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Fig.1: An Example of multicore processor with four cores. 

Each core has a private L1 cache and all the core share a 

common larger sized L2 cache as LLC. The red circles are 

prefetch engine placed near to each core. 
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Abstract— Modern computer processors are equipped with multiple cores, each boasting its own dedicated cache memory, while 

collectively sharing a generously sized Last Level Cache (LLC). To ensure equitable utilization of the LLC space and bolster system security, 

partitioning techniques have been introduced to allocate the shared LLC space among the applications running on different cores. This partition 

dynamically adapts to the requirements of these applications. Prefetching plays a vital role in enhancing cache performance by proactively 

loading data into the cache before it get requested explicitly by a core. Each core employs prefetch engines to decide which data blocks to fetch 

preemptively. However, a haphazard prefetcher may bring in more data blocks than necessary, leading to cache pollution and a subsequent 

degradation in system performance. To maximize the benefits of prefetching, it is essential to keep cache pollution to a minimum. Intriguingly, 

our research has uncovered that when existing prefetching techniques are combined with partitioning methods, they tend to exacerbate cache 

pollution within the LLC, resulting in a noticeable decline in system performance. In this paper, we present a novel approach aimed at mitigating 

cache pollution when combining prefetching with partitioning techniques. 

Keywords-Covert Channel Attack; Side Channel Attack; Shared Memory; Last Level Cache; Flush+Reload.  

 

I.  INTRODUCTION 

The effective management of cache resources is becoming 

increasingly critical in the current context as a result of the 

advancements that have been made in processor design [1, 2]. 

The need for improved cache architecture and management 

strategies has emerged as a consequence of the rising number 

of cores contained into chip multicore processors (CMP) as 

well as the requirements placed on applications [1, 3]. 

Consequently, a great number of researchers attempted to 

investigate the shared and private cache design systems, each 

of which offers a variety of benefits and drawbacks [1]. There 

is no interference between applications while using private 

cache; nevertheless, because these caches are of a limited 

capacity, they are unable to lower miss rate very effectively. 

Because shared caches have a greater capacity than private 

caches, they are more effective at reducing the number of cache 

misses [1, 3]. Therefore, modern multicore processor have 

private upper level caches for each core and a sharable large 

sized Last Level Cache (LLC) which is accessible to all the 

core. An example of multicore processor is shown in the figure- 

1. However, because shared caches are subject to interference, 

it is possible that they will not improve performance or quality 

of service (QoS). Some application may unnecessarily consume 

more cache space than the other applications. Cache 

partitioning schemes [4–7] come into play as a result to handle 

this limitation. It partitions the LLC among the different 

applications running in the system such that the cache space 

can be used fairly. 
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Fig. 2: Comparison of normalised speedup of different prefetching techniques with and without partitioning. The last four (cross-

lined) bars for each mixes are for prefetching with partitioning. 

 

Cache prefetching is a crucial strategy employed to address 

the memory-wall problem, primarily aimed at mitigating 

latency to access memory blocks [8–10]. This technique 

revolves around the anticipation and retrieval of future memory 

block accesses from the main memory which is likely to be 

demanded by the processing cores. These fetched blocks are 

aptly termed “prefetched blocks”, while those requested 

directly by the core are referred to as “demand blocks”. There 

exist two main types of prefetchers: software prefetchers and 

hardware prefetchers. Software prefetchers, which are static in 

nature, heavily rely on compilers and cannot adapt to the 

dynamic behavior of the applications running in the system [9]. 

In contrast, hardware prefetchers incorporate a dedicated 

hardware circuit within the processor, commonly known as a 

prefetch engine. This hard-ware component excels at efficiently 

predicting future memory block accesses based on historical 

patterns [9,11,12]. Hardware prefetchers can be further 

classified into spatial and temporal prefetchers, depending on 

their focus on spatial or temporal locality in previously 

accessed memory patterns [9,13,14]. Spatial prefetchers operate 

by analyzing the past memory accesses demanded by different 

cores and predicts the future access by observing the fixed 

behavioral patterns in those memory accesses. Consequently, 

purely spatial prefetchers exhibit remarkable accuracy in 

predicting regular memory access patterns but falter when 

confronted with irregular memory access address patterns. On 

the other hand, temporal prefetchers retain knowledge of past 

memory accesses. When encountering a previously seen 

memory address, they prefetch the consecutive addresses stored 

in their memory, known as metadata. However, this approach 

demand significant memory resources. In the context of this 

work, our focus is exclusively on spatial prefetching. 

 

Inaccurate or aggressive prefetching may prefect block 

which will never access by the core. Such prefetch blocks are 

fetched unnecessary and also creates pollution in the cache. 

The existing prefetching ideas like next line prefetcher (NL), 

BOP [15], PPF [16], and SPP [17] etc, improve the system 

performance with limited cache pollution. However we have 

observed that when these ideas are applied in presence of cache 

partitioning the cache pollution increases. None of these 

existing prefetching techniques are proposed considering the 

partitioning cache. All these techniques assume that the entire 

LLC can be accessible to all the cores and the underlying 

replacement policy can replace a block from any ways as a 

victim. With some experimental analysis we have observed that 

the performance of these prefetch techniques decreases in 

presence of partitioning. Figure 2 shows the performance of a 

4-core system with different prefetching techniques. The 

comparison is shown for with and without applying partitioning 

on top of prefetching. Different spec cpu 2006 applications [18] 

are used to prepare the benchmark mixes for this experiment. 

The details about the experimental setup is discussed in Section 

IV. It can be observed from the figure that all the prefetching 

techniques show less performance improvement while 

combining with cache partitioning. As per our knowledge, no 

work has been done so far to jointly analyze the behavior of 

prefetching and cache partitioning. 

 

In this paper we have proposed an idea to efficiently use the 

prefetching techniques on cache partitioning. Our proposed 

idea can be used to combine any prefetching and partitioning 

technique. We call our proposed technique as PP-Bridge, a 

bridge between prefetching and partitioning. The primary idea 

of PP-Bridge is divided into two parts. First is to prevent the 

prefetching techniques to partition the LLC as per their 

aggressiveness. Second is to prevent the prefetching to evict 

demands blocks from its own partition. Combining both these 

ideas, the proposed PP-Bridge reduces the additional cache 

pollution caused by combining with partitioning. The detailed 

description about the idea is given in Section III. The major 

works done in this paper are as follows: 

 

• We have proposed an alternative technique for periodically 

deciding the LLC partitions such that the prefetch 
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Fig. 3: Example of an 8-way set-associative cache with S 

number of sets. 

 

 

 

 
 

Fig. 4: An Example of the cache partitioning technique as 

mention in UCP [4]. The red circles are prefetch engine 

placed near to each core. 

 

 

aggressiveness cannot control the decision of LLC 

partitioning. 

 

• To reduce the impact of cache pollution at LLC, we have 

proposed a technique to keep the demand blocks in the 

cache for longer duration. 

 

• Combining the above two techniques the performance of 

the system increases significantly. 

• The proposed technique is experimentally compared with 

the existing prefetching techniques. 

 

The rest of the paper is organized as follows. The back-

ground and related works are discussed in the next section. The 

proposed idea is discussed in Section III. The experimental 

analysis is discussed in Section IV. Some sensitive issues 

related to the proposed idea are discussed in Section V. Finally 

the paper concludes at Section VI. 

II. BACKGROUND 

A. Set-Associative Cache and Replacement Policies 

In this study, all considered cache memories are of the set-

associative type. Each cache is configured with a fixed number 

of sets, and a block can only be mapped to a specific set based 

on the set-index bits within the block’s address. The number of 

blocks that a set can accommodate is determined by the 

associativity of the cache. An N-way set-associative cache, for 

instance, can hold N blocks within each set. For illustration, 

refer to Figure 3, which depicts an 8-way set-associative cache. 

Throughout this paper, we employ the notation N to denote the 

cache associativity, and S to represent the number of sets 

within the Last-Level Cache (LLC). 

When a new block must be inserted into a non-empty set, 

the replacement policy comes into play by removing an 

existing block from the set. Replacement policies adhere to 

three primary rules: insertion, promotion, and eviction. The 

insertion rule governs the placement of a newly arriving block 

into its appropriate position within the cache. Promotion, on the 

other hand, comes into play when a cache hit occurs, leading to 

the promotion of the relevant block. The block that is selected 

for eviction from the set is known as the victim block, and the 

eviction rule is responsible for selecting this victim block for 

replacement. In accordance with established replacement 

policies, any process can evict a block belonging to another 

process if it is chosen as the victim block. However, when two 

processes are not permitted to evict each other’s blocks from 

the cache, they are considered isolated from each other. 

B. Cache Partitioning 

Cache partitioning is a technique used to fairly divide the 

LLC among the multiple applications or cores. The 

applications running on a core can be divided into cache 

friendly (CF) and non cache friendly (NCF) applications. The 

CF applications, with larger cache space, reduce the number of 

misses. The NCF application need only a limited cache space. 

Any cache space beyond that cannot reduce the number of 

misses for NCF applications. A common example of NCF is 

the streaming applications. Hence, uniformly dividing the LLC 

space among all the applications leads to the inaccurate 

utilization of the LLC. This is because an NCF applicant may 

evict all the important blocks of a CF application if care has not 

been taken. Cache partitioning is a technique proposed to 

prevent this situation. 

 

1) Utility Based Cache Partitioning: The phenomena of 

way-based cache partitioning is first observed in Utility Based 

Cache Partitioning (UCP) [4]. In general, UCP analyses the 

information gathered from each application’s demand while it 

is operating by using a low-cost monitoring circuit. 
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Fig. 5: Comparison of cache pollution done by prefetching techniques with and without combining with partitioning. Here the 

cache pollution is measures as the percentage of prefetch blocks not requested (or used) by any core. 

 

 

 

After doing so, it uses this data to spread the ways that 

cache is used throughout the cores of CMP. The partition set 

that is handed to the user by UCP is referred to as the target 

partition. If there is a CMP with eight cores (core-0, core-1, 

core-2, core-3, core-4, core-5, core-6, and core-7) and an N-

way set associative LLC, then the target partition can be 

expressed as (a, b, c, d, e, f, g, h), where a+b+c+d+e+f+g+h = 

N. Here a is the ways count reserved for core-0, b is the ways 

count reserved for core-1, and so on. If the partition once 

decided, does not change during the execution of the computer 

then such partitions are called static partition. 

 

      In case of dynamic partition UCP observes the behavior 

of a selective number of sets called sample sets. The partition 

changes dynamically based on the behavior of these sample 

sets. To observe the utilization of each core, UCP maintain one 

module called UMON for each core. The UMON records all 

the cache request received by the LLC from a particular core. 

Please note that UMON records only the request coming for the 

sample sets. The information collected by all the UMONs are 

then shared with a common partition manager who decides the 

final partition. The procedure repeats after a fixed cycle of 

execution. Figure 4 shows an example of such cache 

partitioning.  

C. Cache Prefetching  

Ishhi and colleagues [19] introduced the AMPM prefetcher, 

a technique designed to identify common strides within 

frequently accessed memory regions known as hot zones. 

AMPM accomplishes this by employing pattern matching. 

When a pattern is discovered in the hot zone, AMPM begins 

prefetching along the projected strides. Pugsley et al. suggested 

Sandbox prefetching [20], which uses a bloom filter to initially 

add prefetch addresses. These addresses are then checked 

against the contents of the bloom filter. When the prefetch 

accuracy exceeds a predefined threshold, real prefetches are 

triggered. 

Michaud et al. [15] proposed the optimal-offset Prefetcher 

(BOP), a dynamic approach for determining the optimal block 

offset at runtime. BOP employs a Recent Record database and 

a best-offset learning strategy to analyse the cache access 

patterns for 52 distinct offsets It identifies and monitors global 

deltas to accurately depict cache request patterns and to ensure 

prompt prefetching for enhanced efficiency. Lookahead 

 
Fig. 6: The LLC partitioning shows with and withour 

considering the prefetch request to take the decision of 

partitioning. The results shows for multiple prefetch rounds 

for a sing benchmark mix. 
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prefetchers such as SPP [17], KPC [21], and PPF [16] store the 

past record of cache access patterns in a compact signature 

form. When a signature match is obtained, the compact history 

is used to prefetch blocks. Cache pollution is minimized by 

training the prefethers by feeding the performance parameter of 

LLC so that undesirable prefetches can be avoided. 

 

DSPatch [22] is a prefetching approach described by Bera 

et al. that describes cache access patterns inside a page as a bit-

vector. To eliminate unwanted prefetches, DSPatch maintain 

two different bit-patterns of spatial access, one targeting 

prefetch coverage while the other targeting prefetch precision. 

DSPatch prefetch cache blocks by analysing one of these bit-

patterns during runtime based on DRAM bandwidth utilisation 

information. It is observed from the finding that prefetched 

blocks frequently get stale after their initial access, Shesadri et 

al. devised ICP [23], which lowers the priority of cache blocks 

that are prefetched for the first time. 

 

 Domino prefetcher [24] follows temporal locality to issue 

prefetches. It keeps the record of the last two misses to predict 

the future cache access. Irregular Stream Buffer (ISB) [25] 

advances previous techniques by incorporating a structural 

address space with spatially ordered addresses. This involves 

converting non-contiguous addresses that are temporally 

related in the physical address space into contiguous addresses 

within the structural address space. 

 

Managed Irregular Stream Buffer (MISB) [26] improves on 

this solution by effectively handling the metadata by 

prefetching, correcting for delays in receiving metadata from 

off-chip. Triage [27] improves on the preceding solution by 

lowering the amount of space required for metadata storage and 

minimizing off-chip access traffic. Triage implies that a section 

of the LLC can be used to store metadata because a small 

fragment of it is sufficient for issuing prefetch request, and the 

advantages of prefetching outweigh the advantages of a bigger 

cache. 

 

III. THE PROPOSED IDEA 

A. Motivation 

The existing prefetching works [15, 17, 19] never con-sider 

the impact of partitioning on the prefetching. A partitioned 

cache provides restricted cache size to each core hence 

aggressive prefetching creates cache pollution in some 

partitions. Another important observation is that the 

involvement of the prefetch requests in taking the decision of 

partitioning has limitations. A core using aggressive 

prefetching may take a larger partition in the cache. Figure 5 

shows the cache pollution caused by different prefetching 

techniques observed with and without partitioning. A fixed 

static partitioning is used for this experiment. It can be 

observed that the prefetching techniques show high cache 

pollution when combined with cache partitioning. Here the 

cache pollution is measured as the percentage of prefetched 

blocks not requested by any core. The pollution is increased by 

26%, 23%, 19%, and 16% in case of NL, BOP, SPP, and PPF 

respectively. Figure 6 shows the difference in partition sizes 

with and without considering the prefetching requests while 

deciding the partition of a 16-way associative LLC. Both upper 

and lower part of the figure shows the distribution of 16 ways 

among the four cores. 

 

The y-axis shows how the 16-ways are distributed among 

the four cores (C1, C2, C3, and C4). The x-axis shows the 

partitioning decision in multiple partitioning rounds. The upper 

part of the figure shows the partition when UMONs also record 

the prefetching requests. The lower part of the figure shows the 

partition when UMONs do not consider the prefetching 

requests. Comparing the upper and lower figure, for each 

round, it can be observed that the partition distribution are not 

same. In the upper part, some cores get high partition when it is 

actually not required. 

B. The Main Idea (PP-Bridge) 

Because of the issues mentioned above in this work we 

have been motivated to propose a technique to efficiently 

combine the prefetching and cache partitioning. The propose 

PP-Bridge has two important part: 

 

• Reducing the inter-application prefetch pollution the 

pollution created by the prefetched blocks of an     

application by evicting the demand blocks of other 

applications from LLC. 

 

• Reducing the intra-application prefetch pollution the 

pollution created by the prefetched blocks of an application 

by evicting the demand blocks of the same application. 
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Reducing inter-application prefetch pollution: The main 

cause of this type of pollution is already discussed in Section 

III-A (Figure 5). To reduce this pollution we propose not to 

involve the prefetch block requests while computing the LLC 

partitions. Hence, from the sample sets, only the demand 

requests are monitored by the UMON module. The partition is 

decided based on the demand request observed from each core 

in the UMON. Please note that, in this work, we assume one 

application running in each core. The UMON circuit as 

discussed in Section II-B1, records all the demand requests and 

periodically analyzes them to change the LLC partition. The 

main advantage of such restriction in PP-Bridge is that now an 

aggressively prefetched application cannot demand larger 

cache space in the LLC. The partitioning is provided based on 

the demand request. When a demand request comes for an 

already prefetch request, the UMON considers that request for 

partitioning. Hence, if a core needs more prefetching blocks 

and the prefetcher is accurate, the core eventually gets a larger 

partition. However, a core with an aggressive prefetcher with 

high cache pollution cannot get a high partition LLC. As per 

our knowledge, none of the existing ideas have separated the 

prefetch and demand blocks while partitioning. 

 

Reducing intra-application prefetch pollution: Even 

after partitioning the LLC as per the demand requests there is 

another issue that needs to be addressed. An application after 

the partition can use the LLC space only assigned to it. Hence a 

partitioning decided by demand block may face a challenge to 

handle the pollution created by the aggressive prefetcher. A 

demand-based cache partitioning prevents the inter-application 

cache pollution. However, the strategy may cause intra-

application cache pollution. To overcome this intra-application 

pollution, we have slightly modified the block eviction policy 

(replacement policy). If a demand block from the LLC is 

evicted by an prefetch block then the evicted block is placed in 

a small buffer. Otherwise, the evicted block is written back to 

the main memory (if dirty). We call this buffer as bridge-

buffer. In future, when a core requests for the block, it is 

searched simultaneously in both the LLC and the bridge-buffer. 

A hit either in the cache or bridge-buffer sends the block to the 

upper level immediately. A hit in the bridge-buffer also moves 

the block from the buffer to LLC again. Please note that no 

prefetched block can be placed in the bridge-buffer. Also a 

demand block if evicted by another demand block is not 

inserted into the bridge-buffer. This buffer reduces the impact 

of cache pollution as the incorrectly evicted demand blocks 

from the cache are given a chance to remain in the chip. Hence, 

intra-application cache pollution cannot reduce the number of 

demand hits in the system. 

 

Figure 7 shows all the components of a multicore processor 

with the support of PP-Bridge. The processor is considered as a 

4-core processor. The bridge-buffer used in our experiments 

has 32-entries. Which means that the buffer can hold at max 32 

demand blocks into it. 

C. Hardware Overhead  

The major additional hardware required by PP-Bridge is the 

bridge-buffer. Excluding this buffer, all the modules shown in 

Figure 7 are required in the existing design on top of which PP-

Bridge is proposed. Since the buffer can hold 32-entries, the 

total additional storage required is 2.04KB, which is just 0.04% 

of the total LLC size. The cache block size is considered as 64 

bytes. To calculate the storage overhead we have considered an 

12-bit additional storage per block for the tag entry. 

 

TABLE I. Simulation parameters of the baseline system. 

Core Out-of-order, 4 GHz, 4-core. 

L1I 32 KB, 8-way, 4 cycles 

L1D 48 KB, 12-way, 5 cycles 

L2 512 KB, 8-way, 10 cycles, LRU 

LLC 4 MB, 16-way, 20 cycles, LRU 

 

IV. EXPERIMENTAL ANALYSIS 

Our experiments were conducted using the Champsim 

trace-based simulator [28], which is well-regarded and has been 

utilized in recent competitions related to data prefetching and 

cache replacement. We extended the Champsim simula-tor to 

accommodate our proposed threat model. The system 

parameters employed for these experiments are detailed in 

 
 

Fig. 7: Example of a 4-core processor including the modules 

required to implement PP-Bridge. The red circles are prefetch 

engine placed near to each core. 
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Table I. In all our experiments, we employed a 4-core sys-tem 

configuration as outlined in Table I. To create diverse 

scenarios, we used various applications from the SPEC CPU 

2006 benchmark suite [18]. Each experiment involved all four 

cores concurrently running a distinct application from the 

SPEC CPU 2006 suite. Therefore, for every run, we assembled 

a mix of four benchmark applications from SPEC CPU 2006. 

To ensure that the caches were properly primed, we executed 

warming runs spanning 50 million instructions. Subsequently, 

we executed the applications for a minimum of 200 million 

instructions collectively to calculate the weighted speedup as a 

performance metric. Our multi-core evaluation encompassed 

both homogeneous and heterogeneous traces. We generated a 

total of 15 trace mixes by combining cache-friendly and 

memory-intensive applications. In cases where a core 

completed its instructions ahead of others, we replayed the 

instructions until all cores finished their execution. 

A. Performance Evaluation 

The proposed PP-Bridge technique is applied on top of a 

baseline system where both prefetching and partitioning are 

already applied. For the experiments we have used different 

prefetching techniques like NL, BOP [15], SPP [17], and PPF 

[16]. The partitioning technique use is UCP. As mentioned in 

Section I, our proposed PP-Bridge helps to efficiently combine 

both prefetching and partitioning.  

 

Figure 8 shows the efficiency of PP-Bridge in terms of 

normalised speedup. The figure shows the comparison of each 

prefetching technique with and without PP-Bridge. In the 

figure, the prefetching technique without PP-Bridge has 

“partituion” as suffix while the prefetching with PP-bridge has 

a suffix of “bridge”. Please note that PP-bridge also use a 

modified UCP-based partitioning technique as discussed in 

Section III-B. The last four bars for each mix, are for the PP-

bridge applied over different prefetching techniques. It can be 

observed from the figure that the performance of the 

prefetching techniques (on top of partitioning) have improved 

after applying PP-Bridge. 

 

The proposed PP-Bridge improves the speedup by 22%, 

21%, 18%, and 15% over the corresponding technique where 

PP-Bridge is not applied. The main reason of this improvement 

is the reduction in both inter-application and intra-application 

pollution. The detail analysis about the prefetch pollution is 

discussed next. 

B.  Cache Pollution  

As mentioned in Section III, the proposed PP-Bridge 

reduces both inter-application and intra-application cache 

pollution. Figure shows the reduction in cache pollution in PP-

Bridge over the existing prefetch+partition setup. The 

comparison setup is already discussed in Section IV-A. Please 

note that the result shown in this figure is recorded after only 

applying the inter-application reduction technique proposed by 

PP-Bridge. It can be observed from the figure that the pollution 

is reduced by 12%, 11%, 10%, and 9% over the corresponding 

prefetch+partition setup. 

 

A further improvement in cache pollution is shown while 

the intra-application pollution is also controlled by efficiently 

using the bridge-buffer as discussed in Section III-B. Figure 10 

shows the final reduction in cache pollution after implementing 

both inter-application and intra-application pollution reduction 

technique of PP-Bridge. It can be observed from the figure that 

the pollution is reduced by 19%, 18%, 17%, and 16% over the 

corresponding prefetch+partition setup. The improvements 

shown in this figure reflects the importance of reducing both 

inter-application and intra-application pollution while applying 

prefetching with partitioning. As a result, the system get 

performance benefit as shown in Figure 8. 

 

C. Efficiency of Bridge-Buffer   

 
Fig. 8: Performance comparison of PP-Bridge with various prefetching techniques while implemented on top of partitioning. 
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Figure 11 shows the percentage distribution of hit and miss 

in the bridge-buffer. A block, if missed in LLC, first search in 

bridge-buffer. A hit in the bridge-buffer eliminates the needs to 

going to main memory. Hence the total LLC misses can be 

divided into total bridge-buffer hits and total bridge-buffer 

misses. From the figure, it can be observed that on average 

34.4% LLC misses are getting hit in the bridge-buffer which 

helps in improving the performance of the system. 

 

V. OTHER SENSITIVE ISSUES 

A. Applying PP-Bridge with non-partitioned LLC 

The proposed PP-Bridge is only applicable when the 

prefetching techniques are applied on a a partitioned LLC. It 

does not show significant improvement when the prefetching 

techniques are applied over an LLC which is not partitioned 

dynamically. Since the main motive of this work is to enhance 

the performance of prefetching in a partitioned LLC, its under-

performance in non-partition LLC does not fall under the scope 

of this paper. Also, LLC partitioning now a days is not just 

used for fairly distributing the LLC. It is also used to prevent 

the applications from side channel [29] and covert channel 

attacks [30], [31]. Hence, a secure LLC may also have partition 

which is a perfect example of the need of an idea like PP-

Bridge 

 

 
Fig. 9: Cache pollution of the prefetch techniques with partitioning. The pollution for PP-Bridge is shown only with the PP-

Bridge technique used to reduce the inter-application pollution 

 

 
Fig. 10: Cache pollution of the prefetch techniques with partitioning. The pollution for PP-Bridge is shown after reducing both 

the inter-application and intra-application pollution. 

 

 

 
Fig. 11: The percentage distribution of hits and misses in 

bridge-buffer of the proposed PP-Bridge. 
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B. Scalability of PP-Bridge 

The proposed PP-Bridge can be used for any large sized 

multicore system. Though the proposed idea is only experi-

mented for a single bank LLC, the idea can also be applied to 

the modern multi-banked LLC [2] without any major hardware 

overhead. The additional hardware will be required for the 

bridge-buffer required for in the PP-Bridge. In case of a multi-

banked LLC, one bridge-buffer will be required for each LLC 

bank. 

VI. CONCLUSION 

Contemporary computer processors are equipped with mul-

tiple cores, each having its dedicated private cache memories, 

while they collectively share a spacious Last Level Cache 

(LLC). To ensure equitable allocation of LLC resources among 

concurrently executing applications on different cores and 

bolster system security, partitioning techniques have been 

introduced. These techniques enable the dynamic partitioning 

of the LLC space based on the varying demands of the running 

applications. Prefetching mechanisms are employed to 

proactively load data blocks into the cache before they are 

requested by the core, ensuring quicker access. Prefetching 

decisions are typically made by specialized prefetch engines 

associated with each core. However, unbridled prefetching can 

result in an excess of cached blocks that may never be utilized, 

leading to cache pollution and performance degradation. To 

reap the benefits of prefetching while minimizing this 

pollution, it becomes imperative to strike a balance. 

Surprisingly, our research has unveiled that when existing 

prefetching techniques are combined with partitioning 

strategies, they tend to exacerbate cache pollution within the 

LLC, consequently undermining system performance. In this 

paper, we propose an innovative approach to mitigate cache 

pollution arising from the combination of prefetching and 

partitioning, aiming to enhance overall system performance. 

The proposed PP-Bridge can be used as a bridge between any 

spatial prefetching techniques with UCP-based partitioning 

techniques. 
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