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Abstract—Searching info on the web in today’s world can be considered as dragging a net across the surface of the earth. While a great deal may 

be caught in the net, there is still a huge amount of information that is deep, and therefore, missed. The reason is simple: Most of the Web's 

information is buried down on dynamically produced sites, and standard search engines never find it, where data are hidden behind query 

interfaces. But a direct query is a "one at a time" laborious way to find info.Several factors contribute to making this problem particularly 

challenging. The Web is changing at a constant pace – new sources are added, and old sources are removed and modified. The remote wireless 

senses generate very massive amount real-time data from the Satellite or from the Aircraft with the assistance of the sensors. Technology trends 

for Big Data accept open source software, commodity servers, and massively parallel-distributed processing platforms. Analytics is at the core of 

exploiting values from Big Data to produce consumable insights for business and government. This paper presents architecture for Big Data 

Analytics and explores Big Data technologies offering SQL databases, Hadoop Distributed File System and Map-Reduce. The intended 

architecture has the aptness of storing incoming unprepared data to dispatch offline analysis on largely stored dumps when required. Concluding, 

a detailed analysis of remotely sensed earth observatory Big Data for ground or sea level are offered using Hadoop. The proposed architecture 

possess the ability of dividing, load balancing, and parallel processing of only useful data. Thus, it results in efficient analysis of real-time 

remote sensing Big Data using earth observatory system. 
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I. INTRODUCTION 

Data is collected from the remote sensors; these remote 

sensors generates a very large volume raw data this is   also 

called as data acquisition. The collected data has no meaning 

in it, the sensor simply collects all the information. So the data 

need to be processed and filtered to extract the useful 

information from it. [2]The main challenge in this is    the data 

accuracy, the information that are generated by the remote 

sensors are not in the correct format for analysis. Now the data 

need to be extracted to pull the useful or meaningful data and 

converted into to the structured format for best analysis. 

Sometimes the data might be not clear or it may be erroneous 

too. To address the above needs, the architecture is introduced, 

for the remote sensing big data. This architecture has the 

capacity to analyze both type of data, offline data as well as 

real time data. First, the data has to be remotely processed in 

the readable format of the machine then the useful data is sent 

to the base station of the earth for the further data processing. 

The earth base station processes 2 types of data one is offline 

data and the other is real time streaming data. [3]The offline 

data are sent to the offline data storage device incorporation of 

the later usage of data. Where in the real time data, the data is 

directly  processed to filtering and the load balancing server. 

Filtering extracts the meaningful or useful data from the big 

data and the load balancing will balance processing by 

distributing the real time data equally to the server. These 

filtering and the load balancing server will also improve the 

system efficiency. Understanding the earth atmosphere or 

environment requires large volume of information or data 

gathered from different sources, such as air and water quality 

monitoring sensors, amount of oxygen, co2 and the other gases 

present in the air, remote access satellite for the observing the 

characteristics of the earth and so on. In the healthcare 

scenarios, there is large amount of the data about the 

agriculture field data contains, CLReportingStatus, Region 

Territory, Country Crop, Crop detail, SmallholderCluster, 

SmallholderPercent, AreaSizeMin, AreaSizeAvg, 

AreaSizeMax, CropSizeMin, CropSizeAvg, CropSizeMaxThe 

above mentioned data is very complex in nature, there is a 

chances of missing the importantdata. The challenge is to 

design a high performance computing systems that can be able 

integrate resources from different location.[4] Even though the 

cloud computing systems shown high level performance for 

RS applications, there are challenges still remaining regarding 

energy and the time consumption. The big challenge emerges 

when collecting and the managing Remote Sensing (RS) big 

data. The RS data are collected from spacecraft, airplanes, 

satellite and other sensing devices. Remote sensing data 

growing explosively, we have entered in the period of very 

high resolution, observation of the earth. Remote sensing data 

also considered as a “Big Data”. 
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Fig. 1.Remote sensing Big Data architecture. 

 

II. EXISTING SYSTEM  

 
The data stored in the underlying layer of all these technical 

computing application scenarios have some precise 

individualities in common, such as 1) large scale data, which 

refers to the size and the data warehouse; 2) scalability issues, 

which refer to the application’s likely to be running on large 

scale (e.g., Big Data); 3) sustain extraction transformation 

loading (ETL) method from low, raw data to well thought-out 

data up to certain extent; and 4) development of 

uncomplicated interpretable analytical over Big Data 

warehouses with a view to deliver an intelligent and 

momentous knowledge for them [8]. Big Data are usually 

generated by online transaction, video/audio, email, number of 

clicks, logs, posts, social network data, scientific data, remote 

access sensory data, mobile phones, and their applications [6], 

[7]. These data are accumulated in databases that grow 

extraordinarily and become complicated to confine, form, 

store, manage, share, process, analyze, and visualize via 

typical database software tools. Advancement in Big Data 

sensing and computer technology revolutionizes the way 

remote data collected, processed, analyzed, and managed [9]–

[12].The incorporation of offline data-storage device helps in 

later usage of the data, whereas the real-time data is directly 

transmitted to the filtration and load balance server, where 

filtration algorithm is designed, which extracts the useful 

information from the Big Data. On the other hand, the load 

balancer balances the processing power by equal distribution 

of the real-time data to the servers. The filtration and load-

balancing server not only filters and balances the load, but it is 

also used to enhance the system efficiency. Furthermore, the 

filtered data are then processed by the parallel servers and are 

sent to data aggregation unit (if required, they can store the 

processed data in the result storage device) for comparison 

purposes by the decision and analyzing server. The proposed 

architecture welcomes remote access sensory data as well as 

direct access network data (e.g., GPRS, 3G, xDSL, or WAN). 

The proposed architecture and the algorithms are implemented 

in Hadoop which use MapReduce programming by applying 

remote sensing earth observatory data. 

III. MODULES 

• Data Loading and Preprocessing 

• Filtration 

• Load balancing 

• Analysis and Decision 

 

3.1   Data Loading and Preprocessing 

 

• The input of Big Data comes from social networks 

(Facebook, Twitter, LinkedIn, etc.), Web servers, satellite 

imagery, sensory data, banking transactions, etc. 

• Load remote sensing data into database. 

• Pre-process data for remove irrelevant data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2  Filtration 

 In data processing unit (DPU), the filtration and 

load balancer server have two responsibilities, such 

as filtration of data and load balancing of processing 

power.  

 Filtration identifies the useful data for analysis since 

it only allows useful information, whereas the rest 

of the data are blocked and are discarded. Hence, it 

results in enhancing the performance of the whole 

proposed system. 
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3.3 Load balancing 

 

• Apparently, the load-balancing part of the server provides the 

facility of dividing the whole filtered data into parts and assign 

them to various processing servers. 

• The filtration and load-balancing algorithm varies from 

analysis to analysis; e.g., if there is only a need for analysis of 

sea wave and temperature data, the measurement of these 

described data is filtered out, and is divided into parts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4  Analysis and Decision 

• DADU contains three major portions, such as 

aggregation and compilation server, results storage 

server(s), and decision making server. [1]When the results 

are ready for compilation, the processing servers in DPU 

send the partial results to the aggregation and compilation 

server, since the aggregated results are not in organized 

and compiled form.  

• Therefore, there is a need to aggregate the results and 

organized them into a proper form for further processing 

and to store them. In the proposed architecture, 

aggregation and compilation server is supported by 

various algorithms that compile, organize, store, and 

transmit the results. Again, the algorithm varies from 

requirement to requirement and depends on the analysis 

needs. 

 

 

 

 

 

 

IV. WORKING 

Apache Hadoop is an open-source software framework that 

supports data-intensive distributed applications, licensed under 

the Apache v2 license. It supports the running of applications 

on large clusters of commodity hardware. Hadoop was derived 

from Google’s MapReduce and Google File System (GFS) 

papers. 

The Hadoop framework transparently provides both reliability 

and data motion to applications. Hadoop implements a 

computational paradigm named MapReduce, where the 

application is divided into many small fragments of work, each 

of which may be executed or re-executed on any node in the 

cluster. [17]In addition, it provides a distributed file system 

that stores data on the compute nodes, providing very high 

aggregate bandwidth across the cluster. Both map/reduce and 

the distributed file system are designed so that node failures 

are automatically handled by the framework. 

In a larger cluster, the HDFS is managed through a dedicated 

NameNode server that hosts the file system index, and a 

secondary NameNode that can generate snapshots of the name 

node’s memory structures, so preventing file system 

corruption and reducing loss of data. Similarly, job scheduling 

can be managed by a standalone JobTracker server. In clusters 

where the HadoopMapReduce engine is deployed against an 

alternate file system, the NameNode, secondary NameNode 

and DataNode architecture of HDFS is replaced by the file 

system-specific equivalent. 

In a Hadoop cluster, data is distributed among the nodes of the 

cluster as it is being loaded in. [15]The Hadoop Distributed 

File System (HDFS) will split large data files into chunks 

which are managed by different nodes in the cluster. In 

addition to this each chunk is replicated across a number of 

machines, so that a single machine failure does not result in 

any data being unavailable. An active monitoring system then 

re-replicates the data in response to system failures which can 

result in partial storage. Even though the file chunks are 

copied and distributed across several machines, they form a 

single namespace, so their contents are universally accessible. 

Data is conceptually record-oriented in the Hadoop 

programming framework. Individual input files are broken into 

lines or into other formats specific to the application logic. 

Each process running on a node in the cluster then processes a 

subset of these records.[8] The Hadoop framework then 

schedules these processes in proximity to the location of 

data/records using knowledge from the distributed file system. 

Since files are spread across the distributed file system as 

chunks, each compute process running on a node operates on a 

subset of the data. Which data operated on by a node is chosen 

based on its locality to the node: most data is read from the 

local disk straight into the CPU, alleviating strain on network 

bandwidth and preventing unnecessary network transfers. This 

strategy of moving computation to the data, instead of moving 

the data to the computation allows Hadoop to achieve high 

data locality which in turn results in high performance. 

Analysis server 

Find suitable server 

Select server from connected 

machine 

Divide and Store data 
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Figure 2: Data distribution in Hadoop 

 

Pseudo code: 

K-Means is aeasy learning algorithm for clustering analysis. 

The goal of K-Means algorithm is to find the best division of n 

entities in k groups, so that the total distance between the 

group’s members and its corresponding centroid, 

representative of the group, is minimized. 

The k-means algorithm is used for partitioning where each 

cluster’s centre is represented by the mean value of the objects 

in the cluster. 

Pseudo code 

1.  Begin with n clusters, each containing one object and we 

will number the clusters 1 through n. 

2. Compute the between-cluster distance D(p, q) as the 

between-object distance of the two objects in r and s 

respectively, p, q =1, 2, …, n. Let the square matrix D = (D(p, 

q)). If the objects are represented by vectors, we can use the 

Euclidean distance. 

3. Next, find the most similar pair of clusters r and s, such that 

the distance, D(p, q), is minimum among all the pair wise 

distances. 

4. Merge r and s to a new cluster t and compute the between-

cluster distance D(l, m) for any existing cluster m ≠ p, q . Once 

the distances are obtained, delete the rows and columns 

corresponding to the existing cluster p and q in the D matrix, 

since r and s do not exist anymore. Then add a new row and 

column in D corresponding to cluster l. 

5. Repeat Step 3 n − 1 times until there is only one cluster left. 

k-Means: Step-By-Step Examples easy illustration of a k-

means algorithm, consider the following data set consisting of 

the scores of two variables on each of seven individuals: 

 

Subject A B 

1 1.0 1.0 

2 1.5 2.0 

3 3.0 4.0 

4 5.0 7.0 

5 3.5 5.0 

6 4.5 5.0 

7 3.5 4.5 

 

This data set is to be paired into two clusters. As a first step in 

finding a sensible initial partition, let the A & B values of the 

two individuals furthest apart (using the Euclidean distance 

measure), define the initial cluster means, giving: 

  

 
Individual Mean Vector (centroid) 

Group 1 1 (1.0, 1.0) 

Group 2 4 (5.0, 7.0) 

 

The remaining individuals are now examined in sequence and 

allocated to the cluster to which they are closest, in terms of 

Euclidean distance to the cluster mean. The mean vector is 

recalculated each time a new member is added. This leads to 

the following series of steps: 

 

 

 
Cluster 1 Cluster 2 

Step Individual 
Mean Vector 

(centroid) 
Individual 

Mean Vector 

(centroid) 

1 1 (1.0, 1.0) 4 (5.0, 7.0) 

2 1, 2 (1.2, 1.5) 4 (5.0, 7.0) 

3 1, 2, 3 (1.8, 2.3) 4 (5.0, 7.0) 

4 1, 2, 3 (1.8, 2.3) 4, 5 (4.2, 6.0) 

5 1, 2, 3 (1.8, 2.3) 4, 5, 6 (4.3, 5.7) 

6 1, 2, 3 (1.8, 2.3) 4, 5, 6, 7 (4.1, 5.4) 

 

Now the initial partition has changed, and the two clusters at 

this stage having the following characteristics: 

  

 
Individual Mean Vector (centroid) 

Cluster 1 1, 2, 3 (1.8, 2.3) 

Cluster 2 4, 5, 6, 7 (4.1, 5.4) 

 

But we cannot yet be sure that each individual has been 

assigned to the right cluster. So, we compare each individual’s 

distance to its own cluster mean and tothat of the opposite 

cluster. And we find: 

 

Individual 
Distance to mean 

(centroid) of Cluster 1 

Distance to mean 

(centroid) of Cluster 2 

1 1.5 5.4 

2 0.4 4.3 

3 2.1 1.8 

4 5.7 1.8 

5 3.2 0.7 

6 3.8 0.6 

7 2.8 1.1 

 

Only individual 3 is nearer to the mean of the opposite cluster 

(Cluster 2) than its own (Cluster 1). In other words, each 

individual’s distance to its own cluster mean should be smaller 

that the distance to the other cluster’s mean (which is not the 

case with individual 3). Thus, individual 3 is relocated to 

Cluster 2 resulting in the new partition:   

 

 
Individual Mean Vector (centroid) 

Cluster 1 1, 2 (1.3, 1.5) 

Cluster 2 3, 4, 5, 6, 7 (3.9, 5.1) 
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The iterative relocation would now continue from new 

partition until no more relocations occur. However, in this 

example each individual is now nearer its own cluster mean 

than that of the other cluster and the iteration stops, choosing 

the latest partitioning as the final cluster solution. 

After years of continuous research and unremitting 

exploration, Spectral Clustering has been recognized as a 

clustering algorithm which is more effective than the 

traditional clustering algorithm, and its mathematical basis is 

the graph cut and matrix operation. In general, The time 

complexity of spectral clustering is O (n3), where n is the 

number of objects to be entered. Because of its high 

complexity, it greatly limits its application in the actual 

production and research. 

To reduce the time complexity of spectral clustering, this 

chapter tries to combine spectral clustering algorithm and 

MapReduce programming ideas of  Parallel Spectral 

Clustering Algorithm Based on HadoopHadoop together. 

Through the analysis of the traditional spectral clustering 

algorithm steps, we can achieve steps to separate out and put 

these steps integration into the MapReduce, combined with 

Hadoop excellent distributed storage and parallel computing 

performance, realize the spectral clustering algorithm 

parallelization, take advantage of the cluster, and reduce the 

time needed for the clustering ultimately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The two-stage architecture of Smart Crawler 

V. ALGORITHMS AND NOTATION 

5.1 Loading and Data processing  

 

Step1: Calculate the similarity matrix SϵR
nxn

, S(xi,xj) is data 

points Xi and Xjsimilarity and then sparse it. 

Step2 : Constructing diagonal degree matrix D, and diagonal 

elements are di =  S(Xi, Xj  ) 𝑛
𝑗=1  

Step3 : Calculate normalized Laplasse matrix L, 

𝐿 = 𝑙 − 𝐷
−1

2 S𝐷
−1

2  

Step4 : Calculate k the minimum eigenvectors of L, and the 

composition matrix ZϵR
nxk

 contains them. 

Step5 : Standardized Z to YϵR
nxk

 

Step6 : The data points with K-means algorithm yiϵR
k
 

 (i=1,2,…..n) into k clusters C1,…Ck. 

 

Because Hadoop'sMapReduce parallel programming 

architecture can deliver excellent distributed computing 

framework, HBase distributed database building on HDFS can 

be used to initialize and store intermediate results matrix. So, 

we choose MapReduce, a core component of the Hadoop, to 

achieve our parallel spectral cluster with the distributed file 

system HDFS and HBasedistributed database. We first put 

adjacency matrix which is constitute of the data point 1 2 , , , n 

x xx into HBase table, the table can be clustered access to 

aloof the machines, and the key row of each record is set as the 

index of the datapoints. Then we use a map function to 

automatically calculate the similarity between the data 

points.∀𝑖, 𝑗, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, we just need to calculate sin(xi, xj). 

Because these objects can constitute undirected graphs sin(xi, 

xj)= sim(xj, xi), the calculation of the similarity between each 

pair of data points needs to be calculated once. And according 

to the symmetry of undirected graphs, the other half of the 

similarity values are obtained. 

 

 
 

Figure 4: Map Function of parallel computing 

 

5.2  Filteration and Load Balancing 

Input: <key, value>, Key as point index, value as null 

Step1: index= key, newindex=n-key+1 

Step2 : for x in {index,newindex} 

x_content =getContentFromHBase(j); 

Sim=ComputeSimilarity(x_content,y_content); 

storeSimilarity(x,y,sim) into HBase table: 

End for  

End For 

Step3 : Output<key, null> 

Step4 : End 

 

It should be noted that “similar value of the subscript x” need 

to calculate the value of n-x+1 pairs of data point {<mi,mi>,< 

mi,mi+1>…..<mi,mn>}. Therefore, in order to load balance, we 

calculate the similarity of index I and index n-x+1, which 

performed on the same machine. 
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VI. RESULT AND IMPLEMENTATION 

We implemented our algorithms in Hadoop environment as it 

uses java libraries and Hadoop libraries to show the difference 

between the computational time of searching the contents of 

earth aggregation information to be processed quickly and 

shows the comparison on the parameter passed to the system 

using MapReduce Environment. MapReduce, initially in a 

single-node environment. In the Hadoop implementation, Map 

function takes the image block offset as a key and the image 

block (pixel values) as a value parameter. Since 

HadoopMapReduce cannot directly process image blocks, the 

whole product image data are converted into sequence file to 

be processed using MapReduce. In such a way, one line of the 

sequence file contains one image block. Map function 

performs parameters calculations on incoming block values 

and finally sends the block number as a key and list of 

parameters results as a value to the Reduce function. Reduce 

function uses parameter results for performing decision-

making on them. We test and evaluate our algorithms with 

respect to accuracy and processing time using various ESA 

products [20]. 

 

 
 

Figure 5: Efficiency comparision of HadoopMapReduce 

implementation and Java Implementation on China key 

 

 
Figure 6: Efficiency comparision of HadoopMapReduce 

implementation and Java Implementation on corn key 

 

Efficiency measurements are taken by considering the average 

processing time to process 1-MB data of various products. 

MapReduce implementation of the analysis algorithm takes 

less than 1 s the average processing time for various products 

except Product 3, which takes 1.5 s the average processing 

time. This processing time among various products varies due 

to the usage of different bands and image modes, depending 

on product type. The average processing time for various 

products is shown in Fig. 8. Finally, a comparison is made 

between the HadoopMarReduce implementation and the 

simple Java implementation of the proposed algorithms using 

average processing time measurements. Hence, for smaller 

size products, the Hadoop implementation is not efficient 

because of its lots of input and output operations due to Map 

and Reduce function. In the case of large-size products, 

Hadoop divided whole products into blocks and performed 

parallel tasking on them, which resulted in increased 

efficiency. 

VII. CONCLUSION AND FUTURE DIRECTIONS 

In this paper, implemented architecture for real time Big Data 

analysis for remote sensing application. The proposed 

architecture efficiently processed offline data initially and 

further we will extend it to offline data as currently provision 

is their but it need to sense data dynamically. the capabilities 

of filtering structured data and processed as per the token 

passed into the Hadoop System. The algorithm proposed in 

this paper for each units and subunits are used to analysis 

remote sensing data sets which helps in better understanding 

of land agriculture data. In future this system can be used in 

different datasets with some modifications. In future the 

system will take the images data and analysis should be done. 

this algorithms can be used as per the requirements. For Future 

work we are planning to extend the proposed architecture to 

make it compatible for Big Data for all applications. Eg 

sensors and social networking and in data centres. It can 

further extend to take decision before the natural calamities 

can be occur and preventive measure can be taken. 
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