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Abstract—In this paper, we analyse the effect of noise in a common-source amplifier with capacitive load working at high frequencies. Extrinsic
noise is analyzed using time domain method employing techniques from stochastic calculus. Stochastic differential equations are used to obtain
autocorrelation functions of the output noise voltage and other solution statistics like mean and variance. The analysis leads to important design
implications for improved noise characteristics of the common-source amplifier.
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. INTRODUCTION

The common-source amplifier is the most widely used in
analog circuit design. In thispaper, we shall concentrate on the
noise analysis of a common-source amplifier with capacitive
load. We analyze the effect of the noise signal on the output
voltage. Noise can enter the circuit via various paths such as
the noise from within the amplifier(intrinsic) and the noise
signal which is fed externally(extrinsic).

Circuit noise analysis is traditionally done in frequency
domain. The approach is effective in cases where the circuit is
linear and time invariant. In this paper we do analysis of

extrinsic noise for the common-source amplifier as shown in
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Fig.1.

For the stochastic model being used in this paper, the external
noise is assumed to be a white Gaussian noise process.
Although the assumption of a white Gaussian noise is an N
idealization, it may be justified because of the existence of = =
many random input effects. According to the Central Limit

Theorem, when the uncertainty is due to additive effects of Fig.1. Common-Source Amplifier with capacitive load
many random factors, the probability distribution of such

random variables is Gaussian. It may be difficult to isolate and

model each factor that produces uncertainty in the circuit

analysis. Therefore, the noise sources are assumed to be white |
with a flat power spectral density(PSD).

In this method, we shall follow a time domain approach based
on solving a SDE. The method of SDEs in circuit noise ; ,
analysis was used in [3] from a circuit simulation point of wTE o T
view. Their approach is based on linearization of SDEs about
its simulated deterministic trajectory. In this paper we will use
a different approach from which analytical solution to the SDE
will be obtained. The analytical solution will take into account
the circuit time varying nature and it will be shown that the
noise becomes significant at high input signal frequencies. The
main aim of our analysis is to observe the effect of noise
present in the input signal on the output of the common-source
amplifier.
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Fig.2. High-Frequency Equivalent Circuit
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Fig.3. Simplified High-Frequency Equivalent Circuit

I1.  ANALYSIS OF NOISE VIA SDEs

Consider a common-source amplifier as shown in Fig.1
whose high-frequency equivalent is shown in Fig.2. Using
Miller’s theorem, we can transfer c,q into input side by
¢i'=cga(1+gmRy) and into output side by c,"=
cgd(1+gmRd’)gmRd;, which is approximated to co'=cgd.
Henceforth, we analyze the circuit using SDEs. From the
circuit in Fig. 3,

vi(t) —vgs () duys(8)
R, Ci dt
where C; = Cys d(l + ngd ) and Rd = (7" Rd)/T' Rd .
Using some stralghtforward simplification (1) can be written

as
d”gs (t)

+ kv, s(t) = @
wherekl == L and
dve () | vo(t)
0 Vd—t + % —I9mVys (t) (2)
Where ¢y = (¢, + ¢,")

Considering v, (t) = on(t) , where n(t) represents Gaussian
noise process and o2 is the magnitude of PSD of input noise
process. Substituting v, (t) = on(t) in (1), we obtain

dvgs ®) on (t)

+ kl gs (t) = (3)

First, we multiply both side of (3) with dt, then take
expectation both sides. Since the continuous-time white noise
process is a generalised function, the solution is rewritten by
the replacement n(t)dt = dW(t), where W(t) is Wiener
motion process, a continuous, but not differentiable process

[4].

AE[v, (6)] + ks[5 (0)] e = 2] @
Using the fact that E[cdW (t)] =0, (4) results in the
following:

TR kBl (0] = 0 ©)

The solution of (5) is found out to be
E[v,s(©)] = cre7¥1t (6)
wherec; is a constant whose value depends on the initial

circuit conditions. Now, we consider (2) because one of our
main purpose is to find the mean of the output due to input
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noise signal. Simplifying and taking expectation on both sides
of (2) we get the following equation for the mean of output

dE[ve (8)] | E[vo(®)] _
dt + coRy’ - co

—9m E[Vgs ®)] (7)

The solution to which is

Elv, (0)]e*?t = —2 el knt 4 ()

ka—kq

Where k, = 1/c,R;" and ¢; = —g,,c1/c, and c¢; is constant
of integration whose value depends on initial conditions
provided. It is evident for initial conditions of v,(0) = 0 and
45 (0) = 0 that mean of output voltage is zero.

Next we find the autocorrelation function which will lead us to
finding the variance. For the pedagogical reasons, the

autocorrelation function is obtained considering initial
conditions zero. Rewriting equation (2) and (1)
d”a(t)+ kzv (t) gm';gs(t) (9)
dv S(t) (t)
g + kl gs (t) =2 (10)
Now consider (9) at t=t, with initial conditions

RVO V0 (tli 0) = E[Uo(tl)vo (tZ)]|t2=0 =0. Multlply'ng both
side of (9) with v, (t;)& taking expectation, we obtain

ARy, v, (E1,t2)
dty

—ImRvyvgs (t1,t2)

+koRy, (1, ) = ————  (11)

€0

Again consider (9) at t=t; with initial conditions
VO Vgs (O tz) = E[Uo(tl) S(tz)]ltl =0 — 0. |V|U|tlp|ylng bOth
side of (10) with v, (t,)& taking expectation, we obtain

dRVo'Vgs (t1.t2)
dtq

—9m Rvgs,vgs (t1.t2)

+ kZRvo,vgs (t1,t2) = (12)

Next, we consider (10) at t =¢; with initial conditions
Rvgs Wgs (0’ tZ) = E[Ugs (tl)vgs (tZ)] |t1=0 =0. MUItlpIymg
both side of (10) with vy, (t,)& taking expectation, we obtain

dRygsvgs (t1,t2)
dtq

Ry, vgs (t1,t2)
C¢iRs

+ klegS,vgs (tl! tZ) = (13)
Again consider (10) at t=t, with initial conditions
Ry, s (81, 0) = E [ (81) 45 (£2)]|¢,=0 = 0. Multiplying both
side of (10) with v; (t;)& taking expectation, we obtain

dRVi,Vgs (f1.f2)
dty

Rvi,vi(tl'fZ)
ciRg

+ kiR (1, t2) = (14)

We need to solve the differential equations (11), (12), (13) and
(14) to find out the value of R, , (t;,t;). Knowing that
Ry, . (t1, ;) = a28(t; — ty), we find the solution of (14) as

2
(ty, t)) = ‘,T_ekl(tl f2) (15)

vl Vgs


http://www.ijritcc.org/

Substituting the value of R, ,, . (t1,t,) from (15) in (13) and

taking the limit of ¢t; from 0 to
min(ty,t,), we obtain the solution of (13) as

2
RVgs'Vgs (tlv tz) = ﬂ(lg‘RTi)Z(e_kl(tl_tZ) _ e—k1(t1+t2)) (16)
Substituting the value of Ry 06 (tq, t,) from (16) in (12) and

taking limit of ¢; from 0 to min(ty, t,), we obtain the solution
of (12) as

tz—tl) (k t1 )
. ty— ;
coRyg') — e 1t2 coRyg') —

tp=t1
BRSO
e( PeoRa) + e

_ ks
Ry vy (t1,t2) = %Tm(e(

_ __t1
(—k1t2 cDRd')) (17)

—9m o?
Where k3 = W .
Ry g (t4,t,) from (17) in (11) and obtain the autocorrelation

function as follows,

We now substitute the value of

_gmk3 ] ~trts CoRd,
— R R
Rvu,vo (tl; t2) -1 ( efotd — e ofid 2
;— K1Co
Rq
ta—t1 t1 “t1—t2
—2kqt d kity— d g
(e 1 2+coRd _ ze 1t2 coRy +e coRy )
+

1
2 (kl + )
coRg
t1 —t1-t2
—kity— ; :
(e 12 coRg" — e coRy )

- )
1 _kl

coRa’

(18)

For t; =t, =t in (18) we obtain the second moment of
output voltage as E[v2(t)] (which is variance in this case),

E[vi(t)] = 1 2
-2t
_2t (g_Zklt_ze(kl_CoRd')t+echd'>
—_ k _— R ’
1@{—3((1_660%)%2[1 + P -
Ry 1€ ( 1+—coRd')
( 1 1 ')t -2t

(e coRq _eCoRd>

) (19)

coRg’ 1

1. SIMULATION RESULTS

For the simulation of results obtained above, we use the
following values for the circuit parameters R; = 10kQRs =
5kQ, 1, = 44kQ, 0 = 0.25, ¢4 = 3pF, cgq = 2.8pF , ¢, =
2pFg,, = 0.0016A/V.

The variation of mean with time is shown in Fig. 4, when
initial conditions are nonzero, (vy, (0) = 0.01V). If initial
conditions are zero the mean is zero all the time.The variation
of variance with time is shown in Fig. 5.From Fig.5 it is
observed that the variance reaches a constant value of
approximately 7.4x10° after lps. The maximum value of
variance is approximately 8.2x10°°.
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Fig.4. Variation of mean with time

time

Fig.5. Variation of variance with time

IV. CONCLUSIONS

Noise in common-source amplifier with capacitive load is
analyzed using stochastic differential equation. Extrinsic noise
is characterized by solving a SDE analytically in time domain.
The solution for various solution statistics like mean and
variance is obtained which can be used for design process.
Suitable design methods which involve changing of device
parameters are suggested to aid noise reduction and hence
design the amplifier with reduced noise characteristics.
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