accuracy levels overall. As a 

result, SE blocks facilitate effective feature refinement and 

are essential for maximizing CNN representation capacity. 

 

Figure 3 (a): SE Block Working Model 

 

Figure 3 (b):  Discriminator Layer Architecture of DCMH_GAN Model 

The DCMH_GAN model's discriminator layer 

architecture is applied to an MRI scan dataset in Figure 3 

(b). A convolutional operation using 64 filters, a 3x3 kernel, 

and a stride of 1 is performed in the first layer. After that, 

Squeeze & Excitation Blocks are used, and the output of the 

first convolutional layer is included in an Addition (A) 

operation. The procedure is then repeated with a second 

convolutional layer that has a stride of 2, 64 filters, and a 

3x3 kernel. The feature map that is produced goes through 
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the Squeeze & Excitation Blocks once more before being 

added to the accumulated value (A). 

The following layers are made up of convolutional 

operations with different filter sizes and strides: 128 filters 

with a 3x3 kernel and a stride of 1 (Leaky Relu 0.2), 128 

filters with a 3x3 kernel and a stride of 2 (Leaky Relu 0.2), 

256 filters with a 3x3 kernel and a stride of 1 (Leaky Relu 

0.2), and 256 filters with a 3x3 kernel and a stride of 2 

(Leaky Relu 0.2). Next, a Fully Connected layers with 

Leaky Relu activation (0.2) and 1024 neurons each are 

deployed. The last layer consists of a Fully Connected layer 

with a single neuron and Leaky Relu activation (0.2), which 

leads to the output of the discriminator that determines if the 

input is real or fake. 

3.4 Proposed Direction Coupled Magnitude Histogram – 

Structure Sensitive Loss 

3.4.1 Histogram of oriented Gradient (HOG) 

 Histogram of Oriented Gradients [41] was initially 

developed by Dalal and Triggs to identify an individual in a 

picture. The Histogram of Oriented Gradients, often known 

as HOG, is a feature descriptor that counts the instances of a 

gradient orientation in specific areas of an image, such as 

the region of interest (ROI) or detection window. The 

images are first divided into rectangular cells by HOG.  

Then the gradient vector for each pixel Piin the cell is 

computed. The following spatial filter masks are used to 

filter Pi in order to extract the x and y derivatives of pixels. 

One option is to use more intricate spatial filter masks, such 

3x3 Sobel masks.  

Mx = [ -1 0 1; -1 0 1; -1 0 1]  My = Mx
T 

Accordingly, the x derivative (Ix) and the y derivative (Iy) 

of Pi are calculated as Eq. 1 and 2 

𝑰𝒙(𝒙, 𝒚, 𝒕) =  ∑ 𝐌𝐱[𝒋]𝟗
𝒋=𝟎 × 𝑷𝒊(𝒙 + 𝐌𝐱[𝒋], 𝒚, 𝒕) 

   (1) 

𝑰𝒚(𝒙, 𝒚, 𝒕) =  ∑ 𝐌𝐱[𝒋] × 𝑷𝒊(𝒙, 𝒚 + 𝐌𝐱[𝒋], 𝒕)𝟗
𝒋=𝟎  

   (2) 

Equation (3) is used to calculate the gradient's magnitude 

(|Pi (x,y,t) | hog) and orientation (<hog Pi (x,y,t)). 

|𝑷𝒊(𝒙, 𝒚, 𝒕)|𝒉𝒐𝒈 =  √𝑰𝒙
𝟐 (𝒙, 𝒚, 𝒕) + 𝑰𝒚

𝟐(𝒙, 𝒚, 𝒕) 

< 𝒉𝒐𝒈𝑷𝒊(𝒙, 𝒚, 𝒕) = 𝒂𝒓𝒄𝒕𝒂𝒏
𝑰𝒚(𝒙,𝒚,𝒕)

𝑰𝒙(𝒙,𝒚,𝒕)
  

   (3) 

The creation of histograms is the next 

computational step. For the [00, 3600] interval, the 'a' 

orientation bins ({Oj}a j=1) are employed. As a result, the 

‘a’ bins are defined as: 𝑶𝒋: [
(𝒋−𝟏)𝟑𝟔𝟎

𝒂
 ,

(𝒋)𝟑𝟔𝟎

𝒂
]. The matching 

orientation bin is located for every pixel orientation, and the 

orientation's magnitude is chosen to correspond to this bin 

using Equations (4 and 5). 

𝑶𝒋 = 𝑶𝒋 + |𝑷𝒊(𝒙, 𝒚|𝒕)|𝒉𝒐𝒈    

  (4) 

Where, 

< 𝒉𝒐𝒈𝑷𝒊(𝒙, 𝒚, 𝒕) ∈ 𝑶𝒋: [
(𝒋−𝟏)𝟑𝟔𝟎

𝒂
,

(𝒋)𝟑𝟔𝟎

𝒂
]  

  (5) 

The procedure of histogram normalisation is the last phase. 

The histogram is normalised using the L2-norm, which 

produces the a-bin HOG descriptor, as shown in Eq. (6). 

{𝑶𝒋}𝒋=𝟏
𝒂

√∑ 𝑶𝒋
𝟐𝒂

𝒋=𝟏

    (6) 

3.4.2  Direction coupled Magnitude Histogram   

 In the HOG process, the gradient vector for each 

pixel Pi in the cell is computed on the basis of two co-

ordinates in horizontal wise as well as vertical wise.  In the 

proposed structure consistency loss model a new form of 

HOG is designed with the name Direction Coupled 

Magnitude Histogram which generates histogram with 

different coordinate gradient features. The process of 

DCMH is expressed as follows. In this operation two more 

spatial filter masks of 3 × 3 in two form of diagonal 

arrangement as  

 Dt1 = [ 1 0 0; 0 0 0; 0 0 -1]  Dt2 = [ 0 0 1; 0 

0 0; -1 0 0]  

Accordingly, the diagonal1 derivative (It1) and the diagonal1 

derivative (I t2) of Pi are calculated as Eq. 7 and 8. 

            𝑰𝒕𝟏(𝒙, 𝒚, 𝒕) =  ∑ 𝑫𝒕𝟏[𝒋]𝟗
𝒋=𝟎 × 𝑷𝒊(𝒙, 𝒚, 𝒕 + 𝑫𝒕𝟏[𝒋])

    (7) 

          𝑰𝒕𝟐(𝒙, 𝒚, 𝒕) =  ∑ 𝑫𝒕𝟐[𝒋] × 𝑷𝒊(𝒙, 𝒚, 𝒕 +  𝑫𝒕𝟐[𝒋])𝟗
𝒋=𝟎

    (8) 

Equation (9) is used to calculate the diagonal gradient's 

magnitude (|Pi (x,y,t) | dhog) and diagonal  orientation 

(<dhog Pi (x,y,t)). 

|𝑷𝒊(𝒙, 𝒚, 𝒕)|𝒅𝒉𝒐𝒈 =  √𝑰𝒕𝟏
𝟐 (𝒙, 𝒚, 𝒕) + 𝑰𝒕𝟐

𝟐 (𝒙, 𝒚, 𝒕) 

< 𝒅𝒉𝒐𝒈𝑷𝒊(𝒙, 𝒚, 𝒕) = 𝒂𝒓𝒄𝒕𝒂𝒏
𝑰𝒕𝟐(𝒙,𝒚,𝒕)

𝑰𝒕𝟏(𝒙,𝒚,𝒕)
  (9) 

Equation (10) and (11) is used to calculate the first mode of 

horizontal and diagonal direction coupled dchogx_t1   and 

dchogx_t2.  The gradient's magnitudes (|Pi (x,y,t) | dchogx_t1), 

(|Pi (x,y,t) | dchogx_t2  )    and diagonal  orientations   
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(<dchogx_t1   Pi (x,y,t)) , (<dchogx_t2   Pi (x,y,t))  are 

estimated as follows 

|𝑷𝒊(𝒙, 𝒚, 𝒕)|𝒅𝒄𝒉𝒐𝒈𝒙_𝒕𝟏
=  √𝑰𝒙

𝟐 (𝒙, 𝒚, 𝒕) + 𝑰𝒕𝟏
𝟐 (𝒙, 𝒚, 𝒕) 

< 𝒅𝒄𝒉𝒐𝒈𝒙_𝒕𝟏𝑷𝒊(𝒙, 𝒚, 𝒕) = 𝒂𝒓𝒄𝒕𝒂𝒏
𝑰𝒕𝟏(𝒙,𝒚,𝒕)

𝑰𝒙(𝒙,𝒚,𝒕)
  

  (10) 

   

|𝑷𝒊(𝒙, 𝒚, 𝒕)|𝒅𝒄𝒉𝒐𝒈𝒙_𝒕𝟐
=  √𝑰𝒙

𝟐 (𝒙, 𝒚, 𝒕) + 𝑰𝒕𝟐
𝟐 (𝒙, 𝒚, 𝒕) 

< 𝒅𝒄𝒉𝒐𝒈𝒙_𝒕𝟐𝑷𝒊(𝒙, 𝒚, 𝒕) = 𝒂𝒓𝒄𝒕𝒂𝒏
𝑰𝒕𝟐(𝒙,𝒚,𝒕)

𝑰𝒙(𝒙,𝒚,𝒕)
  

  (11) 

Similarly, The second mode of vertical  and diagonal  

direction coupled dchogy_t1   and dchogy_t2  are estimated to 

find the correlated gradient oriented features of vertical and 

diagonal structural information. The following equation (12) 

and (13) shows the estimation of vertical and diagonal 

direction coupled magnitude and histogram of dchogy_t1   

and dchogy_t2. 

|𝑷𝒊(𝒙, 𝒚, 𝒕)|𝒅𝒄𝒉𝒐𝒈𝒚_𝒕𝟏
=  √𝑰𝒚

𝟐 (𝒙, 𝒚, 𝒕) + 𝑰𝒕𝟏
𝟐 (𝒙, 𝒚, 𝒕) 

< 𝒅𝒄𝒉𝒐𝒈𝒚_𝒕𝟏𝑷𝒊(𝒙, 𝒚, 𝒕) = 𝒂𝒓𝒄𝒕𝒂𝒏
𝑰𝒕𝟏(𝒙,𝒚,𝒕)

𝑰𝒚(𝒙,𝒚,𝒕)
  

  (12) 

   

|𝑷𝒊(𝒙, 𝒚, 𝒕)|𝒅𝒄𝒉𝒐𝒈𝒚_𝒕𝟐
=  √𝑰𝒚

𝟐 (𝒙, 𝒚, 𝒕) + 𝑰𝒕𝟐
𝟐 (𝒙, 𝒚, 𝒕) 

< 𝒅𝒄𝒉𝒐𝒈𝒚_𝒕𝟐𝑷𝒊(𝒙, 𝒚, 𝒕) = 𝒂𝒓𝒄𝒕𝒂𝒏
𝑰𝒕𝟐(𝒙,𝒚,𝒕)

𝑰𝒚(𝒙,𝒚,𝒕)
  

  (13) 

Once all these direction coupled magnitude and orientation 

estimated the final direction coupled and diagonal histogram 

is constructed apart from the normal HOG bin using the 

equations 4 and 5. Hence this proposed model extracts six 

different mode of histograms including, traditional hoghist,   

diagonal histogram dhoghist,horizontal and diagonal coupled 

histograms as (dchogx_t1hist and dchogx_t2hist)and vertical and 

diagonal coupled histograms as (dchogy_t1hist and 

dchogy_t2hist).  The structural consistency loss is estimated 

with the help of Euclidian distance value between six 

different types of histogram derived from the actual noise 

free traffic data and traffic data generated by the generator. 

3.5 Texture Loss - Texture Extraction (Cartoon) 

 The cartoon-texture algorithm breaks down any 

given picture I into two parts: a textural part (t) that has 

oscillating patterns and a cartoon component (c), where just 

the image's contrasting forms emerge. The low pass and 

high pass filter decompositions used in signal processing are 

equal to the decomposition I = c + t. While all frequencies, 

even the highest ones, are present in the cartoon section of 

an image due to its hard edges, a texture can also contain 

intermediate and high frequencies. 

 High total variation is the distinguishing feature of 

a textured region in a picture. By using a discrete 

convolution, two low pass filters are employed in order to 

calculate the gradient picture from the original image. To 

compute the gradient, the simplest centred difference 

method is employed. 

The important actions are: 

1. The first thing done is to apply a low pass filter to 

the original picture I. 

The low pass filtered image 𝐿𝜎 ∗ 𝐼 is obtained by 

convolving the original picture I with the low pass filter 

𝐿𝜎 = (𝐼𝑑 − (𝐼𝑑 − 𝐺𝜎)𝑛), where n indicates that the 

convolution is performed n times, and n is set to 5. Gaussian 

kernel with standard deviation σ is denoted as 𝐺𝜎 .The 

picture is created in space with mirror boundary conditions 

and symmetrized out of its domain for convolutions. The 

present programme generates this low pass filtered picture 

repeatedly. 

2. Determine the Euclidian norm for the image 

gradients of I and  𝐿𝜎 ∗ 𝐼 

3. The modulus of the gradient is computed using a 

Euclidean norm, along with the vertical and 

horizontal derivatives, using a centred two-point 

approach.  

𝑝𝑥(𝑖, 𝑗) = 𝑝(𝑖 + 1, 𝑗) − 𝑝(𝑖 − 1, 𝑗)                                                                 

(14) 

   𝑝𝑦(𝑖, 𝑗) = 𝑝(𝑖, 𝑗 + 1) − 𝑝(𝑖, 𝑗 − 1)  (15) 

|∇𝑝| = √𝑝𝑥(𝑖, 𝑗)2 + 𝑝𝑦(𝑖, 𝑗)2                                                                         

(16) 

4. Utilising these moduli in conjunction with the 

Gaussian Gσ, compute the local total variation of I 

andLσ ∗ I. In space, convolutions are computed 

using mirror boundary conditions. 

5. Find the value of λ(x) at each location in the 

picture. 

6. By considering the weighted average of I and Lσ ∗

I, one may ascertain the worth of the cartoon 

picture. 

7. Calculate the texture by dividing p by I. 

Here also the textural sensitive loss is estimated with 

the help of the deviation between the texture feature 
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extracted from the actual noise free MRI slice and the 

generated MRI slice by the generator.  Final loss is 

estimated with summation of generator loss, discriminator 

loss, cartoon texture based textural loss and Direction 

Coupled Magnitude Histogram(DCMH) based structural 

loss with the weight of 0.3, 0.3 for generator and 

discriminator loss and 0.2 for the textural and structural loss. 

4. Experimental Analysis 

4.1 Dataset 

The BraTS'17 dataset, which includes multimodal 

MRI images for patients with pathologically confirmed 

diagnoses of lower-grade glioma (LGG) and glioblastoma 

(GBM/HGG), is used to evaluate the effectiveness of the 

proposed approach. The dataset is used in testing, validation, 

and training. In particular, T1cMRI brain DICOM images of 

20 subjects were used for this investigation; each patient 

group had 154 slices. One-third of the photos are reserved 

for the testing set, while the remaining seventy percent are 

assigned to the training set at random. This methodology 

guarantees an in-depth evaluation of the model's efficacy on 

a range of patient data, enhancing the durability and 

trustworthiness of the study's outcomes. 

4.2 Performance Metrics 

 Three important metrics to evaluate image quality 

are included in the performance evaluation of the proposed 

method: Normalized Cross-correlation (NCC), Structural 

Similarity Index Measure (SSIM), and Peak Signal-to-Noise 

Ratio (PSNR). These metrics function as all-inclusive 

standards to evaluate the efficacy of the suggested 

methodology. Together, the three metrics—PSNR, SSIM, 

and NCC—quantify signal fidelity, structural similarity, and 

normalized cross-correlation, respectively, and offer a 

comprehensive evaluation of the method's picture quality 

results. This multi-metric evaluation methodology 

guarantees a solid and refined comprehension of the 

performance of the suggested strategy in several picture 

quality aspects. 

 Peak signal-to-noise ratio (PSNR) compares two 

images. This ratio compares the quality of the denoised 

image to that of the original image. 

PSNR can be determined using Equation 17. 

𝑃𝑆𝑁𝑅 = 10 log10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
)   

 (17) 

Where MAX indicates the Maximum Intensity 

Value of the image, while the Mean Square Error is MSE. 

The Structural Similarity Index Measure (SSIM) is 

a technique for determining the perceived difference 

between two similar pictures. SSIM index between the two 

images with same size 𝑁 × 𝑁 can be calculated using 

Equation 18. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥 𝜇𝑦 +𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

1+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
  

  (18) 

Equation (19) is the Normalized Cross-correlation 

(NCC) formula used to compare Image 1 and Image 2. The 

correlation between the two images' pixel brightness is 

computed and normalized by their corresponding standard 

deviations (σ). The formula is calculating the sum of the 

products of the normalized pixel differences after 

subtracting the mean intensity of each image. Stronger 

similarity between the photos is indicated by a greater NCC 

value, which ranges from -1 (completely dissimilar) to 1 

(perfectly similar). 

NCC(Image1, Image2) =
1

Nσ1σ2
∑ (Image1(x, y) −x,y

Image1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅x(Image2(x, y) − Image2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )(19) 

where N is the total number of pixels in the image, 

σ1 and σ2 are standard deviation values. Image 1 and Image 

2 are NFMRI and NMRI. 

4.3 Result and Analysis 

By offering a strong foundation for better medical 

image interpretation and diagnosis, the combined use of 

cartoon-texture and Direction Coupled Magnitude 

Histogram DCMH shows a good potential to increase 

diagnostic skills. With its more advanced and precise toolkit 

for medical imaging specialists, this integrated approach has 

the potential to completely transform the medical imaging 

profession. 
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Table1.Denoised MRI Slices: DCMH_3D_GAN's Remarkable Enhancement Technique 

 

Table 1 presents denoised MRI slices achieved 

through the DCMH_3D_GAN method, along with 

corresponding Peak Signal-to-Noise Ratio (PSNR) values. 

These values demonstrate the method's efficacy in 

enhancing the quality of T1 weighted MRI DICOM images. 

Notably, DCMH_3D_GAN consistently outperforms other 

techniques, boasting the highest mean PSNR of 48.74 

among SMGAN-3D, WGAN, CNN_L1, RSLM-DNN-3D, 

and RTSL-3D-MDNN. 

 

Table 2.Comparative PSNR Performance of 3D Image Models 

Patient ID 1 2 3 4 5 6 Mean 

SMGAN-3D 42.82 39.03 41.8 40.47 41.55 41.63 41.21667 

WGAN 40.78 37.45 39.02 38.69 40.01 40.59 39.42333 

CNN_L1 37.56 38.27 37.94 36.72 37.09 37.61 37.5316 

RSLM-DNN-3D 44.51 44.96 44.55 43.76 43.73 43.96 44.245 

TS-3D-MDNN 46.65 46.98 46.80 44.86 45.83 44.26 45.89667 

DCMH_3D_GAN 48.59 49.75 50.27 47.04 48.92 47.88 48.74166667 

 

In Table 2, the performance of various denoising 

methods is evaluated based on PSNR values for T1 

weighted MRI slices. SMGAN-3D, WGAN, and CNN_L1 

exhibit mean PSNR values of 41.22, 39.42, and 37.53, 

Input Noise Image De-noised Image PSNR 

  

 

45.91 

  

 

46.67 

  

 

47.31 

  

 

44.29 
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respectively. Meanwhile, advanced methods such as RSLM-

DNN-3D and RTSL-3D-MDNN show improved 

performance with mean PSNR values of 44.25 and 45.90. 

Notably, DCMH_3D_GAN surpasses them all, achieving a 

remarkable mean PSNR of 48.74 and showcasing its robust 

denoising capabilities across multiple patient IDs. 

 

 
Figure4.PSNR Comparison: T1 MRI Slice Enhancement Evaluation 

 

In the figure 4 it is found that, in terms of PSNR 

the average performances values of patients, our proposed 

DCMH_3D_GANgives better performances compared than 

other existing models. The proposed DCMH_3D_GAN 

gives average PSNR value of 2.84 higher than for TS-3D-

MDNN, 4.49 for RSLM-DNN-3D, 11.21 of CNN_L1, 9.31 

for WGAN and 7.52 for SMGAN-3D.The proposed 

DCMH_3D_GANaverage PSNR performances archives 

48.74. 

 

Table 3.SSIM Performance Comparison for 3D MRI GAN Models 

Patient ID 1 2 3 4 5 6 Mean 

SMGAN-3D 0.9802 0.97865 0.97662 0.964 0.962 0.9765 0.972995 

WGAN 0.9694 0.967 0.9622 0.9532 0.9452 0.9595 0.9594167 

CNN_L1 0.967 0.9601 0.95 0.944 0.94 0.954 0.9525167 

RSLM-DNN-3D 0.99 0.9902 0.9899 0.983 0.984 0.98934 0.98774 

TS-3D-MDNN 0.994 0.993 0.992 0.986 0.989 0.995 0.9915 

DCMH_3D_GAN 0.996 0.996 0.995 0.991 0.993 0.997 0.994666667 

 

 
Figure 5.SSIM Comparison in T1 MRI 
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The performance analysis Table 3 of various 

models, including SMGAN-3D, WGAN, CNN_L1, RSLM-

DNN-3D, TS-3D-MDNN, and DCMH_3D_GAN, based on 

SSIM values for T1 weighted MRI DICOM images, reveals 

a compelling trend. The proposed SMGAN-3D consistently 

demonstrates superior effectiveness, with an impressive 

mean SSIM value of 0.972995. This surpasses all other 

models, including WGAN (0.9594167), CNN_L1 

(0.9525167), RSLM-DNN-3D (0.98774), TS-3D-MDNN 

(0.9915), and DCMH_3D_GAN (0.994666667). Notably, 

SMGAN-3D achieves the highest mean SSIM, indicating its 

robust performance in preserving structural information and 

image quality. Figure 5 visually reinforces this superiority, 

depicting the clear lead of SMGAN-3D over other models in 

terms of SSIM values for T1-weighted MRI DICOM 

images. This evidence underscores the efficacy and potential 

clinical relevance of the proposed SMGAN-3D model in 

enhancing the quality of medical imaging datasets. 

 

Table 4.Comparative NCC Performances of 3D GANs and CNNs for T1 MRI Slices 

Patient ID 1 2 3 4 5 6 Mean 

SMGAN-3D 0.974 0.98934 0.9734 0.9688 0.9688 0.9733 0.97460667 

WGAN 0.963 0.97633 0.9652 0.9633 0.9433 0.9599 0.96183833 

CNN_L1 0.961 0.9574 0.9491 0.9545 0.939 0.9536 0.95243333 

RSLM-DNN-3D 0.988 0.993 0.989 0.9878 0.978 0.982 0.9863 

TS-3D-MDNN 0.991 0.995 0.993 0.988 0.982 0.989 0.989667 

DCMH_3D_GAN 0.994 0.997 0.996 0.992 0.987 0.992 0.993 

 

 

Figure 6.3D Generative Model Performance Analysis 

 

In the evaluation of Table 4 T1-weighted MRI 

DICOM images, six different models, namely SMGAN-3D, 

WGAN, CNN_L1, RSLM-DNN-3D, TS-3D-MDNN, and 

DCMH_3D_GAN, were assessed based on the normalized 

cross-correlation (NCC) values. The mean NCC scores 

indicate that SMGAN-3D performed the best with a mean 

value of 0.9746, closely followed by RTSL-3D-MDNN at 

0.9897. WGAN, CNN_L1, RSLM-DNN-3D, and 

DCMH_3D_GAN exhibited slightly lower mean NCC 

scores, highlighting variations in their performance on the 

T1 weighted MRI slices. Figure 6 visually depicts the 

performance comparison of NCC values among the models, 

illustrating the relative strengths and weaknesses of 

SMGAN-3D, WGAN, CNN_L1, RSLM-DNN-3D, TS-3D-

MDNN, and DCMH_3D_GAN in the context of T1 

weighted MRI image analysis. 

 

5. Conclusion 

In this paper a structure sensitive loss model is 

introduced along with texture sensitiveloss GAN model 

especially for brain MRI image denoising. A 3D-CNN with 

multi scale model is designed to effectively generate the 

noise free image. The Squeeze-and-Excitation block is 

adapted in the discriminator model to provide an effective 

feature refinement and Improves CNN representation 

capacity. In this work, a unique Direction Coupled 

Magnitude Histogram is proposed to preserve the structure 

information during the denoising progress. It is an enhanced 

version of HOG to include mixed form of oriented gradient 

information. The denoising model finds the textural loss 

with the help of cartoon texture similarity comparison. 

Evaluation on the BraTS’17 MRI slices proves the 

significant improvement in denoising parameters. The 
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metrics such as PSNR, SSIM, and NCC are used for the 

evaluation process. Compared with the conventional 

denoising deep learning models, this DCHM with Cartoon 

Texture loss model with an effective discriminator module 

ensure the effective denoising model with the all kinds of 

sensitive information preserving GAN model and yields the 

PSNR up to 48.7. Further this approach can extend on 

region based sensitive denoising GAN model. 
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