
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1060 – 1066

1060
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Time Efficient Dynamic Processing of Big Data for Remote Sensing Application

Mr. Vikas Dudhe

M.Tech Computer Science & Engineering

Nagpur Institute of Technology

Nagpur(Mah),India

dudhevikas7066@gmail.com

Prof. Gunjan Agre

Asst. Professor, M.Tech Computer Science and Engineering

Nagpur Institute of Technology

Nagpur(Mah),India

gunjan.agre@gmail.com

Abstract—Searching info on the web in today’s world can be considered as dragging a net across the surface of the earth. While a great deal may

be caught in the net, there is still a huge amount of information that is deep, and therefore, missed. The reason is simple: Most of the Web's

information is buried down on dynamically produced sites, and standard search engines never find it, where data are hidden behind query

interfaces. But a direct query is a "one at a time" laborious way to find info.Several factors contribute to making this problem particularly

challenging. The Web is changing at a constant pace – new sources are added, and old sources are removed and modified. The remote wireless

senses generate very massive amount real-time data from the Satellite or from the Aircraft with the assistance of the sensors. Technology trends

for Big Data accept open source software, commodity servers, and massively parallel-distributed processing platforms. Analytics is at the core of

exploiting values from Big Data to produce consumable insights for business and government. This paper presents architecture for Big Data

Analytics and explores Big Data technologies offering SQL databases, Hadoop Distributed File System and Map-Reduce. The intended

architecture has the aptness of storing incoming unprepared data to dispatch offline analysis on largely stored dumps when required. Concluding,

a detailed analysis of remotely sensed earth observatory Big Data for ground or sea level are offered using Hadoop. The proposed architecture

possess the ability of dividing, load balancing, and parallel processing of only useful data. Thus, it results in efficient analysis of real-time

remote sensing Big Data using earth observatory system.

Keywords-Big Data, Hadoop, HDFS, Computing operation, RDBMS ,Data Analysis, GFS,Hbase.)

__*****___

I. INTRODUCTION

Data is collected from the remote sensors; these remote

sensors generates a very large volume raw data this is also

called as data acquisition. The collected data has no meaning

in it, the sensor simply collects all the information. So the data

need to be processed and filtered to extract the useful

information from it. [2]The main challenge in this is the data

accuracy, the information that are generated by the remote

sensors are not in the correct format for analysis. Now the data

need to be extracted to pull the useful or meaningful data and

converted into to the structured format for best analysis.

Sometimes the data might be not clear or it may be erroneous

too. To address the above needs, the architecture is introduced,

for the remote sensing big data. This architecture has the

capacity to analyze both type of data, offline data as well as

real time data. First, the data has to be remotely processed in

the readable format of the machine then the useful data is sent

to the base station of the earth for the further data processing.

The earth base station processes 2 types of data one is offline

data and the other is real time streaming data. [3]The offline

data are sent to the offline data storage device incorporation of

the later usage of data. Where in the real time data, the data is

directly processed to filtering and the load balancing server.

Filtering extracts the meaningful or useful data from the big

data and the load balancing will balance processing by

distributing the real time data equally to the server. These

filtering and the load balancing server will also improve the

system efficiency. Understanding the earth atmosphere or

environment requires large volume of information or data

gathered from different sources, such as air and water quality

monitoring sensors, amount of oxygen, co2 and the other gases

present in the air, remote access satellite for the observing the

characteristics of the earth and so on. In the healthcare

scenarios, there is large amount of the data about the

agriculture field data contains, CLReportingStatus, Region

Territory, Country Crop, Crop detail, SmallholderCluster,

SmallholderPercent, AreaSizeMin, AreaSizeAvg,

AreaSizeMax, CropSizeMin, CropSizeAvg, CropSizeMaxThe

above mentioned data is very complex in nature, there is a

chances of missing the importantdata. The challenge is to

design a high performance computing systems that can be able

integrate resources from different location.[4] Even though the

cloud computing systems shown high level performance for

RS applications, there are challenges still remaining regarding

energy and the time consumption. The big challenge emerges

when collecting and the managing Remote Sensing (RS) big

data. The RS data are collected from spacecraft, airplanes,

satellite and other sensing devices. Remote sensing data

growing explosively, we have entered in the period of very

high resolution, observation of the earth. Remote sensing data

also considered as a “Big Data”.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1060 – 1066

1061
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Fig. 1.Remote sensing Big Data architecture.

II. EXISTING SYSTEM

The data stored in the underlying layer of all these technical

computing application scenarios have some precise

individualities in common, such as 1) large scale data, which

refers to the size and the data warehouse; 2) scalability issues,

which refer to the application’s likely to be running on large

scale (e.g., Big Data); 3) sustain extraction transformation

loading (ETL) method from low, raw data to well thought-out

data up to certain extent; and 4) development of

uncomplicated interpretable analytical over Big Data

warehouses with a view to deliver an intelligent and

momentous knowledge for them [8]. Big Data are usually

generated by online transaction, video/audio, email, number of

clicks, logs, posts, social network data, scientific data, remote

access sensory data, mobile phones, and their applications [6],

[7]. These data are accumulated in databases that grow

extraordinarily and become complicated to confine, form,

store, manage, share, process, analyze, and visualize via

typical database software tools. Advancement in Big Data

sensing and computer technology revolutionizes the way

remote data collected, processed, analyzed, and managed [9]–

[12].The incorporation of offline data-storage device helps in

later usage of the data, whereas the real-time data is directly

transmitted to the filtration and load balance server, where

filtration algorithm is designed, which extracts the useful

information from the Big Data. On the other hand, the load

balancer balances the processing power by equal distribution

of the real-time data to the servers. The filtration and load-

balancing server not only filters and balances the load, but it is

also used to enhance the system efficiency. Furthermore, the

filtered data are then processed by the parallel servers and are

sent to data aggregation unit (if required, they can store the

processed data in the result storage device) for comparison

purposes by the decision and analyzing server. The proposed

architecture welcomes remote access sensory data as well as

direct access network data (e.g., GPRS, 3G, xDSL, or WAN).

The proposed architecture and the algorithms are implemented

in Hadoop which use MapReduce programming by applying

remote sensing earth observatory data.

III. MODULES

• Data Loading and Preprocessing

• Filtration

• Load balancing

• Analysis and Decision

3.1 Data Loading and Preprocessing

• The input of Big Data comes from social networks

(Facebook, Twitter, LinkedIn, etc.), Web servers, satellite

imagery, sensory data, banking transactions, etc.

• Load remote sensing data into database.

• Pre-process data for remove irrelevant data.

3.2 Filtration

 In data processing unit (DPU), the filtration and

load balancer server have two responsibilities, such

as filtration of data and load balancing of processing

power.

 Filtration identifies the useful data for analysis since

it only allows useful information, whereas the rest

of the data are blocked and are discarded. Hence, it

results in enhancing the performance of the whole

proposed system.

Get remote sensing

data

Select Data

Load data into

database

Pre-process data

Get Preprocessed

data

Classify data

Discards unnecessary

data

Store useful data

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1060 – 1066

1062
IJRITCC | June 2017, Available @ http://www.ijritcc.org

3.3 Load balancing

• Apparently, the load-balancing part of the server provides the

facility of dividing the whole filtered data into parts and assign

them to various processing servers.

• The filtration and load-balancing algorithm varies from

analysis to analysis; e.g., if there is only a need for analysis of

sea wave and temperature data, the measurement of these

described data is filtered out, and is divided into parts.

3.4 Analysis and Decision

• DADU contains three major portions, such as

aggregation and compilation server, results storage

server(s), and decision making server. [1]When the results

are ready for compilation, the processing servers in DPU

send the partial results to the aggregation and compilation

server, since the aggregated results are not in organized

and compiled form.

• Therefore, there is a need to aggregate the results and

organized them into a proper form for further processing

and to store them. In the proposed architecture,

aggregation and compilation server is supported by

various algorithms that compile, organize, store, and

transmit the results. Again, the algorithm varies from

requirement to requirement and depends on the analysis

needs.

IV. WORKING

Apache Hadoop is an open-source software framework that

supports data-intensive distributed applications, licensed under

the Apache v2 license. It supports the running of applications

on large clusters of commodity hardware. Hadoop was derived

from Google’s MapReduce and Google File System (GFS)

papers.

The Hadoop framework transparently provides both reliability

and data motion to applications. Hadoop implements a

computational paradigm named MapReduce, where the

application is divided into many small fragments of work, each

of which may be executed or re-executed on any node in the

cluster. [17]In addition, it provides a distributed file system

that stores data on the compute nodes, providing very high

aggregate bandwidth across the cluster. Both map/reduce and

the distributed file system are designed so that node failures

are automatically handled by the framework.

In a larger cluster, the HDFS is managed through a dedicated

NameNode server that hosts the file system index, and a

secondary NameNode that can generate snapshots of the name

node’s memory structures, so preventing file system

corruption and reducing loss of data. Similarly, job scheduling

can be managed by a standalone JobTracker server. In clusters

where the HadoopMapReduce engine is deployed against an

alternate file system, the NameNode, secondary NameNode

and DataNode architecture of HDFS is replaced by the file

system-specific equivalent.

In a Hadoop cluster, data is distributed among the nodes of the

cluster as it is being loaded in. [15]The Hadoop Distributed

File System (HDFS) will split large data files into chunks

which are managed by different nodes in the cluster. In

addition to this each chunk is replicated across a number of

machines, so that a single machine failure does not result in

any data being unavailable. An active monitoring system then

re-replicates the data in response to system failures which can

result in partial storage. Even though the file chunks are

copied and distributed across several machines, they form a

single namespace, so their contents are universally accessible.

Data is conceptually record-oriented in the Hadoop

programming framework. Individual input files are broken into

lines or into other formats specific to the application logic.

Each process running on a node in the cluster then processes a

subset of these records.[8] The Hadoop framework then

schedules these processes in proximity to the location of

data/records using knowledge from the distributed file system.

Since files are spread across the distributed file system as

chunks, each compute process running on a node operates on a

subset of the data. Which data operated on by a node is chosen

based on its locality to the node: most data is read from the

local disk straight into the CPU, alleviating strain on network

bandwidth and preventing unnecessary network transfers. This

strategy of moving computation to the data, instead of moving

the data to the computation allows Hadoop to achieve high

data locality which in turn results in high performance.

Analysis server

Find suitable server

Select server from connected

machine

Divide and Store data

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1060 – 1066

1063
IJRITCC | June 2017, Available @ http://www.ijritcc.org

Figure 2: Data distribution in Hadoop

Pseudo code:

K-Means is aeasy learning algorithm for clustering analysis.

The goal of K-Means algorithm is to find the best division of n

entities in k groups, so that the total distance between the

group’s members and its corresponding centroid,

representative of the group, is minimized.

The k-means algorithm is used for partitioning where each

cluster’s centre is represented by the mean value of the objects

in the cluster.

Pseudo code

1. Begin with n clusters, each containing one object and we

will number the clusters 1 through n.

2. Compute the between-cluster distance D(p, q) as the

between-object distance of the two objects in r and s

respectively, p, q =1, 2, …, n. Let the square matrix D = (D(p,

q)). If the objects are represented by vectors, we can use the

Euclidean distance.

3. Next, find the most similar pair of clusters r and s, such that

the distance, D(p, q), is minimum among all the pair wise

distances.

4. Merge r and s to a new cluster t and compute the between-

cluster distance D(l, m) for any existing cluster m ≠ p, q . Once

the distances are obtained, delete the rows and columns

corresponding to the existing cluster p and q in the D matrix,

since r and s do not exist anymore. Then add a new row and

column in D corresponding to cluster l.

5. Repeat Step 3 n − 1 times until there is only one cluster left.

k-Means: Step-By-Step Examples easy illustration of a k-

means algorithm, consider the following data set consisting of

the scores of two variables on each of seven individuals:

Subject A B

1 1.0 1.0

2 1.5 2.0

3 3.0 4.0

4 5.0 7.0

5 3.5 5.0

6 4.5 5.0

7 3.5 4.5

This data set is to be paired into two clusters. As a first step in

finding a sensible initial partition, let the A & B values of the

two individuals furthest apart (using the Euclidean distance

measure), define the initial cluster means, giving:

Individual Mean Vector (centroid)

Group 1 1 (1.0, 1.0)

Group 2 4 (5.0, 7.0)

The remaining individuals are now examined in sequence and

allocated to the cluster to which they are closest, in terms of

Euclidean distance to the cluster mean. The mean vector is

recalculated each time a new member is added. This leads to

the following series of steps:

Cluster 1 Cluster 2

Step Individual
Mean Vector

(centroid)
Individual

Mean Vector

(centroid)

1 1 (1.0, 1.0) 4 (5.0, 7.0)

2 1, 2 (1.2, 1.5) 4 (5.0, 7.0)

3 1, 2, 3 (1.8, 2.3) 4 (5.0, 7.0)

4 1, 2, 3 (1.8, 2.3) 4, 5 (4.2, 6.0)

5 1, 2, 3 (1.8, 2.3) 4, 5, 6 (4.3, 5.7)

6 1, 2, 3 (1.8, 2.3) 4, 5, 6, 7 (4.1, 5.4)

Now the initial partition has changed, and the two clusters at

this stage having the following characteristics:

Individual Mean Vector (centroid)

Cluster 1 1, 2, 3 (1.8, 2.3)

Cluster 2 4, 5, 6, 7 (4.1, 5.4)

But we cannot yet be sure that each individual has been

assigned to the right cluster. So, we compare each individual’s

distance to its own cluster mean and tothat of the opposite

cluster. And we find:

Individual
Distance to mean

(centroid) of Cluster 1

Distance to mean

(centroid) of Cluster 2

1 1.5 5.4

2 0.4 4.3

3 2.1 1.8

4 5.7 1.8

5 3.2 0.7

6 3.8 0.6

7 2.8 1.1

Only individual 3 is nearer to the mean of the opposite cluster

(Cluster 2) than its own (Cluster 1). In other words, each

individual’s distance to its own cluster mean should be smaller

that the distance to the other cluster’s mean (which is not the

case with individual 3). Thus, individual 3 is relocated to

Cluster 2 resulting in the new partition:

Individual Mean Vector (centroid)

Cluster 1 1, 2 (1.3, 1.5)

Cluster 2 3, 4, 5, 6, 7 (3.9, 5.1)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1060 – 1066

1064
IJRITCC | June 2017, Available @ http://www.ijritcc.org

The iterative relocation would now continue from new

partition until no more relocations occur. However, in this

example each individual is now nearer its own cluster mean

than that of the other cluster and the iteration stops, choosing

the latest partitioning as the final cluster solution.

After years of continuous research and unremitting

exploration, Spectral Clustering has been recognized as a

clustering algorithm which is more effective than the

traditional clustering algorithm, and its mathematical basis is

the graph cut and matrix operation. In general, The time

complexity of spectral clustering is O (n3), where n is the

number of objects to be entered. Because of its high

complexity, it greatly limits its application in the actual

production and research.

To reduce the time complexity of spectral clustering, this

chapter tries to combine spectral clustering algorithm and

MapReduce programming ideas of Parallel Spectral

Clustering Algorithm Based on HadoopHadoop together.

Through the analysis of the traditional spectral clustering

algorithm steps, we can achieve steps to separate out and put

these steps integration into the MapReduce, combined with

Hadoop excellent distributed storage and parallel computing

performance, realize the spectral clustering algorithm

parallelization, take advantage of the cluster, and reduce the

time needed for the clustering ultimately.

Figure 3: The two-stage architecture of Smart Crawler

V. ALGORITHMS AND NOTATION

5.1 Loading and Data processing

Step1: Calculate the similarity matrix SϵR
nxn

, S(xi,xj) is data

points Xi and Xjsimilarity and then sparse it.

Step2 : Constructing diagonal degree matrix D, and diagonal

elements are di = S(Xi, Xj) 𝑛
𝑗=1

Step3 : Calculate normalized Laplasse matrix L,

𝐿 = 𝑙 − 𝐷
−1

2 S𝐷
−1

2

Step4 : Calculate k the minimum eigenvectors of L, and the

composition matrix ZϵR
nxk

 contains them.

Step5 : Standardized Z to YϵR
nxk

Step6 : The data points with K-means algorithm yiϵR
k

 (i=1,2,…..n) into k clusters C1,…Ck.

Because Hadoop'sMapReduce parallel programming

architecture can deliver excellent distributed computing

framework, HBase distributed database building on HDFS can

be used to initialize and store intermediate results matrix. So,

we choose MapReduce, a core component of the Hadoop, to

achieve our parallel spectral cluster with the distributed file

system HDFS and HBasedistributed database. We first put

adjacency matrix which is constitute of the data point 1 2 , , , n

x xx into HBase table, the table can be clustered access to

aloof the machines, and the key row of each record is set as the

index of the datapoints. Then we use a map function to

automatically calculate the similarity between the data

points.∀𝑖, 𝑗, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, we just need to calculate sin(xi, xj).

Because these objects can constitute undirected graphs sin(xi,

xj)= sim(xj, xi), the calculation of the similarity between each

pair of data points needs to be calculated once. And according

to the symmetry of undirected graphs, the other half of the

similarity values are obtained.

Figure 4: Map Function of parallel computing

5.2 Filteration and Load Balancing

Input: <key, value>, Key as point index, value as null

Step1: index= key, newindex=n-key+1

Step2 : for x in {index,newindex}

x_content =getContentFromHBase(j);

Sim=ComputeSimilarity(x_content,y_content);

storeSimilarity(x,y,sim) into HBase table:

End for

End For

Step3 : Output<key, null>

Step4 : End

It should be noted that “similar value of the subscript x” need

to calculate the value of n-x+1 pairs of data point {<mi,mi>,<

mi,mi+1>…..<mi,mn>}. Therefore, in order to load balance, we

calculate the similarity of index I and index n-x+1, which

performed on the same machine.

Data
Preprocessing

Processing server

RM Data

Real time data

Analysis
Result

Filtration and Load
Balancer

Data
server

Decisionm
aking
server

Offline data storage

Result data storage

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1060 – 1066

1065
IJRITCC | June 2017, Available @ http://www.ijritcc.org

VI. RESULT AND IMPLEMENTATION

We implemented our algorithms in Hadoop environment as it

uses java libraries and Hadoop libraries to show the difference

between the computational time of searching the contents of

earth aggregation information to be processed quickly and

shows the comparison on the parameter passed to the system

using MapReduce Environment. MapReduce, initially in a

single-node environment. In the Hadoop implementation, Map

function takes the image block offset as a key and the image

block (pixel values) as a value parameter. Since

HadoopMapReduce cannot directly process image blocks, the

whole product image data are converted into sequence file to

be processed using MapReduce. In such a way, one line of the

sequence file contains one image block. Map function

performs parameters calculations on incoming block values

and finally sends the block number as a key and list of

parameters results as a value to the Reduce function. Reduce

function uses parameter results for performing decision-

making on them. We test and evaluate our algorithms with

respect to accuracy and processing time using various ESA

products [20].

Figure 5: Efficiency comparision of HadoopMapReduce

implementation and Java Implementation on China key

Figure 6: Efficiency comparision of HadoopMapReduce

implementation and Java Implementation on corn key

Efficiency measurements are taken by considering the average

processing time to process 1-MB data of various products.

MapReduce implementation of the analysis algorithm takes

less than 1 s the average processing time for various products

except Product 3, which takes 1.5 s the average processing

time. This processing time among various products varies due

to the usage of different bands and image modes, depending

on product type. The average processing time for various

products is shown in Fig. 8. Finally, a comparison is made

between the HadoopMarReduce implementation and the

simple Java implementation of the proposed algorithms using

average processing time measurements. Hence, for smaller

size products, the Hadoop implementation is not efficient

because of its lots of input and output operations due to Map

and Reduce function. In the case of large-size products,

Hadoop divided whole products into blocks and performed

parallel tasking on them, which resulted in increased

efficiency.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, implemented architecture for real time Big Data

analysis for remote sensing application. The proposed

architecture efficiently processed offline data initially and

further we will extend it to offline data as currently provision

is their but it need to sense data dynamically. the capabilities

of filtering structured data and processed as per the token

passed into the Hadoop System. The algorithm proposed in

this paper for each units and subunits are used to analysis

remote sensing data sets which helps in better understanding

of land agriculture data. In future this system can be used in

different datasets with some modifications. In future the

system will take the images data and analysis should be done.

this algorithms can be used as per the requirements. For Future

work we are planning to extend the proposed architecture to

make it compatible for Big Data for all applications. Eg

sensors and social networking and in data centres. It can

further extend to take decision before the natural calamities

can be occur and preventive measure can be taken.

VIII. REFERENCES

[1] Real-Time Big Data Analytical Architecture for Remote

Sensing Application Muhammad MazharUllahRathore,

Anand Paul, Senior Member, IEEE, Awais Ahmad, Student

Member, IEEE, Bo-Wei Chen, Member, IEEE, Bormin

Huang, and Wen Ji, Member, IEEE.

[2] A. Labrinidis and H. V. Jagadish, “Challenges and

opportunities with Big Data,” in Proc. 38th Int. Conf. Very

Large Data Bases Endowment, Istanbul, Turkey, Aug. 27–

31, 2012, vol. 5, no. 12, pp. 2032–2033.

[3] P. Chandarana and M. Vijayalakshmi, “Big Data analytics

frameworks,” in Proc. Int. Conf. Circuits Syst.Commun.

Inf. Technol. Appl. (CSCITA), 2014, pp. 430–434.

[4] Wikibon Blog. (Oct. 14, 2014). [2310]. Big Data Statistics

[Online].Available: wikibon.org/blog/big-data-statistics/

European Space Agency. (Oct. 14, 2014).

[5] L. Ramaswamy, V. Lawson, and S. V. Gogineni, “Towards

a qualitycentric Big Data architecture for federated sensor

services,” in Proc. IEEE Int. Congr. Big Data, 2013, pp.

86–93.

[6] X. Li, F. Zhang, and Y. Wang, “Research on Big Data

architecture,key technologies, and it’s measures,” in Proc.

IEEE 11th Int. Conf. Dependable Auton. Secure Comput.,

2013, pp. 1–4.

[7] S. Marchal, X. Jiang, R. State, and T. Engel, “A Big Data

architecture for large scale security monitoring,” in Proc.

IEEE Int. Congr. Big Data, 2014, pp. 56–63.

[8] X. Yi, F. Liu, J. Liu, and H. Jin, “Building a network

highway for Big Data: Architecture and challenges,” IEEE

Netw., vol. 28, no. 4, pp. 5–13, Jul./Aug. 2014.

[9] Mr. VikasDudhe, Prof. GunjanAgre “REVIEW PAPER ON

REAL TIME BIG DATA FOR MACHINE LEARNING

USING HADOOPCLUSTURE”, IJAITE, Vol.2, Issue 3,

May-2017 ISSN 2455-6491.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 5 Issue: 6 1060 – 1066

1066
IJRITCC | June 2017, Available @ http://www.ijritcc.org

[10] Z. Liu, B. Jiang, and J. Heer, “imMens: Real-time visual

querying of Big Data,” Comput. Graph.Forum, vol. 32.no.

3, pp. 421–430, pt. 4, 2013.

[11] European Space Agency. (Oct. 14, 2014). [2312]

[Online].Available:https://earth.esa.int/

[12] D. Agrawal, S. Das, and A. E. Abbadi, “Big Data and cloud

computing:Current state and future opportunities,” in Proc.

Int. Conf. ExtendingDatabase Technol. (EDBT), 2011, pp.

530–533.

[13] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C.

Welton, “Madskills: New analysis practices for Big Data,”

PVLDB, vol. 2, no. 2,pp. 1481–1492, 2009.

[14] J. Dean and S. Ghemawat, “Mapreduce: Simplified data

processing onlarge clusters,” Commun. ACM, vol. 51, no.

1, pp. 107–113, 2008.

[15] H. Herodotou et al., “Starfish: A self-tuning system for Big

Data analytics,” in Proc. 5th Int. Conf. Innovative Data

Syst. Res. (CIDR), 2011,pp. 261–272.

[16] K. Michael and K. W. Miller, “Big Data: New opportunities

and newchallenges [guest editors’ introduction],” IEEE

Comput., vol. 46, no. 6,pp. 22–24, Jun. 2013.

[17] Mr. VikasDudhe, Prof. GunjanAgre, “Analytical

Architecture of Real Time Big Data for MachineLearning”

in Tech-Chronicle International E-journal Tech-ed 2017,

ISSN No:2454-1958

[18] C. Eaton, D. Deroos, T. Deutsch, G. Lapis, and P. C.

Zikopoulos,Understanding Big Data: Analytics for

Enterprise Class Hadoop andStreaming Data. New York,

NY, USA: McGraw-Hill, 2012.

[19] R. D. Schneider, Hadoop for Dummies Special Edition.

Hoboken, NJ,USA: Wiley, 2012.

[20] M. Mayilvaganan and M. Sabitha, “A cloud-based

architecture for Big-Data analytics in smart grid: A

proposal,” in Proc. IEEE Int. Conf. Comput.

Intell.Comput.Res. (ICCIC), 2013.

http://www.ijritcc.org/

