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Abstract - Image segmentation plays a crucial and indispensable role in computer vision, as it allows the partitioning of an image into 

meaningful regions or objects. Among its numerous applications, image segmentation holds particular significance in the domains of medical 

diagnosis and healthcare. Its vital role in this field stems from its ability to extract and delineate specific anatomical structures, tumors, lesions, 

and other critical regions from medical images. In medical diagnosis, accurate and precise segmentation of organs and abnormalities is 

paramount for effective treatment planning, disease monitoring, and surgical interventions. Blood cell image segmentation is highly valuable for 

medical diagnosis and research, particularly in the domains of hematology and pathology. Precisely segmenting blood cells from microscopic 

images is essential, as it offers critical insights into various blood-related disorders and diseases. Although deep learning segmentation models 

have exhibited promising results in blood cell image segmentation, they suffer from several limitations. These drawbacks encompass scarce data 

availability, inefficient feature extraction, extended computation time, limited generalization to unseen data, challenges with variations, and 

artifacts. Consequently, these limitations can adversely impact the overall performance of the models. Blood cell image segmentation encounters 

persistent challenges due to factors like irregular cell shapes, which pose difficulties in boundary delineation, imperfect cell separation in 

smears, and low cell contrast, leading to visibility issues during segmentation. This research article introduces the innovative DeepSegNet 

framework, a powerful solution for precise blood cell image segmentation. The performance of widely-used segmentation models like PSPNet, 

FPN, and DeepLabv3+ is enhanced through the use of sophisticated preprocessing techniques, improving generalization capability, data 

diversity, and training stability. Additionally, the incorporation of diverse dilated convolutions and feature fusion further contributes to the 

improvement of these models. The Improved PSPNet, Improved FPN, Deep Lab V3, and Improved Deep Lab V3+ achieved 98.25%, 99.04%, 

98.23%, and 99.31% accuracy, respectively, and the Improved Deep Lab V3+ model outperformed well and produced a Dice Coefficient of 

99.32% and Precision of 99.38%. The proposed DeepSegNet framework improves overall performance with an increased accuracy of 8.91%, 

3.72%, 17.73%, 22.83%, 7.96%, 9.61%, 17.36%, 6.22%, 13.32%, and 14.32% compared to the existing models. This framework, which can be 

applied to accurately identify and quantify different cell types from blood cell images, is instrumental in diagnosing a variety of hematological 

disorders and diseases. 

Index terms:  Blood Cell, FPN, Segmentation, PSPNet, Deep Lab V3+, Deep Learning, Image 
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1. INTRODUCTION 

Over the past two decades, numerous research teams have 

dedicated their efforts to creating computerized systems 

capable of analyzing various types of medical images and 

extracting valuable information to support medical 

professionals[1][2][3]. Blood cells are a vital part of the 

circulatory system and are responsible for carrying oxygen, 

fighting infections, and maintaining overall health. Blood cells 

can be classified into three main types. Firstly, red blood cells 

have the crucial responsibility of transporting oxygen from the 

lungs to the body's various tissues and organs. Secondly, white 

blood cells, further referred as leukocytes, are integral 

components of the immune system, acting as defenders against 

infections and foreign invaders like bacteria, viruses, and 

pathogens. Finally, the body uses thrombocytes, tiny cell 

fragments, to help blood clot, which helps it correct wounds 

and control excessive bleeding. The nucleus' and cytoplasm's 

shape, color, size, and texture vary amongst these groupings. 

Red blood cells make up a far larger portion of a blood smear 

than white blood cells do[4][5].Leukocyte cells containing 

granules are referred to as granulocytes, which are composed of 

neutrophils, basophils, and eosinophils. Agranulocytes are cells 

that lack granules. The role of cells in protecting organisms 

from infections is crucial, and specialists can utilize their 

precise concentrations to identify the presence or absence of 

significant pathological conditions[6][7].Image segmentation 

has numerous practical uses in medical imaging, such as the 

analysis of anatomical features, aiding in diagnosis and therapy 

planning, and identifying tumors and other diseases. Image 

analysis holds significant importance in accomplishing various 

essential objectives, like gathering information, conducting 

screening and investigation, enabling diagnosis, offering 

therapy and control, and facilitating monitoring and evaluation. 

Automated systems and computerized tools have also been 

developed to assist in blood cell analysis, aiding in faster and 

more accurate diagnoses[8].Cell classification holds significant 

importance, particularly in laboratories. For instance, counting 

a patient's blood cells is utilized to collect data regarding cells 

that are not commonly exist in peripheral blood but could be 

released during specific disease processes, aiding hematologists 

in their diagnosis and analysis. The computer-aided system was 

proposed with the aim of automating the process of detecting 

and identifying different blood cell types from blood smear 

images [9][10][11]. Segmentation involves the segregation of a 

digital image into various parts, aiming to simplify and 

transform the image representation into a more meaningful and 

easily analyzable format[12].Segmentation can be divided into 

supervised or unsupervised learning and classification. 

Accurately validating a segmentation output necessitates access 

to the "ground truth" as a primary requirement[15].The "ground 

truth" encompasses the true size, shape, or other spatial features 

of the object of interest. Extraction of blood cells from a 

complex backdrop and segmentation of each cell into various 

components of morphology, like the nucleus, organelles, 

cytoplasm, holes, and others, are the two main objectives of 

blood cell segmentation[13][14]. The White Blood Cells in 

Microscopic Bone Marrow images are segmented and 

classified using the Fuzzy C-means (FCM) algorithm[16].For 

partitioning the White Blood Cells (WBC) into their two 

dominant elements, the nucleus and cytoplasm, nucleus 

segmentation and cytoplasm segmentation are employed, 

utilizing pixel-intensity thresholding techniques; this helps in 

finding diseases like acute leukemia[17]. Marker-controlled 

watershed algorithms could avoid over segmentation issues and 

utilized morphological operation functions to eliminate 

unwanted objects [18]. To segment the nucleus, the Self-Dual 

Multiscale Morphological Toggle (SMMT) operator provides 

good accuracy[19]. The Lexicographical Ordering Scheme 

(LOS) is applied to partition images that emphasize the 

essential color of a specific part of area [20]. The Sobel edge 

detector and the Watershed transform separated overlapping 

cells during image segmentation[21].20 general segmentation 

loss functions on four typical 3D segmentation tasks were used, 

and models produced the Dice similarity coefficients of  

0.9547, 0.9566, 0.9345, and 0.9463 for the Dice (Batch, no 

square), Batch Square Dice, sample Dice (no square), and 

sample square dice, respectively[22].The straightforward 

separation of the cytoplasm and nucleus areas is made possible 

by the combination of the linear contrast approach and color 

segmentation that uses HSI (Hue, Saturation, and Intensity) 

[23].Using samples of the WBC's nuclei and sub-images, a 

probability density function was used to create a probability 

map; mean-shift clustering was utilized for region 

segmentation. Subsequently, a morphological opening 

technique was utilized to a green image to enhance the 

granules' degree of intensity [24]. The researcher has developed 

multiple algorithms and techniques for blood cell image 

segmentation, but certain gaps remain in these methods. 

1. Accuracy: Existing techniques lack high accuracy in 

blood cell segmentation. Achieving precise and reliable 

segmentation results is essential for various medical 

applications, including disease diagnosis and cell 

counting. 

2. Small Datasets: Some techniques rely on small datasets 

for training blood cell segmentation models. Insufficient 

data can limit the model's capacity for generalization to 

diverse cell types and variations present in blood cell 

images. 

3. Noisy Input Images: Blood cell images can suffer from 

noise, artifacts, and staining inconsistencies, which can 

negatively impact the accuracy of segmentation. Robust 
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segmentation methods are needed to handle noisy input 

images effectively. 

4. Lack of Preprocessing: Insufficient preprocessing of 

blood cell images may impact the quality of the 

segmentation outcomes. Proper preprocessing techniques, 

such as noise reduction, contrast enhancement, and color 

normalization, are crucial for improving segmentation 

accuracy. 

5. Long Training Time: Some segmentation techniques 

require a long time to train, which can be impractical for 

real-time or time-sensitive medical applications. More 

efficient segmentation methods that reduce training time 

are desirable. 

6. Segmentation System Failures: Some models may 

occasionally fail to correctly segment blood cells due to 

the complexity of cell shapes and appearances. Robust 

segmentation algorithms are necessary to minimize false 

positives and false negatives. 

7. Variations and Artifacts: Blood cell images can exhibit 

variations in cell size, shape, and staining patterns. 

Additionally, imaging artifacts may be present. 

Segmentation models should be able to handle such 

variations and artifacts effectively. 

8. Interpretability and Explainability: In the context of blood 

cell image segmentation, the importance of 

interpretability and explainability lies in instilling trust 

and confidence in the model's outputs. Understanding the 

regions contributing to the segmentation can aid 

clinicians and researchers in accurate cell analysis. 

 

The objectives of the paper are: 

1. To conduct a background study and literature review for 

Blood cell image segmentation and other image 

segmentation models. 

2. To propose a novel framework titled "DeepSegNet" for 

accurate Blood cell image segmentation with a good dice 

coefficient and less segmentation time. 

3. To test and validate the proposed framework on various 

experimentation parameters like accuracy, recall, 

precision, and Dice coefficient. 

4. To compare the proposed framework with existing 

techniques like Unet, WBC-Net, self-supervised learning 

techniques, Circle Hough Transform, and so on. 

 

 Organization of Paper 

The rest of the paper is organized as follows: Section 2 

provides a thorough analysis of image segmentation methods. 

Section 3 covers the materials and methods used in the 

proposed DeepSegNet framework. Section 4 explains the 

system model, architecture, and working principles of the 

proposed DeepSegNet framework. Section 5 explains the 

results produced by the framework and provides a detailed 

comparative analysis. Section 6 concludes the paper with 

future scope. 

 

2. LITERATURE REVIEW 

Deep segmentation models have been widely used for blood 

cell image segmentation, leveraging their ability to accurately 

segment cells and improve the efficiency of analysis and 

diagnosis in various medical applications. Banik et al.[25] 

proposed a new WBC nucleus segmentation technique that 

depends on color space conversion and the k-means algorithm. 

The WBC is accurately localized and separated from the entire 

blood smear image, utilizing the location information from the 

segmented nucleus. This method achieved results of 97.57% 

accuracy, precision of 87.63%, recall of 96.08%, and 

sensitivity of 97.92%. This method used a dropout layer to 

prevent the model from overfitting, but this model took 

computation time. Lu et al. [26] proposed WBC-Net, which 

depends on UNet++ and ResNet. By employing a context-

aware feature encoder with residual blocks, the WBC-Net 

extracts multi-scale features. Moreover, mixed skip pathways 

are introduced on dense convolutional blocks to gather and 

combine image features at diverse scales. The proposed 

technique achieved results of 98.48% precision, 98.21% dice 

coefficient, and 0.57% false Negative rate with the use of a 

deep supervision structure in WBC-Net. Without a shape-

aware loss, the model may struggle to capture and understand 

these intricate shape details, resulting in inaccurate 

segmentation. Li et al.[27] proposed a new technique by 

integrating the neural ordinary differential equations (NODEs) 

and U-Net networks to segment the blood smear image, and 

the network depth was increased by adjusting the acceptable 

error margin of the ODE block. This technique achieved 

95.3% pixel accuracy and 90.61% mean intersection over 

union, but it is lacking in multiscale feature fusion. Zheng et 

al.[28]suggested a self-supervised learning technique with the 

advantages of unsupervised initial separation, supervised 

segmentation enhancement, and an effective cluster sampling 

strategy to reduce the time. The intrinsic characteristics of 

every test pixel are represented using color features. This 

approach produced the lowest over segmentation-rate (OR) of 

0.69% and overall error rate (ER) of 5.24%. Mandyartha et 

al.[29]used the global and Adaptive Thresholding methods to 

segment the white blood cell images. The advantage of the 

adaptive thresholding method is that each partial area of the 

image's threshold value is calculated. This method produced 

average precision and recall of 91.79% and 94.03%, while 

global thresholding achieved 23.38% and 99.39%, 

respectively, but only 35 blood smear test images were used 
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during testing. MohdSafuan et al. [30]used segmentation 

methods to perform white Blood Cell (WBC) count analysis in 

Blood Smear images. The Circle Hough Transform (CHT) 

played a vital role in identifying and counting the WBC; this 

method produced segmentation accuracy of 96.92%. The 

advantage of this paper is that the color space correction 

process improved the WBC segmentation accuracy. Zhang et 

al. [31] proposed a new framework called K-Net, which 

segments instances and semantic types using a group of 

learnable kernels. Every kernel was made dynamic for its 

respective group in the input image by using the kernel update 

approach. This framework produced a semantic segmentation 

of 54.3% mIoU, and its instance segmentation performance 

was 60% to 90%. Chen et al.[32]proposed a DRINet model 

that combines an unpooling phase, a deconvolutional phase 

with residual inception phases, and a convolutional phase. 

This model captures both local and global contextual data 

efficiently through the extraction of features at multiple scales 

by using filters of distinct sizes within a single layer, but the 

drawback of this technique is that it makes training more 

difficult and testing slower and it produced a dice coefficient 

of 83.47%.Gao et al. [33]  proposed a new image segmentation 

technique with various benefits, such as maximum variance 

and histogram valley threshold. This method achieved 

54.1091% of the SNR value, but its feature extraction is not 

highly efficient. Liet al.[34]used a semi supervised method to 

broaden the transformation in a more universal manner, and 

the advantage of this method is that it includes scaling and 

optimizing the consistency loss. This method achieved a 

Jaccard index (JA) of 78.1%, a dice coefficient (DI) of 86%, 

pixel wise accuracy (AC) of 94.1%, sensitivity (SE) of 86.2%, 

and specificity (SP) of 96.8%.Amit et al.[35]proposed a new 

segmentation method using the additional elements of 

diffusion-probabilistic models. The segmentation map is 

refined by adding the encoding layers and decoders. This 

method produced a dice coefficient of 81.59%, but it took 200 

diffusion steps. Jha et al.[36] proposed DoubleU-Net to 

capture more semantic information through lesion boundary 

segmentation and learned features from ImageNet. The 

advantage of VGG-19 is that it concatenates U-Net and 

produces a dice coefficient (DSC) of 0.7649. Liu et al. [37]  

proposed a new toolkit segmentation method for designing 

segmentation models and optimizing their performance. It 

achieved a result of 80.67% mIoU. Valanarasuet al.[38] 

proposed a new UNeXt method to perform the partition of 

medical images. The advantage of this technique is that the 

input channels are shifted when entered into the MLP network 

to improve local dependencies. This method produced the 

results of an F1 score of 90.41% and an IoU score of 82.78%.  

Gao et al. [39]  proposed a new Hybrid Transformer 

Architecture to perform medical image segmentation. The 

transformer is initialized into convolutional networks; this 

method was tested for 150 epochs, took much computation 

time, and scored a 93.1% dice coefficient. Zhou et al. [40] 

proposed a new UNet++ architecture to perform semantic and 

instance segmentation. The skip connections are employed to 

integrate the features of various semantic scales in the 

networks of the decoder, and a pruning scheme is devised to 

increase the inference speed of UNet++, which achieved 

91.36% of the dice coefficient. Chen et al. [41] proposed a 

new TransUNet architecture to perform medical image 

segmentation. Transformers and U-Net are combined to make 

the encoder, which increases the accuracy of segmentation and 

achieves 89.71% of DSC. Baumgartne et al. [42]proposed a 

novel segmentation technique to partition the images; this 

model adds the conditional probability distribution to the 

segmentation method, and this achieved a normalized cross 

correlation of 0.8453.Huang et al.[43]proposed a novel MISS 

Former network to perform medical Image segmentation, and 

this transformer assists in assisting in capturing both long-

range dependencies and local context within multi-scale 

features. It achieved a dice coefficient of 81.96%. MissFormer 

could be prone to overfitting if it possesses a substantial 

number of parameters, and is trained on a short amount of 

data. To address this problem, regularization strategies and 

data augmentation may be required. 

Li et al. [44]  proposed a new Image Projection network; the 

new concept of excluding retinal layer segmentation and 

projection maps has been introduced. This network produced a 

Foveal avascular zone segmentation of 88.61% and a retinal 

vessel (RV) segmentation of 88.15%, but this network faced 

quantification problems in OCTA images. Zhuet al. [45]used 

PSPNet to segment the coronary angiography image using the 

spatial PP module and feature maps into a certain number of 

regions, and this method achieved an accuracy of 95.7%.Guoet 

al.[46]used CNN to design multimodal image segmentation of 

medical images; it added the advantages of fusing the features 

at convolutional layers, and this technique produced a dice 

coefficient of 85%, but this has the drawback that depending 

on the number of modalities and the severity of the 

misalignment, good voxel-level correlation with incorrect 

registration across various modalities in an incoming patient 

can result in drastically lower prediction ability within the 

misaligned region. Xie et al. [47]  proposed a new framework 

to perform medical image segmentation that takes advantage 

of integrating a CNN and a transformer and adds the 

advantages of the deformable self-attention mechanism. This 

framework achieved an average score of 85%, but it took 

much time and has taken around 1000 epochs.  Zhang  et al. 

[48]proposed a new architecture called TransFuse, in which 

Transformers and CNNs are combined in parallel. This 

architecture increases global dependency and low-level spatial 

detail, and it produced a dice coefficient of 87.2% and an 

accuracy of 94.4%, but memory and computational time will 
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be increased during training.   Jun et al. [49] proposed a new  

approach called Segment Anything Model (SAM) that 

explains the usage of SAM to augment image input for general 

medical image segmentation, and this was used for uncertainty 

estimations. Li et al.[50] proposed a new model called Eres-

UNet++ to segment the liver CT images; The depth of the 

feature map is coupled with geographical data using the 

attention module to improve the segmentation method's 

efficiency, and it produced a dice coefficient of 95.6% and an 

accuracy of 89.3%, but the model increased the segmentation 

time. 

The existing models and techniques in blood cell image 

segmentation have limitations concerning high accuracy and 

certain gaps. Some methods relied on small datasets, leading 

to limited accuracy and variation in the Dice coefficient, while 

others faced challenges with noisy input images or lacked 

preprocessing, resulting in time-consuming training processes. 

To tackle these issues, deep learning models need to exhibit 

robustness in handling variations and artifacts. Augmenting 

training data with realistic variations can improve their 

generalization capabilities. Additionally, to instill trust and 

confidence in the model's image segmentation and predictions, 

interpretability and explainability play vital roles in the 

context of blood cell image segmentation. Furthermore, some 

models lack the ability to derive both local and global data and 

suffer from dependency problems. Additionally, many 

techniques encounter difficulties due to high computation 

times. Understanding the key features or regions contributing 

to the image segmentation can prove beneficial for clinicians 

and researchers in analyzing and validating the results. 

Consequently, a "DeepSegNet" framework has been 

developed to address the identified gaps in existing image 

segmentation methodologies, with a particular emphasis on 

blood cell image segmentation. The primary aim of this 

framework is to increase accuracy, Dice coefficient, and 

overall performance by providing an improved approach to 

blood cell image segmentation. 

 

3. MATERIALS AND METHODS 

3.1   Materials 

3.1.1 Dataset 

The Blood Cells Image Dataset consists of 17,092 images of 

individual normal cells. These cells were acquired using the 

CellaVision DM96 analyzer in the Core Laboratory at the 

Hospital Clinic of Barcelona. The CellaVision DM96 analyzer 

is a commonly used instrument in clinical laboratories for the 

automated analysis of blood cells. It uses digital imaging 

technology to capture high-resolution images of individual 

cells, allowing for detailed examination and analysis. By using 

this analyzer, the dataset provides a comprehensive collection 

of normal cell images, enabling researchers and practitioners 

to study and understand the characteristics, morphology, and 

variability of different cell types. This dataset (https://prod-

dcd-datasets-cache-zipfiles.s3.eu-

west1.amazonaws.com/snkd93bnjr-1.zip) can serve as a 

valuable resource for various applications, such as training and 

evaluating machine learning models for cell classification, 

developing image analysis algorithms, or supporting research 

in the field of hematology. The utilization of the CellaVision 

DM96 analyzer in capturing these images ensures a 

standardized and reliable data collection process, which is 

essential for maintaining consistency and accuracy in the 

dataset. Figure 1 illustrates few of the Blood cell images 

available in the dataset: 

i)Basophil: Basophils are subsets of white blood cells 

(leukocytes) that play a role in the immune response. They 

contain granules that release histamine and other substances 

during allergic reactions and inflammation. 

ii) Eosinophil: Eosinophils are a distinct type of white blood 

cell that participates in the immune system's functions. They 

are responsible for combating parasitic infections and are also 

involved in allergic responses. 

iii) Erythroblast: Erythroblasts are immature red blood cells 

located in the bone marrow. As they mature, they transform 

into red blood cells, responsible for transporting oxygen 

throughout the body. 

iv) Ig (Immunoglobulin): Plasma cells create 

immunoglobulins, also called antibodies, in response to 

foreign substances (antigens) in the body. By focusing on and 

neutralizing particular antigens, they perform a critical role in 

the immune system. 

v) Lymphocyte: Lymphocytes are a crucial type of white 

blood cell and an essential component of the immune system. 

They comprise B cells, T cells, and natural killer (NK) cells, 

each having distinct roles in recognizing and eradicating 

foreign invaders. 

vi) Monocyte: Monocytes are a kind of white blood cell that 

circulate in the bloodstream and are precursors to 

macrophages and dendritic cells. They are crucial for immune 

defense and play a role in the clearance of dead cells and 

pathogens. 

vii) Neutrophil: Neutrophils, the most plentiful category of 

white blood cells, are essential components of the innate 

immune system. Acting as the first responders to infections, 

they play a crucial role in phagocytosis by engulfing and 

eliminating bacteria and other pathogens. 

viii) Platelet: The blood contains platelets, which are tiny, 

disc-shaped cells essential for clotting. In instances of injury 

or damage to blood vessels, platelets gather at the location to 

create a clot, aiding in the prevention of bleeding. 
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3.1.2 Data Pre-PROCESSSING 

         Several preprocessing techniques, such as Image 

resizing, image normalization, Data Augmentation, Image 

cropping, and Data splitting, are performed on the Blood cell 

images. Image resizing ensures that all images in the dataset 

have the same dimensions, which is essential for batch 

processing during training and inference. The images in the 

dataset are of various sizes: 360 x 363, 360 x 360, and 360 x 

361 are resized into a common size of 256 x 256. The image 

normalization process is a crucial step to ascertain that the 

pictures' pixel values are in a standardized range before 

feeding them into the model. The typical approach for image 

normalization in DeepLabv3 models involves rescaling the 

pixel values to achieve a mean of 0 and a standard deviation of 

1. This process is applied channel-wise (e.g., for each color 

channel) to maintain the color information in the image. By 

performing various alterations on the original pictures, a 

technique called data augmentation is used to fictitiously 

increase the size of the training dataset. Common 

augmentations include random rotations, flips (horizontal and 

vertical), zooming, brightness adjustments, and translations. 

Data augmentation aids in introducing variability into the 

training data, which helps the model generalize better to 

unseen variations in the test data and reduces overfitting. 

Random rotations, zooming, brightness adjustments, and 

translations are performed on the dataset. The original image 

is rotated by a certain angle. Rotating the image helps the 

model learn to be 

 

  

invariant to object orientations, as different angles of the same 

object are treated as equivalent. The cells may appear at 

different  

angles in the Blood cell images, so augmenting the data with 

rotations helps the model recognize them regardless of their 

orientation. Brightness adjustment involves modifying the 

pixel values of the image to make it brighter or darker. This 

augmentation technique helps the model become more robust 

to changes in illumination conditions. Blood cell images might 

have varying lighting conditions in different samples, and 

augmenting the data with brightness adjustments enables the 

model to handle these variations. By applying random 

translations, you create slightly different versions of the same 

image, which provides the model with more training examples 

and makes it more invariant to object positions within the 

image. For blood cell images, translations can be useful to 

account for the fact that cells may be located at different 

positions within the images. This ensures that the model can 

identify cells regardless of their location. Image cropping 

involves selecting a part of interest from an image and 

discarding the rest. Cropping can be used to focus on specific 

regions or objects of interest in the image. Data splitting is the 

process of dividing the dataset into multiple subsets for 

training, validation, and testing purposes. The typical split 

ratio is 80-20 for training and testing in the proposed work. 

Proper data splitting is crucial for an unbiased evaluation of 

the model's generalization ability.  

3.2 Methods 

            3.2.1Pyramid Scene Parsing Network 

PSPNet (Pyramid Scene Parsing Network) is a deep learning 

 
 

Figure 1: Sample Blood Cell images from the PBC_dataset_normal_DIB 
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architecture built for high-resolution image segmentation tasks 

specifically semantic segmentation. PSPNet captures rich 

contextual information at multiple scales in an image to 

improve  

the accuracy of pixel-wise semantic segmentation. It achieves 

this by utilizing a PP module that efficiently gathers context 

data from distinct areas of the input image.As shown in figure 

2, the input is a set of images of size (W, H). The key 

components of PSPNet are: 1) Encoder: It is typically a pre-

trained convolutional neural network (CNN) that derives high-

level information from the input image. The PSPNet used 

ResNet-101 or ResNet-50 as the backbone, but other CNN 

architectures can also be used. 2) Pyramid Pooling Module: PP 

Module is the core of PSPNet and is responsible for capturing 

contextual information at different scales. It consists of four 

parallel average pooling layers with different kernel sizes. 

These pooling layers capture information over varying 

receptive fields and help the network understand the scene 

from different perspectives. The outputs from these pooling 

layers are then up sampled to the original spatial resolution 

and combined together. 3) Decoder: The decoder takes the 

added feature maps from the PP Module and processes them to 

obtain the final segmentation mask. Up-sampling layers are 

frequently used to boost the spatial precision of feature maps, 

while skip connections from the encoder are used to preserve 

fine-grained features. 4) Final Convolutional Layer: The 

output of the decoder is sent through a 1x1 convolutional layer 

to produce the final segmentation mask.  

The number of classes in the segmentation task corresponds to 

the number of output channels in this layer. Using annotated 

images and accompanying ground truth segmentation masks, 

PSPNet is trained. A suitable loss function, which determines 

the  

 

 
Figure 2: The architecture of the PSPNet model 

 
Figure 3: Architecture of the Deep Lab V3+ model. 

 

Discrepancy between the segmentation mask's prediction and 

the actual data is employed for optimizing the parameters of 

the network. The parameters are updated using 

backpropagation and gradient descent during training. 

 

3.2.2 Deep Lab V3 and Deep Lab V3+ 

A cutting-edge deep learning architecture for semantic picture 

segmentation is DeepLabv3. It builds upon the DeepLab 

family of models and incorporates dilated convolutions, ASPP, 

and a fully connected Conditional Random Field (CRF) for 
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accurate and detailed segmentation. The input is a set of 

images of size (W, H). The steps of resizing the image to a 

fixed size (e.g., 512x512) and normalizing the pixel values 

have been completed.  

Backbone Network uses a pre-trained CNN as the backbone to 

extract high-level features. Common choices are ResNet, 

MobileNet, or Xception. Remove the fully connected layers of 

the backbone network. ASPP is performed by applying 

parallel dilated convolutions with different rates (e.g., 1, 6, 12, 

and 18) on the output feature maps from the backbone 

network.  

This captures multi-scale contextual information at different 

receptive fields. The operation of up-sampling is performed by 

up -sampling the ASPP output feature maps using bilinear 

interpolation to match the original input image size.Skip 

Connections connect feature maps from the backbone network 

at multiple scales to the upsampled feature maps to recover 

fine-grained details. Convolutional Layers apply a 1x1 

convolutional layer to the combined feature maps to reduce the 

number of channels. Final upsampling is performed to 

upsample the output feature maps to the original input image 

size using bilinear interpolation. Applying the Softmax 

activation yields the per-pixel probability of each class. The 

final output is the segmentation mask, which indicates the 

class label for each pixel. During training, labeled images with 

corresponding ground truth segmentation masks are required. 

 The model is trained using a suitable loss function, such as 

cross-entropy loss or Dice loss, to compare the predicted 

segmentation mask with the ground truth. Optimization is 

performed using backpropagation and gradient descent 

techniques. Figure 3 shows the Architecture of the Deep Lab 

V3+ model in which the operation of Image-level Feature 

Fusion performs global average pooling (GAP) on the 

backbone output feature maps to obtain a global representation 

of the image. A 1x1 convolutional layer is used to reduce the 

dimensionality of the global representation. The Upsampling 

is performed on the reduced representation to match the size of 

the ASPP output feature maps. The upsampled representation 

is combined with the ASPP output feature maps through 

element-wise summation or concatenation to incorporate 

image-level information. The above-mentioned set of 

operations is performed for both Deep Lab v3 and Deep Lab 

v3+. A few additional operations are performed to increase the 

segmentation accuracy of the model. In Deep Lab V3+, the 

operation of Image-level Feature Fusion performs GAP 

operation on the backbone output feature maps to obtain a 

global representation of the image. A 1x1 convolutional layer 

is used to reduce the dimensionality of the global 

representation. The Upsampling is performed on the reduced 

representation to match the size of the ASPP output feature 

maps. The upsampled representation is combined with the 

ASPP output feature maps through element-wise summation 

or concatenation to incorporate image-level information. The 

decoder (Segmentation Head) upsamples the fused feature 

maps using bilinear interpolation to increase the spatial 

resolution, and to reduce the number of channels, a 1x1 

convolutional layer is employed. Optionally, skip connections 

from the backbone network are used to recover fine-grained 

details. 

 

3.2.3 Feature Pyramid Network 

The FPN (Feature Pyramid Network) is a popular architecture 

that addresses the challenge of multi-scale object detection and 

feature representation. It combines high-level and low-level 

features to achieve accurate and efficient object detection.  
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As shown in figure 4, the FPN network is composed of the 

following modules: 1) Backbone networks that use a pre-

trained CNN such as ResNet, VGG, or EfficientNet as the 

backbone. This backbone network extracts features from the 

input image at multiple spatial resolutions. 2) The process of 

the bottom-Up Pathway is performed in the backbone network, 

which typically consists of multiple stages, each producing 

feature maps at different spatial resolutions. It starts with the 

lowest-resolution feature map and applies convolutional layers 

to diminish the number of channels while retaining spatial 

information. This process is performed for each stage of the 

backbone network, resulting in a series of feature maps with 

increasing spatial resolutions. 3) The process of Top-Down 

Pathway is performed in a feature pyramid that starts from the 

highest-resolution feature map. To decrease the number of 

channels, a 1x1 convolutional layer is utilized. Then, 

upsampling the feature map using the nearest neighbor is done 

to match the spatial resolution of the corresponding feature 

map from the lower level.  

The upsampled feature map is combined with the lower-level 

feature map through element-wise addition or concatenation. 

This process is repeated for each level of the feature pyramid, 

creating a top-down pathway that recovers spatial details while 

incorporating high-level semantic information. 4) Feature 

Fusion is performed to facilitate information flow between 

different levels of the feature pyramid through lateral 

connections. A 1x1 convolutional layer is employed to the 

higher-level feature maps to adjust their channel dimensions to 

match the lower-level feature maps. Combining the adjusted 

higher-level feature maps with the corresponding lower-level 

feature maps through element-wise addition is done. By 

facilitating the fusion of multi-scale features, this process 

enhances the representation of objects at different scales. The 

FPN architecture is applicable to diverse tasks, encompassing 

object detection and semantic segmentation. For object 

detection, additional prediction heads are attached to every 

step of the feature pyramid to generate bounding box 

coordinates, class probabilities, and other relevant attributes. 

For semantic segmentation, the fused feature maps can be 

further processed with convolutional layers to produce pixel-

level segmentation masks. 

 

4. PROPOSED METHODOLOGY 

4.1 System model 

The PSPNet is a deep learning model designed for pixel-level 

scene parsing and semantic segmentation tasks. This network 

consists of two main components which are the FPN and the 

Pyramid Pooling Module (PPM).The FPN is tasked with 

extracting multi-scale features from the input image. It utilizes 

ResNet to extract hierarchical features at different spatial 

resolutions. These features are obtained from intermediate 

layers of the backbone network and are used to construct a 

feature pyramid. The feature pyramid is built by connecting 

the feature maps from the top-down and bottom-up pathways, 

enabling the model to gather both low-level and high-level 

semantic information. The PP module is built to capture global 

context data from the feature pyramid. It operates on the 

feature maps obtained from the FPN and performs spatial 

pyramid pooling (SPP) at multiple scales. The PPM divides 

the input feature maps into non-overlapping regions and 

applies average pooling to each region with different pooling 

scales. By doing so, the PPM captures contextual information 

at multiple scales, enabling the model to have a holistic 

understanding of the scene on a global scale. The pooled 

features from each scale are then concatenated and fed into 

subsequent convolutional layers for further processing. 

 
 

Figure 4 Architecture of the FPN network 
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Following the PPM, the model generally incorporates extra 

convolutional layers and upsampling operations to enhance 

features and produce predictions at the pixel level. 

Finally, the output is usually sent through a softmax or 

sigmoid activation function to obtain the per-pixel probability 

map or binary mask indicating the semantic class of each 

pixel. During training, PSPNet utilizes pixel-wise cross-

entropy loss or other suitable loss functions to compare the 

predicted probability map with the ground truth annotation. 

During the training process, the model utilizes 

backpropagation and gradient descent algorithms to decrease 

the loss value and enhance the network parameters. The 

mathematical operations involved in PSPNet are described 

here: Convolutional Operations in PSPNet employs 

convolutional layers for feature extraction from input images. 

Mathematically, a convolution operation can be represented as 

follows:  Y [i, j] = sum (W [k, l] * X [i+k, j+l] + b) Where Y is 

the output feature map, X is the input feature map, W 

represents the learnable convolutional filters, and b is the bias 

term. The sum is computed over the filter size and applied at 

each spatial location (i, j).  Pooling Operations are performed 

in the PPM module; where PSPNet employs pooling 

operations to gather multi-scale contextual data. 

Mathematically, pooling operations involve downsampling 

and aggregating information within a region. Max pooling and 

average pooling are generally utilized. For example, max 

pooling can be represented as: Y [i, j] = max(X [i*s:i*s+k, 

j*s:j*s+k])where Y is the pooled output, X is the input feature 

map, s is the stride, and k is the pooling size. Upsampling 

Operations are performed in PSPNet, which utilizes up 

sampling operations to restore the spatial resolution of feature 

maps. Mathematically, upsampling can be achieved through 

techniques like bilinear interpolation or transposed 

convolutions. Bilinear interpolation involves computing the 

value of new pixels based on the weighted average of nearby 

known pixels. The softmax function is commonly used in 

PSPNet to normalize the output probabilities over different 

classes. Mathematically, the softmax function is defined as 

follows for a pixel at location (i, j) with C classes: P[i, j, c] = 

exp(S[i, j, c]) / sum(exp(S[i, j, k])) for k in 1 to C , where P[i, 

j, c] represents the probability of class c at location (i, j), and 

S[i, j, c] is the score for class c at that location. During 

training, PSPNet employs the cross-entropy loss function to 

assess the degree of divergence between expected and actual 

segmentation maps.Mathematically, the cross-entropy loss is 

given by:L = -sum(GT[i, j, c] * log(P[i, j, c])) ;where GT[i, j, 

c] is the ground truth label for class c at location (i, j), and P[i, 

j, c] is the predicted probability. 

DeepLab v3 is a CNN architecture utilized for semantic image 

segmentation. It is made to give each pixel in a picture a 

semantic label, providing a thorough comprehension of the 

scene. DeepLab v3 involves neural networks and numerical 

computations. DeepLab v3 typically starts with a backbone 

network, such as a CNN, to derive information from the input 

image. The input image is dealt with by the backbone network, 

which also creates a number of intermediate feature maps. 

DeepLab v3 employs atrous convolutions, further referred to 

as dilated convolutions, to capture multi-scale contextual 

information. Atrous convolutions introduce controlled holes in 

the convolutional filters, enabling the network to increase the 

receptive field without adding more settings. By using distinct 

dilation rates in various layers, DeepLab v3 derives 

information at multiple scales and preserves fine-grained 

details. ASPP is a key component in DeepLab v3 that further 

enhances the network's ability to capture multi-scale 

contextual information. ASPP involves parallel atrous 

convolutions with different dilation rates, followed by global 

pooling operations. The parallel convolutions at different 

dilation rates capture information at various scales, while 

global pooling aggregates information globally. The outputs of 

the parallel convolutions and global pooling are then 

concatenated to form a rich representation. DeepLab v3 

incorporates a decoder module to refine the segmented output. 

The decoder module typically consists of upsampling 

operations to restore the spatial resolution and fusion with the 

low-level feature maps. Upsampling can be performed using 

techniques like bilinear interpolation or transposed 

convolutions. Fusion involves combining the upsampled 

feature maps with the corresponding low-level feature maps 

from the backbone network to incorporate fine-grained details. 

DeepLab v3 includes a final classification layer to give each 

pixel a meaningful designation. The classification layer is 

typically implemented using a 1x1 convolutional layer 

followed by softmax or sigmoid activation. The output is a 

pixel-wise classification map, where each pixel is assigned a 

probability distribution over different classes.  

DeepLab v3 utilizes convolutional layers to derive features 

from input images or feature maps. Mathematically, a 

convolution operation can be represented as follows: Y[i, j] = 

sum(W[k, l] * X[i+k, j+l] + b) ; where Y is the output feature 

map, X is the input feature map, W represents the learnable 

convolutional filters, and b is the bias term. The sum is 

computed over the filter size and applied at each spatial 

location (i, j). Atrous convolutions introduce controlled holes 

in the convolutional filters, allowing for larger receptive fields 

the amount of parameters without rising. Mathematically, the 

atrous convolution operation can be represented similarly to a 

standard convolution operation, but with the added dilation 

parameter. ASPP in DeepLab v3 involves parallel atrous 

convolutions with different dilation rates and subsequent 

pooling operations. The parallel atrous convolutions capture 

information at various scales, while the pooling operations 

aggregate information globally. Mathematically, the atrous 

convolutions and pooling operations can be represented using 
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the standard convolution and pooling equations. 

Mathematically, upsampling can be done through techniques 

like bilinear interpolation or transposed convolutions. Bilinear 

interpolation computes the value of new pixels based on the 

weighted average of nearby known pixels. DeepLab v3 

involves fusion and concatenation operations to combine 

feature maps from different layers or pathways. 

Mathematically, fusion can be achieved through element-wise 

addition or concatenation, which combines the activations of 

corresponding pixels or channels. DeepLab v3 typically 

includes a softmax or sigmoid activation function in the final 

classification layer. Mathematically, softmax activation 

normalizes the output logits into a probability distribution over 

classes, while sigmoid activation produces a probability for 

each pixel independently. These mathematical operations play 

a crucial role in DeepLab v3 for extracting features, capturing 

multi-scale information, and assigning semantic labels to each 

pixel in an image. 

 

DeepLab v3+ is an enhanced version of DeepLab v3, designed 

to improve the spatial accuracy of semantic image 

segmentation.  

 

DeepLab v3+ incorporates improved decoder modules that 

includes both upsampling and skip connections from earlier 

layers. The skip connections help fuse low-level spatial details 

from the backbone network with high-level semantic 

information from the ASPP module, improving the 

segmentation accuracy. DeepLab v3+ introduces feature 

pyramid fusion, where the upsampled feature maps from the 

ASPP module are added with the corresponding low-level 

feature maps from the backbone network. This fusion 

combines the high-level semantic data with the fine-grained 

spatial details, allowing the network to make accurate 

predictions at different scales. DeepLab v3+ uses an ASPP 

alignment approach, which ensures that the outputs of the 

ASPP module align with the lower-level feature maps, 

facilitating the fusion process. The convolution operation can 

be defined as follows: For each output channel j, and for each 

spatial position (i, p) in the output feature map, the 

convolution operation can be computed as: Y[i, p, j] = 

Summation over r, s, c_in [X[i+r, p+s, c_in] * W[r, s, c_in, j]] 

;  here Y[i, p, j] represents the value at spatial position (i, p) in 

the output feature map for channel j. X[i+r, p+s, c_in] 

represents the value at spatial position (i+r, p+s) in the input 

feature map for channel c_in. W[r, s, c_in, j] represents the 

value of the filter at position (r, s) for input channel c_in and 

output channel j. The summation is conducted over both the 

kernel size (k) and all input channels (C_in).The above 

equation computes the element-wise multiplication between 

the input feature map and the corresponding filter values, and 

then sums them up to produce the output feature map. 

DeepLab v3+ incorporates skip connections to combine 

features at different scales operations. By fusing information 

from multiple scales, the model can derive both local and 

global contextual data, enhancing segmentation accuracy. In 

the training process, Deep Lab v3+ employs loss functions to 

assess the dissimilarity between predicted segmentation maps 

and ground truth labels. The commonly utilized loss functions 

include cross-entropy loss, dice loss, or focal loss. This is 

achieved through element-wise addition or concatenation. 

 

4.2 Architecture and working 

The proposed DeepSegNet Framework includes four types of 

models: 1) Improved PSPNet2) Improved FPN 3)Deep Lab 

V3 4) Improved Deep Lab V3+.As shown in figure 5, the 

Improved PSPNet with Resnet-101 is designed to capture 

multi-scale contextual information and achieve enhanced 

performance in semantic segmentation tasks by effectively 

capturing local and global context information. PSPNetwith 

ResNet-101 as the backbone network incorporates various 

architectural enhancements to achieve better performance in 

 
 

Figure 5: Architecture of the Improved PSPNet model 
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semantic segmentation tasks. The Backbone network includes 

a residual module called ResNet-101, which is used as a 

popular CNN architecture known for its effectiveness in image 

classification. The ResNet-101 serves as the feature extraction 

backbone for the PSPNet. 

It consists of multiple residual blocks, which help address the 

vanishing gradient problem during training. The ASPP module 

is used to derive multi-scale context information from the 

input image. It achieves this by applying parallel dilated 

convolutions at multiple dilation rates to the feature maps 

obtained from the backbone network. The dilation rates 

control the receptive field size of the convolutions and enable 

the network to capture both fine and coarse details. 3) ASPP, 

which is the core component of the ASPP module. It includes 

parallel branches, each performing atrous convolutions with 

various dilation rates. The dilation rates are typically chosen to 

cover a range of scales, capturing both local and global 

context. The first branch performs atrous convolution with a 

dilation rate of 1, which corresponds to the regular 

convolution. This branch captures fine-grained details and 

local information. The subsequent branches perform atrous 

convolutions with increasing dilation rates, such as 6, 12, and 

18. These branches capture information at progressively larger 

spatial scales, incorporating more global context. Each branch 

applies batch normalization and activation functions, such as 

ReLU, to the output of the atrous convolutions.4) In the 

upsampling and Concatenation operations, the feature maps 

obtained from the different branches of the ASPP module are 

upsampled or downsampled to have the same spatial 

dimensions. Then, these feature maps are concatenated along 

the channel dimension, effectively combining the multi-scale 

contextual information captured by each branch.5) Additional 

 
 

Figure 6: Architecture of the Improved FPN 
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Convolutional Layers are utilized to additionally refine the 

aggregated features; additional convolutional layers may be 

applied to the concatenated feature maps. These layers can 

have smaller filter sizes to diminish the dimensionality and 

complexity of the features. 

      The ASPP module's final output is a set of feature maps 

that encode contextual information at multiple scales. The up 

sampled feature maps from the PP module and the skip 

connections are concatenated channel-wise to fuse the multi-

scale information. This concatenation operation combines the 

high-level semantics from the PP module with the low-level 

details from the skip connections. Subsequently, convolutional 

layers are utilized to the concatenated feature maps to refine 

and integrate the information.  

The refined feature maps from the decoder module undergo a 

final convolutional layer. This layer diminishes the number of 

channels and captures more abstract representations. Finally, a 

pixel-wise prediction layer, typically a 1x1 convolution, maps 

the feature maps to the desired number of output classes, 

producing a segmentation map that assigns each pixel to a 

specific class. 

      Figure 6 illustrates the Architecture of the Improved FPN 

network. The FPN with a ResNet-50 pretrained model as the 

backbone network for image segmentation adds ResNet-50's 

strong feature extraction skills with the multi-scale feature 

fusion of FPN. This combination allows for accurate and 

detailed image segmentation. This model composed of the 

following components: 1) Backbone Network, in which the 

FPN network starts with a pretrained ResNet-50 as the 

backbone network. ResNet-50 is a highly effective deep CNN 

widely recognized for its outstanding performance in a range 

of computer vision tasks, particularly image classification. In 

the context of image segmentation, ResNet-50 is used as a 

feature extractor. The pretrained ResNet-50 takes an input 

image and processes it through a series of convolutional 

layers, max pooling, and residual blocks. These layers 

progressively downsample the spatial resolution of the input 

image while enhancing the number of channels, allowing the 

network to capture features at different levels of abstraction.  

 

          At different stages of ResNet-50, intermediate feature 

maps are obtained. Each feature map represents a various level 

of abstraction and has a specific spatial resolution. For 

example, the feature maps from the initial stages retain more 

fine-grained details, while the feature maps from the later 

stages capture higher-level semantic information. 2) Bottom-

Up Pathway, in which the backbone network processes the 

input image through a series of convolutional layers, max 

pooling, and residual blocks. It gradually diminishes the 

spatial resolution while increasing the number of feature maps' 

channels. In ResNet-50, this reduction happens in four stages, 

each with a different spatial resolution.ResNet-50 consists of 

four stages. Stage 1 of ResNet-50 is the initial stage of the 

backbone network. It comprises of a single convolutional layer 

with a stride of 2 and a kernel size of 7x7, then a max pooling 

operation. The purpose of Stage 1 is to process the input image 

and down sample it while increasing the number of channels. 

It creates feature maps with a spatial resolution roughly equal 

to one-fourth of the resolution of the original image. Stage 2 is 

the second stage of ResNet-50 and includes a sequence of 

residual blocks. Specifically, it has three residual blocks, each 

consisting of multiple convolutional layers. The number of 

convolutional layers in each residual block is as follows: The 

first residual block in Stage 2 has two convolutional layers. 

The subsequent two residual blocks in Stage 2 have three 

convolutional layers each. These residual blocks in Stage 2 

capture features at a relatively low level of abstraction while 

reducing the visual clarity. They down sample the feature 

maps further and increase the count of channels. The feature 

maps produced by Stage 2 have a spatial resolution of 

approximately 1/8th of the input image's resolution. Stage 3 is 

the third stage of ResNet-50 and comprises a series of residual 

blocks. It has four residual blocks, each comprised of multiple 

convolutional layers.  

The feature maps produced by Stage 3 have a spatial 

resolution of approximately 1/16th of the input image's 

resolution. Stage 4 is the final stage of ResNet-50 and includes 

the last set of residual blocks. It has six residual blocks, each 

comprised of multiple convolutional layers. The count of 

convolutional layers within each residual block is specified as 

follows: Each of the six residual blocks in Stage 4 has three 

convolutional layers. These residual blocks in Stage 4 capture 

the most abstract and high-level features. They further down 

sample the feature maps and increase the number of channels. 

The feature maps produced by Stage 4 have the lowest spatial 

resolution among all stages, approximately 1/32nd of the input 

image's resolution, but the highest number of channels. The 

feature maps generated at different stages of ResNet-50 serve 

as the input for the subsequent components of the FPN, such 

as the top-down pathway, lateral connections, and semantic 

segmentation head. 

3) Top-Down Pathway, in which the FPN incorporates a top-

down pathway to recover the spatial resolution of the feature 

maps. It starts by upsampling the feature maps from higher 

stages of ResNet-50 to correspond with the spatial resolution 

of the feature maps from lower stages. The upsampling 

operation can be achieved using techniques like bilinear 

interpolation or transposed convolutions. 4) Lateral 

Connections: The FPN establishes lateral connections between 

the upsampled feature maps from the top-down pathway and 

the feature maps from the corresponding stages in the bottom-

up pathway. These lateral connections involve applying 1x1 

convolutions to the upsampled feature maps, reducing their 

channel dimension to match the number of channels in the 
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feature maps from the bottom-up pathway. The resulting 

feature maps are then element-wise summed, creating fused 

feature maps that contain information at multiple scales. 5) 

Feature Fusion: To further improve multi-scale feature fusion, 

FPN recursively applies lateral connections.  

This means that the upsampled feature maps from a higher 

stage are combined with the associated feature maps from a 

lower stage, and the process is repeated to create a feature 

pyramid with multiple levels of fused features. This pyramid 

captures both local details and global context at different 

scales. 6) Semantic Segmentation Head, where the fused 

feature maps from the FPN are passed through a semantic 

segmentation head. This head typically consists of additional 

convolutional layers that further process the feature maps and 

reduces the number of channels. The segmentation head 

produces a pixel-wise segmentation map, assigning a class 

label to each pixel in the output. 

As shown in Figure 7, an improved version of the 

DeepLabv3+ architecture for image segmentation is designed. 

It consists of the following components: 1) Xception Model as 

Backbone Network, 2) Dilated Convolutions with Multiple 

Rates, 3) ASPP module, 4) Feature Fusion, and 5) Final 

Segmentation. The improved DeepLabv3+ architecture takes 

input images as its initial input. These images can vary in size 

and dimension. 1) DeepLabv3+'s core network is built on the 

Xception model. The Xception architecture is a variant of the 

Inception architecture that focuses on depth-wise separable 

convolutions. It provides efficient and effective feature 

extraction capabilities, capturing meaningful patterns and 

representations from the input images.  

 

The Xception backbone network plays a crucial role in 

capturing low-level information and extracting high-level 

semantic elements. The Xception network is organized into 

three main sections: the Entry Flow, the Middle Flow, and the 

Exit Flow. The Entry Flow is the initial part of the Xception 

network. It is comprised of up of several convolutional and 

pooling layers. To extract low-level information, the input 

image is sent through a number of convolutional layers with a 

kernel of a tiny size (for example, 3x3). Batch normalization 

and ReLU activation functions are employed after every 

convolutional layer to introduce non-linearity and enhance 

feature representations. Max pooling operations are utilized to 

down sample the feature maps and enhance the receptive field 

gradually. The Middle Flow is the core part of the Xception 

network. It includes multiple stacked residual modules. The 

residual modules help to capture and refine more complex and 

abstract features as the network goes deeper. The residual 

connection, also known as a skip connection, allows the 

network to bypass the convolutional layers within each 

module and directly propagate information from earlier stages. 

The Middle Flow typically contains several residual modules 

stacked together to deepen the network and capture 

increasingly higher-level features. The Exit Flow is the final 

part of the Xception network. It further refines the feature 

representations and performs classification or prediction. It 

includes additional residual modules similar to the Middle 

Flow, followed by GAP layer to aggregate spatial information.  

 
 

Figure 7: Architecture of the Improved DeepLab V3+ 
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The feature maps are then passed through fully connected 

layers for classification or prediction tasks. Finally, 

appropriate activation functions (such as softmax) are applied 

to produce the final output probabilities or predictions. 2) 

DeepLabv3+ incorporates dilated convolutions with multiple 

rates to capture multi-scale information. Dilated convolutions, 

also known as atrous convolutions, expand the receptive field 

of each neuron without augmenting the parameter count. By 

applying dilations at different rates (1, 2, 4, and 8), the model 

can capture contextual information at multiple scales. This 

allows the network to effectively handle objects of 

distinguished sizes and capture both local details and global 

context.3) ASPP incorporates atrous (or dilated) convolutions 

with different rates.  

Atrous convolutions, also known as dilated convolutions, 

involve introducing gaps or dilations between kernel elements 

to extent the receptive field without enhancing the number of 

parameters. ASPP utilizes atrous convolutions at multiple 

rates, such as rates 1, 6, 12, and 18, to derive context at 

different scales. By employing dilated convolutions with 

different rates, ASPP can incorporate information from 

various receptive fields and gather multi-scale context. GAP 

layer is a pooling operation that calculates the average value of 

each feature map across all spatial locations. In ASPP, GAP 

operation is performed to aggregate spatial information and 

captures the holistic context of the entire image. It allows the 

network to obtain a global view of the input and make 

predictions based on the overall context. ASPP includes atrous 

convolutions at multiple rates: 1, 6, 12, and 18. Each atrous 

convolution layer is responsible for capturing context at a 

specific scale, or receptive field size. 

By using multiple rates, the network can gather information at 

different scales simultaneously, enabling it to handle objects of 

varying sizes. Image pooling, also known as image-level 

pooling, is an additional step in ASPP that helps capture global 

context and incorporate information from the entire image. It 

involves downsampling the entire feature map to a single 

value by applying pooling operations (e.g., max pooling) 

across the entire spatial extent. The resulting pooled 

representation provides a high-level summary of the entire 

image, which can be useful for making global predictions or 

incorporating global context into the segmentation task. By 

combining atrous convolutions at different rates (1, 6, 12, and 

18), global average pooling, and image pooling, The ASPP 

module strengthens the network's capacity to capture context 

at various sizes and combine both local and global data. 4) 

After the ASPP module, DeepLabv3+ performs feature fusion 

to combine features from various scales and steps of 

abstraction. This fusion allows the network to leverage the 

complementary information captured at various scales and 

create a more comprehensive feature representation. Fine-

grained data and high-level semantics are combined to create 

fused features, which produce more detailed and meaningful 

visualizations of features. 5) In the final segmentation step, the 

fused features are upsampled to the original input image 

resolution. Upsampling is performed using techniques like 

transpose convolutions or interpolation, which recover the 

spatial information lost during the down sampling process.  

 

The upsampled feature maps are passed through a 1x1 

convolution layer to get the final pixel-wise segmentation 

predictions. Each pixel in the segmentation map represents the 

 

Figure 8: Overall flow diagram of the proposed DeepSegNet framework 
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expected class label for that particular pixel in the input image. 

Figure 8 shows the overall flow diagram of the proposed 

DeepSegNet framework. Batches of images of blood cells are  

provided as input, and the images are preprocessed as 

explained in section 3.1.2. After preprocessing, images are 

passed into the DeepSegNet Framework, which includes four 

types of models, such as 1) Improved PSPNet 2) Improved 

FPN 3) Deep Lab V3 4) Improved Deep Lab V3+.  The 

following Preprocessing Steps are carried out: a) Image 

Resizing is used to resize the input images to a consistent 

resolution to ensure compatibility with the segmentation 

models and to reduce computational complexity. b) Image 

normalization normalizes the pixel values of the images to 

remove variations in lighting conditions and improve model 

performance. Typical approaches include dividing by the 

image dataset's standard deviation and deducting the mean. c) 

To expand the diversity of training samples and enhance the 

model's capacity to handle multiple variations of object 

orientations, data augmentation uses various transformations, 

such as rotations, flips, translations, and scaling. d) Image 

Cropping is applied to the images. If the images contain large 

background areas or irrelevant regions, cropping the images to 

focus on the regions of interest can improve computational 

efficiency and model performance. 

After preprocessing, the images are passed into the 

DeepSegNet Framework, in which the first network is An 

improved PSPNet model with pre-trained weights obtained 

from a big-scale dataset, such as ImageNet, is initialized. Deep 

CNN architecture is utilized to derive hierarchical features 

from the input image. SPP is applied to gather multi-scale 

contextual information by dividing the feature maps into 

different regions and performing pooling operations. The 

multi-scale features using skip connections and dilated 

convolutions are aggregated to enhance the representation 

power and contextual understanding. The aggregated features 

are used to perform convolutional operations to obtain pixel-

wise predictions, and then the loss value is calculated between 

the predicted segmentation and ground truth masks utilizing an 

appropriate loss function. The second segmentation model, an 

improved FPN with pre-trained weights obtained from a large-

scale dataset, is initialized. The features are derived from the 

input image using a backbone network. A feature pyramid is 

constructed by applying lateral connections to propagate high-

resolution information from lower-level feature sets to higher-

level feature sets. A fusion model enhances the quality of 

representation and captures multi-scale contextual 

information. The fused features are upsampled, convolutional 

operations are performed to generate pixel-wise predictions, 

and then loss value and accuracy values are calculated. As a 

third image segmentation model, the DeepLabv3 model with 

pre-trained weights is initialized. The features are extracted 

from the input image through the backbone network atrous 

convolutions at various rates gather multi-scale data while 

preserving spatial resolution. The ASPP module aggregates 

context at multiple scales and captures rich contextual 

information. After upsampling the feature maps, convolutional 

operations are performed to obtain pixel-wise predictions. The 

Improved DeepLabv3+ is setup with pre-trained weights 

before being used. The feature extraction is done from the 

Xception network, then the dilated convolution with multiple 

rates captures the features, and then the ASPP modules with 

multiple rates capture the multi-scale contextual information. 

The characteristics derived from the Xception network's 

feature extraction, dilated convolution module, and ASPP 

module are fused and upsampled by 4 to get the final 

segmentation output. 

 

5. EXPERIMENTATION, RESULTS AND 

ANALYSIS 

5.1 Experimental Setup 

    The experimentation with the proposed DeepSegNet 

Framework is conducted using the following system setup: a 

Core i7-10750H processor, renowned for high performance 

within Intel's Core i7 series, and 16 GB of DDR4 RAM, 

signifying enhanced system memory capacity for improved 

speed and efficiency. The entire experiment is executed on 

Google Colab, leveraging its practical and efficient 

environment tailored for deep learning.The torch.nn module in 

PyTorch that Google Colab supports is imported, which 

provides classes and functions for building neural networks. 

For creating neural network designs, it provides a variety of 

prebuilt layers, activation functions, loss functions, and tools. 

For image segmentation models, torch.nn enables the creation 

of custom architectures by defining modules such as 

convolutional layers, pooling layers, transposed convolutions, 

and skip connections. It also provides tools for weight 

initialization, gradient optimization, and parameter 

management. In addition, Google Colab provides users with 

access to various pre-installed libraries and tools for data 

analysis and visualization, such as NumPy and Matplotlib. The 

library torchviz is installed. tqdm is a popular Python library 

that is imported for the following reasons: a fast, extensible 

progress bar for loops and other iterable objects. It adds a 

progress bar to your loops to monitor the progress of 

iterations. It displays the current iteration count, estimated 

time remaining, and other useful information. CV2 (OpenCV) 

is a potent library for problems involving computer vision. It 

offers a variety of functions and algorithms for image and 

video processing, object detection, feature extraction, and 

more. The random library, a built-in Python module used in 

this research work, provides functionalities related to random 

number generation and randomization. The PIL Library is 

imported to perform image loading and Saving, Image 
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Manipulation, Image filtering and enhancement, and image 

transformation operations. The GPU runtime was built up. 

 

5.2 Performance Metrics 

Accuracy measures the overall correctness of the segmentation 

predictions. It measures how many pixels in the image were 

correctly identified (including true positives and true 

negatives) as shown in equation (1). 

Accuracy

=
TP + TN  

TP + TN + FP + FN
                                                  (1) 

 

Recall determines how well a segmentation model can identify 

every pixel that is positive. It denotes the proportion of true 

positive (TP) pixels relative to the sum of true positive and 

false negative (FN) pixels, as shown in equation (2). 

  Recall

=
TP

TP + FN
                                                                          (2) 

The segmentation model's precision is how well it can 

distinguish positive events. It is the ratio of true positive (TP)  

 

pixels to the total of pixels that are true positive and false 

positive (FP), as shown in equation (3). 

       Precision =
TP

TP + FP
                                     (3) 

The ground truth mask and expected segmentation mask are 

compared using the Dice coefficient to determine how similar 

or overlapped they are. The masks must perfectly match for 

the Dice coefficient to be 1, which range from 0 to 1.Equation 

(4) illustrates the formula for computing the Dice coefficient. 

 

Dice coefficient =
(𝟐 ∗  |𝑨 ∩  𝑩|)

(|𝑨|  +  |𝑩|)
                (4) 

Where A denote the predicted segmentation mask (as a set of 

pixels), B represents the ground truth segmentation mask (a 

collection of pixels), |A ∩ B| demonstrates the cardinality 

(number of elements) of the intersection between A and B 

(similar pixels between the expected and ground truth masks), 

|A| represents the cardinality of A (total number of pixels in 

the predicted mask), and |B| represents the cardinality of B 

(The ground truth mask's overall pixel count). The numerator 

(2 * |A ∩ B|) represents the predicted and ground truth masks 

both share twice as many pixels. The denominator (|A| + |B|) 

represents the sum of pixels in both the predicted and ground 

truth masks. The anticipated and ground truth masks must 

match exactly for the Dice coefficient to be 1; otherwise, there 

is no overlap or similarity. 

The Dice coefficient is frequently employed in the 

segmentation of medical images since it gives an indication of 

how well and closely the segmented regions match the ground 

truth annotations. It is frequently employed in additional 

picture segmentation tasks to assess the accuracy of the 

results. 

 

5.3 Results 

This section presents the results of the proposed DeepSegNet 

Framework. In the context of training and evaluating a 

segmentation model, the terms "train accuracy", "validation 

accuracy" "train loss" "validation loss” and "Dice Coefficient" 

are considered. Train accuracy would indicate how well the 

model predicts the correct segmentation labels for the training 

samples. Test accuracy provides an estimate of how well the 

 
 

Figure: 9 Sample Blood cell images and segmented images by the DeepSegNet Framework 
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segmentation model generalizes and performs on new data. It 

measures the model's ability to correctly predict the 

segmentation labels for the test samples. Higher test accuracy 

shows that the model is better at precisely segmenting items or 

identifying areas of interest in fresh, untainted data. "Training 

loss" pertains to the computed loss or error during the training 

phase of the model. Loss is a measure of how well the model's 

predictions align with the ground-truth segmentation labels for 

the training samples. "Test loss" refers to the loss or error 

calculated on a separate test dataset. The test loss measures the 

model's performance and how well it generalizes to new, 

unseen data in terms of segmentation accuracy. The Dice 

coefficient is typically utilized as an evaluation metric rather 

than training metric. The Dice coefficient quantifies the 

concurrence between the predicted segmentation and the 

ground-truth segmentation. 

        Figure 9 shows sample blood cell images and segmented 

images by the DeepSegNet Framework, the Blood cell images 

are divided into distinct regions based on their characteristics, 

such as shape, color, texture, or intensity. The purpose of 

segmentation is to isolate individual cells or specific regions of 

interest within the image for further analysis or diagnosis. 

Segmented blood cell images can aid in diagnosing various 

diseases and medical conditions. By counting and analyzing 

different blood cell types, healthcare professionals can detect 

abnormalities or specific patterns indicative of certain 

diseases, such as anaemia, leukaemia, infections, and immune 

disorders. As shown in figure 10, the improved PSPNet model 

produced train loss values of 0.1526, 0.1531, 0.1514, 0.1505, 

0.153, 0.1513, 0.1498, 0.1506, 0.1504, 0.151, 0.1496, 0.1508, 

0.1497, and test loss values of 0.1506, 0.1495, 0.1498, 0.1496, 

0.1487, 0.1484, 0.1482, 0.1481, 0.148, 0.1479, 0.1477, 0.1478, 

and 0.1476. 

 

 
Figure 10:  Performance of the improved PSPNet and FPN models in terms of train and test losses for Epochs 20 

 

 
Figure 11: Performance of the improved DeepLabV3 and improved DeepLabV3+ models in terms of train and test losses for 

Epochs 20 

 

The lowest test loss value is 1476, and the highest test loss 

value is 1506. The improved FPN model produced loss values 

of 0.1661, 0.1771, 0.1635, 0.1564, 0.1623, 0.1563, 0.1639, 

0.1586, 0.153, 0.156, 0.1548, 0.1579, 0.1565, 0.1561, 0.1559, 
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0.1635, 0.1573, and test loss values of 0.1714, 0.1543, 0.1552, 

0.1587, 0.153, 0.1516, 0.1515, 0.1514, 0.1513, and 0.1512, 

0.1511, 0.1508, 0.1506, 0.151, 0.1507, and the lowest test loss 

value are 0.1505, and the highest test loss value is 0.1713.  As 

shown in figure 11, the improved PSPNet model produced 

train loss values of 0.1516, 0.1521, 0.1504, 0.1515, 0.1523, 

0.1543, 0.1508, 0.1516, and 0.1503, and test loss values of 

0.1507, 0.1525, 0.1507, 0.1506, 0.1527, 0.1514, 0.1502, and 

0.1476.  

 

 
Figure14: DeepSegNet Framework's training, valid accuracy on the Blood cell Image Dataset for Epochs 30 

 

The lowest test loss value is 1503, and the highest test loss 

value is 0.1543. The improved Deep Lab V3+ model produced 

loss values of 0.1305, 0.1306, 0.1294, 0.1297, and0.1283 and 

test loss values of 0.1313, 0.1386, 0.1342, 0.1587, 0.1351, 

0.1329, and 0.1316. The lowest test loss value is 0.13070, and 

the highest test loss value is 0.1386. As shown in the figure 12, 

the Improved PSPNet model achieved train accuracy of 

97.953966% and test accuracy of 97.902425%, and the 

Improved FPN model achieved train accuracy of 97.959391% 

and test accuracy of 97.941081%.The Deep Lab V3 model 

produced train accuracy of 97.637939% and test accuracy of 

96.946208%, and the Improved Deep Lab V3+ model 

achieved train accuracy of 97.229004% and test accuracy of 

97.062853% for 20 Epochs. As shown in Figure 13, the 

Improved FPN model produced the lowest train loss of 

0.1354; the lowest test loss of 0.1334, and the highest train 

loss and test loss values of 0.1466 and 0.1384, respectively. 

The Improved FPN model produced train loss values of 

0.1438, 0.1430, 0.1432, 0.1434, 0.1435, 0.14311, 0.14311, 

0.1430, 0.1429, and test loss values of 0.1384, 0.1336, 0.1346, 

0.1341, and 0.1343. The lowest train loss was 0.1434, the 

lowest test loss was 0.1337, and the highest train loss and test 

loss values were 0.1455 and 0.1339 for 30 epochs. The Deep 

Lab V3 model produced values of 0.116201, 0.123999, 

0.152224, 0.188287, 0.190309, 0.175009, 0.168977, 0.165626, 

0.158659, 0.144845, 0.134652, 0.064655, 0.064189, 0.063741, 

and test loss values of 0.1656, 0.1655, 0.1651, 0.1644, 0.1642, 

0.16403, 0.16354, 0.16315, and 0.1622, respectively. 

The Improved Deep Lab V3+ model produced train loss 

values of 0.083868, 0.084204, 0.08243, 0.082299, 0.081325, 

0.080378, 0.079592, 0.079544, and test loss values of 

0.116874, 0.128583, 0.131476, 0.139951, 0.148738, 0.14596, 

0.143375, 0.13522, 0.129151, 0.119143, 0.112273, 0.102552, 

0.096634, 0.068848, and 0.067934. The Improved Deep Lab 

V3+ model achieved the lowest train loss of 0.0795, the lowest 

test loss of 0.068355, and the highest train loss and test loss 

values of 0.083868 and 0.148738, respectively. 

        As shown in figure 14, the Improved PSPNet model 

achieved train accuracy of 98.3052% and test accuracy of 

98.2794%, and the Improved FPN model achieved train 

accuracy of 98.5819% and test accuracy of 98.5243%.The 

Deep Lab V3 model produced train accuracy of 98.2116% and 

test accuracy of 98.3045%, and the Improved Deep Lab V3+ 

model achieved train accuracy of 98.4069% and test accuracy 

of 98.3920% for 30 Epochs. As shown in Figure 15, the 

Improved FPN model produced the lowest train loss of 

0.1424; the lowest test loss of 0.1417; and the highest train 

loss and test loss values of 0.14309 and 0.1420, respectively.  
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The Improved FPN model produced train loss values of 

0.099253, 0.09938, 0.097974, 0.097807, 0.096537, 0.096898, 

0.096079, 0.097132, 0.096061, 0.097142, 0.095454, 0.0968, 

0.095906, 0.09637, 0.09687, 0.09544, and 0.1343. The lowest 

train loss was 0.096, the lowest test loss was 0.124, and the 

highest train loss and test loss values were 0.099 and 0.1263 

for 30 epochs. The Deep Lab V3 model produced values of 

0.116201, 0.123999, 0.152224, 0.188287, 0.190309, 0.175009, 

0.168977, 0.165626, 0.158659, 0.144845, 0.134652, 0.064655, 

0.064189, 0.063741, and test loss values of 0.139225, 

0.148018, 0.148454, 0.149173, 0.152419, 0.159772, 0.141621, 

0.150529, 0.156062, 0.133358, and 0.1229, respectively. The 

Improved Deep Lab V3+ model produced train loss values of 

0.085667, 0.086042, 0.085728, 0.085696, 0.085732, 0.085588, 

0.085557, 0.065244, 0.065327, 0.075212, and test loss values 

of 0.097177, 0.098164, 0.10056, 0.101527, 0.0965, 0.096066, 

and 0.08533. The Improved Deep Lab V3+ model achieved 

the lowest train loss of 0.0652, the lowest test loss of 0.0652, 

and the highest train loss and test loss values of 0.0853 and 

0.10812, respectively, for epochs 40.As shown in figure 16, 

the Improved PSPNet model achieved train accuracy of 

98.3425% and test accuracy of 98.2520%, and the Improved 

FPN model achieved train accuracy of 99.2453% and test 

accuracy of 99.0406%. The Deep Lab V3 model produced 

train accuracy of 98.3527% and test accuracy of 98.2299%, 

and the Improved Deep Lab V3+ model achieved train 

accuracy of 99.4745% and test accuracy of 99.3057% for 40 

Epochs. The Improved Deep Lab V3+ model produced train 

loss values of 0.085667, 0.086042, 0.085728, 0.085696, 

0.085732, 0.085588, 0.085557, 0.065244, 0.065327, 0.075212, 

and test loss values of 0.097177, 0.098164, 0.10056, 

0.101527, 0.0965, 0.096066, and 0.08533.The Improved Deep 

Lab V3+ model achieved the lowest train loss of 0.0652, the 

lowest test loss of 0.0652, and the highest train loss and test 

loss values of 0.0853 and 0.10812, respectively, for epochs 40.  

 
Figure 15: Performance of the improved DeepLabV3 and improved DeepLabV3+ models in terms of train and test losses for Epochs 40 

 

 
Figure 16: DeepSegNet Framework's training, valid accuracy on the Blood cell Image Dataset for Epochs 40

As shown in figure 16, the Improved PSPNet model achieved 

train accuracy of 98.3425% and test accuracy of 98.2520%, 

and the Improved FPN model achieved train accuracy of 

99.2453% and test accuracy of 99.0406%. The Deep Lab V3 

model produced train accuracy of 98.3527% and test accuracy 

of 98.2299%, and the Improved Deep Lab V3+ model 

achieved train accuracy of 99.4745% and test accuracy of 

99.3057% for 40 Epochs. 
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Figure 17: Performance of the proposed frame work based on training & Validation accuracy 

 

5.4 Analysis 

This section explains the analysis of the DeepSegNet 

Framework models in terms of various metrics and epochs and 

the comparison of the proposed framework with existing 

techniques. As shown in figure 17, the Improved PSPNet 

model achieved train accuracy of 98.050265% and test 

accuracy of 

98.002% and the Improved FPN model achieved train 

accuracy of 97.963460% and test accuracy of 97.961171%. 

The Deep Lab V3 model produced train accuracy of 97.7294% 

and test accuracy of 97.70372%, and the Improved Deep Lab 

V3+ model achieved train accuracy of 97.56062% and test 

accuracy of 97.438557% for 25 Epochs. The Improved 

PSPNet model achieved train accuracy of 98.319498% and 

test accuracy of 98.287624%, and the Improved FPN model 

achieved train accuracy of 98.732503% and test accuracy of 

98.699951%.  

The Deep Lab V3 model produced train accuracy of 

98.31746% and test accuracy of 98.35476%, and the Improved 

Deep Lab V3+ model achieved train accuracy of 98.5148% 

and test accuracy of 98.57063% for 35 Epochs. 

Table 1 shows the training and testing Accuracy Results of the 

Proposed DeepSegNet framework for various Epochs on the 

Blood Cell image dataset. DeepSegNet framework models 

produced above 98% train-and-test accuracy from 30 epochs 

onward. The performance of the improved PSPNet and Deep 

Lab V3 models is more similar. The Improved FPN model 

produced the second-highest train accuracy of 99.245388% 

and test accuracy of 99.0406413, and the Improved Deep Lab 

V3+ model produced the highest training and test accuracy of 

99.4745497% and 99.3057454%, respectively. These results 

demonstrate that the proposed framework does not suffer from 

overfitting or under fitting problems. 

Table 2 shows the performance of the proposed DeepSegNet 

framework on the blood cell image dataset. The Improved 

PSPNet model produced a recall of 98.35%, Precision of 

98.24%, accuracy of 98.252%, and a Dice Coefficient of 

98.3%. The Improved FPN model produced a recall of 

98.99%, Precision of 99.15%, accuracy of 99.04%, and a Dice 

Coefficient of 99.07%. The Deep Lab V3 model produced a 

recall of 98.30%, Precision of 98.24%, accuracy of 98.23%, 

and a Dice Coefficient of 98.27%. The Deep Lab V3 model 

produced a recall of 99.27%, Precision of 99.38%, accuracy of 

99.31%, and a Dice Coefficient of 99.32%. As shown in figure 

18, the Improved Deep Lab V3+ model produced the highest 

Recall of 99.27%, precision of 99.38%, accuracy of 99.31%, 

and Dice Coefficient of 99.32% among all the models in the 

proposed framework. The improved FPN model produced the 

second highest Recall of 98.99%, precision of 99.15%, 

accuracy of 99.04%, and Dice Coefficient of 99.07%. The 

Improved PSPNet received slightly higher results than the 

Deep Lab V3 model, but the result is lower than the other 

models such as Deep Lab V3+ and the Improved FPN model. 

Table 3 shows the comparison analysis of the proposed 

DeepSegNet framework with the existing Segmentation model 

based on accuracy. The improved DeepLab V3+ model has 

produced higher values of 1.741%, 4.01%, 2.39%, 5.21%, 

4.91%, 10.01%, and 3.61% than the existing models such as 

WBC nucleus segmentation [25], Neural ordinary differential 

[27], circle Hough Transform (CHT) 
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[30], semi-supervised method [34], TransFuse [48], TransFuse 

[48], Eres-UNet++ [50], and PSPNet [45]. All the proposed 

models have achieved higher accuracy than all the existing 

models. Table 4 shows the comparison analysis of the 

proposed DeepSegNet framework with the existing 

Segmentation model based on the dice coefficient. The 

improved DeepLab V3+ model has produced higher values of 

8.91%, 3.72%, 17.73%, 2.83%, 7.96%, 9.61%, 17.36%, 

6.22%, 13.32%, and 14.32% than the existing models such as 

the UNeXt method [38], DRINet model [32], segmentation 

with a diffusion-probabilistic model [35], DoubleU-Net [36], 

UNet++ architecture [40],  

TransUNet architecture [41], MISSFormer network [43], 

hybrid Transformer [39], semi-supervised method [34], and 

CNN [46]. All the proposed models have achieved a higher 

Dice Coefficient than all the existing models. Table 5 shows 

the comparison analysis of the proposed DeepSegNet 

framework with the existing Segmentation model based on 

Precision and over segmentation rates. The improved DeepLab 

V3+ model has produced higher values of 11.75%, 0.9%, 

7.59%, and 30.38% than the existing models such as WBC 

nucleus segmentation [25], WBC-Net [26], adaptive 

Thresholding [29], and Self-supervised learning [28]. 

TABLE 2: 

PERFORMANCE OF THE MODELS ON THE BLOOD CELL IMAGE DATASET 

Performance 

metrics 

Improved 

PSPNet 

Improved 

FPN 

Deep Lab 

V3 

Improved 

Deep Lab V3+ 

Recall 98.35% 98.99% 98.30% 99.27% 

Precision 

98.24% 99.15% 98.24% 99.38% 

Accuracy 98.25% 99.04% 98.23% 99.31% 

Dice Coefficient 98.30% 99.07% 98.27% 99.32% 

 

TABLE 1: 

TRAIN AND TEST ACCURACY RESULTS OF THE PROPOSED DEEPSEGNET FRAMEWORK FOR VARIOUS EPOCHS 

  

Improved 

PSPNet 
Improved FPN Deep Lab V3 

Improved Deep 

Lab V3+ 

20 

Epochs 

Train 

Accuracy 
97.953965929% 97.959391276% 97.637939453% 97.229003906% 

Test 

Accuracy 
97.902425130% 97.941080729% 96.946207682% 97.062852648% 

25 

Epochs 

Train 

Accuracy 
98.050265842% 97.963460286% 97.729492188% 97.560628255% 

Test 

Accuracy 
98.002115885% 97.961171468% 97.703721788% 97.438557943% 

30 

Epochs 

Train 

Accuracy 
98.305257161% 98.581949870% 98.211669922% 98.406982422% 

Test 

Accuracy 
98.279486762% 98.524305556% 98.304578993% 98.392062717% 

35 

Epochs 

Train 

Accuracy 
98.319498698% 98.732503255% 98.317464193% 98.514811198% 

Test 

Accuracy 
98.287624783% 98.699951172% 98.354763455% 98.570632935% 

40 

Epochs 

Train 

Accuracy 
98.342556424% 99.245388500% 98.352728950% 99.474549700% 

Test 

Accuracy 
98.252050781% 99.040641300% 98.229980469% 99.305745400% 
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TABLE 3 

COMPARISON OF THE PROPOSED FRAMEWORK WITH EXISTING MODELS BASED ON ACCURACY 

S. No Segmentation models & Methods Performance metric(Accuracy) 

1 WBC nucleus segmentation[25] 97.57% 

2 Neural ordinary differential equations [27] 95.30% 

3 Circle Hough Transform (CHT) [30] 96.92% 

4 Semi supervised method[34] 94.10% 

5 TransFuse[48] 94.40% 

6 Eres-UNet++ [50] 89.30% 

7 PSPNet[45] 95.70% 

Proposed DeepSegNet Framework 

8 Improved PSPNet 98.25% 

9 Improved FPN 99.04% 

10 Deep Lab V3 98.23% 

11 Improved Deep Lab V3+ 99.31% 

 

 

TABLE 4 

COMPARISON OF THE PROPOSED FRAMEWORK WITH EXISTING MODELS BASED ON DICE COEFFICIENT 

S. No Segmentation models & Methods Performance metric (Dice Coefficient) 

1 UNeXt method [38] 90.41% 

2 DRINet model [32] 95.60% 

3 Segmentation with diffusion-probabilistic model[35] 81.59% 

4 DoubleU-Net [36] 76.49% 

5 UNet++ architecture [40] 91.36% 

6 TransUNet architecture [41] 89.71% 

7 MISSFormer network [43] 81.96%. 

8 Hybrid Transformer[39] 93.10% 

9 Semi supervised method[34] 86% 

10 CNN[46] 85% 

Proposed DeepSegNet Framework 

11 Improved PSPNet 98.30% 

12 Improved FPN 99.07% 

13 Deep Lab V3 98.27% 

14 Improved Deep Lab V3+ 99.32% 
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All the proposed models have achieved higher precision than 

all the existing models. The proposed DeepSegNet framework 

demonstrated superior performance compared to all existing 

techniques in various aspects, including accuracy, Dice 

coefficient, precision, and more. Notably, the proposed 

framework effectively addressed the gaps identified in the 

existing techniques, such as lack of accuracy and other 

metrics, Long Training Time, inefficiency in variations and 

Artifacts , interpretability, and lack of generalization to new 

data, by improving the existing segmentation models, 

especially concentrating on capturing multi-scale information 

and extracting local and global features accurately by adding 

different dilated convolutions, and adding the module of 

feature fusion and other operations to the proposed 

segmentation models to get the essential and effective features 

and improve the quality of the features. The diversity of the 

data has been improved to help prevent overfitting and 

improve the model's ability to handle different orientations, 

scales, and positions of blood cells. Additionally, DeepSegNet 

exhibited efficient computation, leading to reduced processing 

time while consistently yielding high-quality segmentation 

results. The incorporation of proper preprocessing techniques 

further enhanced the overall effectiveness of the proposed 

approach. 

6. CONCLUSION AND FUTURE WORK 

This paper proposes an innovative DeepSegNet framework for 

Accurate Blood Cell Image segmentation. Improved PSPNet, 

Improved FPN, Deep Lab V3, and Improved Deep Lab V3+ 

are improved to fulfil the gaps identified in the literature 

survey. The  

model’s generalization ability, the diversity of the data, and 

stability during training are increased using preprocessing 

techniques. The proposed framework has been improved to 

capture multi-scale information and extract local and global 

features accurately by adding different dilated convolutions, 

and the module of feature fusion has been added to the 

proposed segmentation models to get the essential and 

effective features and improve the quality of the features. The 

DeepSegNet framework saves computation time by reducing 

the number of epochs and has high accuracy, dice coefficient, 

and precision. The blood cell image dataset is applied to the 

proposed DeepSegNet framework, which consists of models 

such as the Improved PSPNet, Improved FPN, Deep Lab V3, 

and Improved Deep Lab V3+, which performed well and 

produced 98.25%, 99.04%, 98.23%, and 99.31% accuracy, 

respectively. Among the proposed segmentation models, the 

Improved Deep Lab V3+ model outperformed well and 

produced a Dice Coefficient of 99.32% and Precision of 

99.38%, but the proposed framework is moderately complex 

in design, and it will be addressed in the future by reducing the 

number of layers and changing the model architecture. In our 

future work, clinical data, genetic data, and Blood cell data 

validated by medical experts will be incorporated for 

evaluation, and the proposed framework will be experimented 

with other medical image datasets and other data sets. 

Leveraging expert annotations in the form of additional 

supervision will be considered during model training. Graph-

based representations or incorporating scene context to 

improve segmentation in complex scenes will be investigated. 

New methods will be designed for uncertainty estimation in 

segmentation predictions, particularly important in medical 

TABLE 5 

COMPARISON OF THE PROPOSED FRAMEWORK WITH EXISTING MODELS  

S. No Segmentation models & Methods Performance metric(Others) 

1 WBC nucleus segmentation[25] 87.63%(precision) 

2 WBC-Net[26] 98.48%(precision) 

3 Adaptive Thresholding [29] 91.79%(Precision) 

4 Self-supervised learning [28] 69% (Over segmentation-rate) 

Proposed DeepSegNet Framework 

5 Improved PSPNet 98.24%(Precision) 

6 Improved FPN 99.15%(Precision) 

7 Deep Lab V3 98.24%(Precision) 

8 Improved Deep Lab V3+ 99.38%(Precision) 
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applications, to identify cases where the model may be 

uncertain about its segmentation results. 
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