
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 897

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Fig.1: An Example of multicore processor with four cores.

Each core has a private L1 cache and all the core share a

common larger sized L2 cache as LLC. The red circles are

prefetch engine placed near to each core.

 PP-Bridge: Establishing a Bridge between the

Prefetching and Cache Partitioning

Purnendu Das 1, Nurulla Mansur Barbhuiya 2, Bishwa Ranjan Roy 3,*

1,2,3 Department of Computer Science

Assam University, Silchar

Assam, India

e-mail: 1purnen1982@gmail.com, 2nurullabarbhuiya@gmail.com, 3brroy88@gmail.com

*Corresponding Author

Abstract— Modern computer processors are equipped with multiple cores, each boasting its own dedicated cache memory, while

collectively sharing a generously sized Last Level Cache (LLC). To ensure equitable utilization of the LLC space and bolster system security,

partitioning techniques have been introduced to allocate the shared LLC space among the applications running on different cores. This partition

dynamically adapts to the requirements of these applications. Prefetching plays a vital role in enhancing cache performance by proactively

loading data into the cache before it get requested explicitly by a core. Each core employs prefetch engines to decide which data blocks to fetch

preemptively. However, a haphazard prefetcher may bring in more data blocks than necessary, leading to cache pollution and a subsequent

degradation in system performance. To maximize the benefits of prefetching, it is essential to keep cache pollution to a minimum. Intriguingly,

our research has uncovered that when existing prefetching techniques are combined with partitioning methods, they tend to exacerbate cache

pollution within the LLC, resulting in a noticeable decline in system performance. In this paper, we present a novel approach aimed at mitigating

cache pollution when combining prefetching with partitioning techniques.

Keywords-Covert Channel Attack; Side Channel Attack; Shared Memory; Last Level Cache; Flush+Reload.

I. INTRODUCTION

The effective management of cache resources is becoming

increasingly critical in the current context as a result of the

advancements that have been made in processor design [1, 2].

The need for improved cache architecture and management

strategies has emerged as a consequence of the rising number

of cores contained into chip multicore processors (CMP) as

well as the requirements placed on applications [1, 3].

Consequently, a great number of researchers attempted to

investigate the shared and private cache design systems, each

of which offers a variety of benefits and drawbacks [1]. There

is no interference between applications while using private

cache; nevertheless, because these caches are of a limited

capacity, they are unable to lower miss rate very effectively.

Because shared caches have a greater capacity than private

caches, they are more effective at reducing the number of cache

misses [1, 3]. Therefore, modern multicore processor have

private upper level caches for each core and a sharable large

sized Last Level Cache (LLC) which is accessible to all the

core. An example of multicore processor is shown in the figure-

1. However, because shared caches are subject to interference,

it is possible that they will not improve performance or quality

of service (QoS). Some application may unnecessarily consume

more cache space than the other applications. Cache

partitioning schemes [4–7] come into play as a result to handle

this limitation. It partitions the LLC among the different

applications running in the system such that the cache space

can be used fairly.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 898

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Fig. 2: Comparison of normalised speedup of different prefetching techniques with and without partitioning. The last four (cross-

lined) bars for each mixes are for prefetching with partitioning.

Cache prefetching is a crucial strategy employed to address

the memory-wall problem, primarily aimed at mitigating

latency to access memory blocks [8–10]. This technique

revolves around the anticipation and retrieval of future memory

block accesses from the main memory which is likely to be

demanded by the processing cores. These fetched blocks are

aptly termed “prefetched blocks”, while those requested

directly by the core are referred to as “demand blocks”. There

exist two main types of prefetchers: software prefetchers and

hardware prefetchers. Software prefetchers, which are static in

nature, heavily rely on compilers and cannot adapt to the

dynamic behavior of the applications running in the system [9].

In contrast, hardware prefetchers incorporate a dedicated

hardware circuit within the processor, commonly known as a

prefetch engine. This hard-ware component excels at efficiently

predicting future memory block accesses based on historical

patterns [9,11,12]. Hardware prefetchers can be further

classified into spatial and temporal prefetchers, depending on

their focus on spatial or temporal locality in previously

accessed memory patterns [9,13,14]. Spatial prefetchers operate

by analyzing the past memory accesses demanded by different

cores and predicts the future access by observing the fixed

behavioral patterns in those memory accesses. Consequently,

purely spatial prefetchers exhibit remarkable accuracy in

predicting regular memory access patterns but falter when

confronted with irregular memory access address patterns. On

the other hand, temporal prefetchers retain knowledge of past

memory accesses. When encountering a previously seen

memory address, they prefetch the consecutive addresses stored

in their memory, known as metadata. However, this approach

demand significant memory resources. In the context of this

work, our focus is exclusively on spatial prefetching.

Inaccurate or aggressive prefetching may prefect block

which will never access by the core. Such prefetch blocks are

fetched unnecessary and also creates pollution in the cache.

The existing prefetching ideas like next line prefetcher (NL),

BOP [15], PPF [16], and SPP [17] etc, improve the system

performance with limited cache pollution. However we have

observed that when these ideas are applied in presence of cache

partitioning the cache pollution increases. None of these

existing prefetching techniques are proposed considering the

partitioning cache. All these techniques assume that the entire

LLC can be accessible to all the cores and the underlying

replacement policy can replace a block from any ways as a

victim. With some experimental analysis we have observed that

the performance of these prefetch techniques decreases in

presence of partitioning. Figure 2 shows the performance of a

4-core system with different prefetching techniques. The

comparison is shown for with and without applying partitioning

on top of prefetching. Different spec cpu 2006 applications [18]

are used to prepare the benchmark mixes for this experiment.

The details about the experimental setup is discussed in Section

IV. It can be observed from the figure that all the prefetching

techniques show less performance improvement while

combining with cache partitioning. As per our knowledge, no

work has been done so far to jointly analyze the behavior of

prefetching and cache partitioning.

In this paper we have proposed an idea to efficiently use the

prefetching techniques on cache partitioning. Our proposed

idea can be used to combine any prefetching and partitioning

technique. We call our proposed technique as PP-Bridge, a

bridge between prefetching and partitioning. The primary idea

of PP-Bridge is divided into two parts. First is to prevent the

prefetching techniques to partition the LLC as per their

aggressiveness. Second is to prevent the prefetching to evict

demands blocks from its own partition. Combining both these

ideas, the proposed PP-Bridge reduces the additional cache

pollution caused by combining with partitioning. The detailed

description about the idea is given in Section III. The major

works done in this paper are as follows:

• We have proposed an alternative technique for periodically

deciding the LLC partitions such that the prefetch

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 899

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Fig. 3: Example of an 8-way set-associative cache with S

number of sets.

Fig. 4: An Example of the cache partitioning technique as

mention in UCP [4]. The red circles are prefetch engine

placed near to each core.

aggressiveness cannot control the decision of LLC

partitioning.

• To reduce the impact of cache pollution at LLC, we have

proposed a technique to keep the demand blocks in the

cache for longer duration.

• Combining the above two techniques the performance of

the system increases significantly.

• The proposed technique is experimentally compared with

the existing prefetching techniques.

The rest of the paper is organized as follows. The back-

ground and related works are discussed in the next section. The

proposed idea is discussed in Section III. The experimental

analysis is discussed in Section IV. Some sensitive issues

related to the proposed idea are discussed in Section V. Finally

the paper concludes at Section VI.

II. BACKGROUND

A. Set-Associative Cache and Replacement Policies

In this study, all considered cache memories are of the set-

associative type. Each cache is configured with a fixed number

of sets, and a block can only be mapped to a specific set based

on the set-index bits within the block’s address. The number of

blocks that a set can accommodate is determined by the

associativity of the cache. An N-way set-associative cache, for

instance, can hold N blocks within each set. For illustration,

refer to Figure 3, which depicts an 8-way set-associative cache.

Throughout this paper, we employ the notation N to denote the

cache associativity, and S to represent the number of sets

within the Last-Level Cache (LLC).

When a new block must be inserted into a non-empty set,

the replacement policy comes into play by removing an

existing block from the set. Replacement policies adhere to

three primary rules: insertion, promotion, and eviction. The

insertion rule governs the placement of a newly arriving block

into its appropriate position within the cache. Promotion, on the

other hand, comes into play when a cache hit occurs, leading to

the promotion of the relevant block. The block that is selected

for eviction from the set is known as the victim block, and the

eviction rule is responsible for selecting this victim block for

replacement. In accordance with established replacement

policies, any process can evict a block belonging to another

process if it is chosen as the victim block. However, when two

processes are not permitted to evict each other’s blocks from

the cache, they are considered isolated from each other.

B. Cache Partitioning

Cache partitioning is a technique used to fairly divide the

LLC among the multiple applications or cores. The

applications running on a core can be divided into cache

friendly (CF) and non cache friendly (NCF) applications. The

CF applications, with larger cache space, reduce the number of

misses. The NCF application need only a limited cache space.

Any cache space beyond that cannot reduce the number of

misses for NCF applications. A common example of NCF is

the streaming applications. Hence, uniformly dividing the LLC

space among all the applications leads to the inaccurate

utilization of the LLC. This is because an NCF applicant may

evict all the important blocks of a CF application if care has not

been taken. Cache partitioning is a technique proposed to

prevent this situation.

1) Utility Based Cache Partitioning: The phenomena of

way-based cache partitioning is first observed in Utility Based

Cache Partitioning (UCP) [4]. In general, UCP analyses the

information gathered from each application’s demand while it

is operating by using a low-cost monitoring circuit.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 900

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Fig. 5: Comparison of cache pollution done by prefetching techniques with and without combining with partitioning. Here the

cache pollution is measures as the percentage of prefetch blocks not requested (or used) by any core.

After doing so, it uses this data to spread the ways that

cache is used throughout the cores of CMP. The partition set

that is handed to the user by UCP is referred to as the target

partition. If there is a CMP with eight cores (core-0, core-1,

core-2, core-3, core-4, core-5, core-6, and core-7) and an N-

way set associative LLC, then the target partition can be

expressed as (a, b, c, d, e, f, g, h), where a+b+c+d+e+f+g+h =

N. Here a is the ways count reserved for core-0, b is the ways

count reserved for core-1, and so on. If the partition once

decided, does not change during the execution of the computer

then such partitions are called static partition.

 In case of dynamic partition UCP observes the behavior

of a selective number of sets called sample sets. The partition

changes dynamically based on the behavior of these sample

sets. To observe the utilization of each core, UCP maintain one

module called UMON for each core. The UMON records all

the cache request received by the LLC from a particular core.

Please note that UMON records only the request coming for the

sample sets. The information collected by all the UMONs are

then shared with a common partition manager who decides the

final partition. The procedure repeats after a fixed cycle of

execution. Figure 4 shows an example of such cache

partitioning.

C. Cache Prefetching

Ishhi and colleagues [19] introduced the AMPM prefetcher,

a technique designed to identify common strides within

frequently accessed memory regions known as hot zones.

AMPM accomplishes this by employing pattern matching.

When a pattern is discovered in the hot zone, AMPM begins

prefetching along the projected strides. Pugsley et al. suggested

Sandbox prefetching [20], which uses a bloom filter to initially

add prefetch addresses. These addresses are then checked

against the contents of the bloom filter. When the prefetch

accuracy exceeds a predefined threshold, real prefetches are

triggered.

Michaud et al. [15] proposed the optimal-offset Prefetcher

(BOP), a dynamic approach for determining the optimal block

offset at runtime. BOP employs a Recent Record database and

a best-offset learning strategy to analyse the cache access

patterns for 52 distinct offsets It identifies and monitors global

deltas to accurately depict cache request patterns and to ensure

prompt prefetching for enhanced efficiency. Lookahead

Fig. 6: The LLC partitioning shows with and withour

considering the prefetch request to take the decision of

partitioning. The results shows for multiple prefetch rounds

for a sing benchmark mix.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 901

IJRITCC | September 2023, Available @ http://www.ijritcc.org

prefetchers such as SPP [17], KPC [21], and PPF [16] store the

past record of cache access patterns in a compact signature

form. When a signature match is obtained, the compact history

is used to prefetch blocks. Cache pollution is minimized by

training the prefethers by feeding the performance parameter of

LLC so that undesirable prefetches can be avoided.

DSPatch [22] is a prefetching approach described by Bera

et al. that describes cache access patterns inside a page as a bit-

vector. To eliminate unwanted prefetches, DSPatch maintain

two different bit-patterns of spatial access, one targeting

prefetch coverage while the other targeting prefetch precision.

DSPatch prefetch cache blocks by analysing one of these bit-

patterns during runtime based on DRAM bandwidth utilisation

information. It is observed from the finding that prefetched

blocks frequently get stale after their initial access, Shesadri et

al. devised ICP [23], which lowers the priority of cache blocks

that are prefetched for the first time.

 Domino prefetcher [24] follows temporal locality to issue

prefetches. It keeps the record of the last two misses to predict

the future cache access. Irregular Stream Buffer (ISB) [25]

advances previous techniques by incorporating a structural

address space with spatially ordered addresses. This involves

converting non-contiguous addresses that are temporally

related in the physical address space into contiguous addresses

within the structural address space.

Managed Irregular Stream Buffer (MISB) [26] improves on

this solution by effectively handling the metadata by

prefetching, correcting for delays in receiving metadata from

off-chip. Triage [27] improves on the preceding solution by

lowering the amount of space required for metadata storage and

minimizing off-chip access traffic. Triage implies that a section

of the LLC can be used to store metadata because a small

fragment of it is sufficient for issuing prefetch request, and the

advantages of prefetching outweigh the advantages of a bigger

cache.

III. THE PROPOSED IDEA

A. Motivation

The existing prefetching works [15, 17, 19] never con-sider

the impact of partitioning on the prefetching. A partitioned

cache provides restricted cache size to each core hence

aggressive prefetching creates cache pollution in some

partitions. Another important observation is that the

involvement of the prefetch requests in taking the decision of

partitioning has limitations. A core using aggressive

prefetching may take a larger partition in the cache. Figure 5

shows the cache pollution caused by different prefetching

techniques observed with and without partitioning. A fixed

static partitioning is used for this experiment. It can be

observed that the prefetching techniques show high cache

pollution when combined with cache partitioning. Here the

cache pollution is measured as the percentage of prefetched

blocks not requested by any core. The pollution is increased by

26%, 23%, 19%, and 16% in case of NL, BOP, SPP, and PPF

respectively. Figure 6 shows the difference in partition sizes

with and without considering the prefetching requests while

deciding the partition of a 16-way associative LLC. Both upper

and lower part of the figure shows the distribution of 16 ways

among the four cores.

The y-axis shows how the 16-ways are distributed among

the four cores (C1, C2, C3, and C4). The x-axis shows the

partitioning decision in multiple partitioning rounds. The upper

part of the figure shows the partition when UMONs also record

the prefetching requests. The lower part of the figure shows the

partition when UMONs do not consider the prefetching

requests. Comparing the upper and lower figure, for each

round, it can be observed that the partition distribution are not

same. In the upper part, some cores get high partition when it is

actually not required.

B. The Main Idea (PP-Bridge)

Because of the issues mentioned above in this work we

have been motivated to propose a technique to efficiently

combine the prefetching and cache partitioning. The propose

PP-Bridge has two important part:

• Reducing the inter-application prefetch pollution the

pollution created by the prefetched blocks of an

application by evicting the demand blocks of other

applications from LLC.

• Reducing the intra-application prefetch pollution the

pollution created by the prefetched blocks of an application

by evicting the demand blocks of the same application.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 902

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Reducing inter-application prefetch pollution: The main

cause of this type of pollution is already discussed in Section

III-A (Figure 5). To reduce this pollution we propose not to

involve the prefetch block requests while computing the LLC

partitions. Hence, from the sample sets, only the demand

requests are monitored by the UMON module. The partition is

decided based on the demand request observed from each core

in the UMON. Please note that, in this work, we assume one

application running in each core. The UMON circuit as

discussed in Section II-B1, records all the demand requests and

periodically analyzes them to change the LLC partition. The

main advantage of such restriction in PP-Bridge is that now an

aggressively prefetched application cannot demand larger

cache space in the LLC. The partitioning is provided based on

the demand request. When a demand request comes for an

already prefetch request, the UMON considers that request for

partitioning. Hence, if a core needs more prefetching blocks

and the prefetcher is accurate, the core eventually gets a larger

partition. However, a core with an aggressive prefetcher with

high cache pollution cannot get a high partition LLC. As per

our knowledge, none of the existing ideas have separated the

prefetch and demand blocks while partitioning.

Reducing intra-application prefetch pollution: Even

after partitioning the LLC as per the demand requests there is

another issue that needs to be addressed. An application after

the partition can use the LLC space only assigned to it. Hence a

partitioning decided by demand block may face a challenge to

handle the pollution created by the aggressive prefetcher. A

demand-based cache partitioning prevents the inter-application

cache pollution. However, the strategy may cause intra-

application cache pollution. To overcome this intra-application

pollution, we have slightly modified the block eviction policy

(replacement policy). If a demand block from the LLC is

evicted by an prefetch block then the evicted block is placed in

a small buffer. Otherwise, the evicted block is written back to

the main memory (if dirty). We call this buffer as bridge-

buffer. In future, when a core requests for the block, it is

searched simultaneously in both the LLC and the bridge-buffer.

A hit either in the cache or bridge-buffer sends the block to the

upper level immediately. A hit in the bridge-buffer also moves

the block from the buffer to LLC again. Please note that no

prefetched block can be placed in the bridge-buffer. Also a

demand block if evicted by another demand block is not

inserted into the bridge-buffer. This buffer reduces the impact

of cache pollution as the incorrectly evicted demand blocks

from the cache are given a chance to remain in the chip. Hence,

intra-application cache pollution cannot reduce the number of

demand hits in the system.

Figure 7 shows all the components of a multicore processor

with the support of PP-Bridge. The processor is considered as a

4-core processor. The bridge-buffer used in our experiments

has 32-entries. Which means that the buffer can hold at max 32

demand blocks into it.

C. Hardware Overhead

The major additional hardware required by PP-Bridge is the

bridge-buffer. Excluding this buffer, all the modules shown in

Figure 7 are required in the existing design on top of which PP-

Bridge is proposed. Since the buffer can hold 32-entries, the

total additional storage required is 2.04KB, which is just 0.04%

of the total LLC size. The cache block size is considered as 64

bytes. To calculate the storage overhead we have considered an

12-bit additional storage per block for the tag entry.

TABLE I. Simulation parameters of the baseline system.

Core Out-of-order, 4 GHz, 4-core.

L1I 32 KB, 8-way, 4 cycles

L1D 48 KB, 12-way, 5 cycles

L2 512 KB, 8-way, 10 cycles, LRU

LLC 4 MB, 16-way, 20 cycles, LRU

IV. EXPERIMENTAL ANALYSIS

Our experiments were conducted using the Champsim

trace-based simulator [28], which is well-regarded and has been

utilized in recent competitions related to data prefetching and

cache replacement. We extended the Champsim simula-tor to

accommodate our proposed threat model. The system

parameters employed for these experiments are detailed in

Fig. 7: Example of a 4-core processor including the modules

required to implement PP-Bridge. The red circles are prefetch

engine placed near to each core.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 903

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Table I. In all our experiments, we employed a 4-core sys-tem

configuration as outlined in Table I. To create diverse

scenarios, we used various applications from the SPEC CPU

2006 benchmark suite [18]. Each experiment involved all four

cores concurrently running a distinct application from the

SPEC CPU 2006 suite. Therefore, for every run, we assembled

a mix of four benchmark applications from SPEC CPU 2006.

To ensure that the caches were properly primed, we executed

warming runs spanning 50 million instructions. Subsequently,

we executed the applications for a minimum of 200 million

instructions collectively to calculate the weighted speedup as a

performance metric. Our multi-core evaluation encompassed

both homogeneous and heterogeneous traces. We generated a

total of 15 trace mixes by combining cache-friendly and

memory-intensive applications. In cases where a core

completed its instructions ahead of others, we replayed the

instructions until all cores finished their execution.

A. Performance Evaluation

The proposed PP-Bridge technique is applied on top of a

baseline system where both prefetching and partitioning are

already applied. For the experiments we have used different

prefetching techniques like NL, BOP [15], SPP [17], and PPF

[16]. The partitioning technique use is UCP. As mentioned in

Section I, our proposed PP-Bridge helps to efficiently combine

both prefetching and partitioning.

Figure 8 shows the efficiency of PP-Bridge in terms of

normalised speedup. The figure shows the comparison of each

prefetching technique with and without PP-Bridge. In the

figure, the prefetching technique without PP-Bridge has

“partituion” as suffix while the prefetching with PP-bridge has

a suffix of “bridge”. Please note that PP-bridge also use a

modified UCP-based partitioning technique as discussed in

Section III-B. The last four bars for each mix, are for the PP-

bridge applied over different prefetching techniques. It can be

observed from the figure that the performance of the

prefetching techniques (on top of partitioning) have improved

after applying PP-Bridge.

The proposed PP-Bridge improves the speedup by 22%,

21%, 18%, and 15% over the corresponding technique where

PP-Bridge is not applied. The main reason of this improvement

is the reduction in both inter-application and intra-application

pollution. The detail analysis about the prefetch pollution is

discussed next.

B. Cache Pollution

As mentioned in Section III, the proposed PP-Bridge

reduces both inter-application and intra-application cache

pollution. Figure shows the reduction in cache pollution in PP-

Bridge over the existing prefetch+partition setup. The

comparison setup is already discussed in Section IV-A. Please

note that the result shown in this figure is recorded after only

applying the inter-application reduction technique proposed by

PP-Bridge. It can be observed from the figure that the pollution

is reduced by 12%, 11%, 10%, and 9% over the corresponding

prefetch+partition setup.

A further improvement in cache pollution is shown while

the intra-application pollution is also controlled by efficiently

using the bridge-buffer as discussed in Section III-B. Figure 10

shows the final reduction in cache pollution after implementing

both inter-application and intra-application pollution reduction

technique of PP-Bridge. It can be observed from the figure that

the pollution is reduced by 19%, 18%, 17%, and 16% over the

corresponding prefetch+partition setup. The improvements

shown in this figure reflects the importance of reducing both

inter-application and intra-application pollution while applying

prefetching with partitioning. As a result, the system get

performance benefit as shown in Figure 8.

C. Efficiency of Bridge-Buffer

Fig. 8: Performance comparison of PP-Bridge with various prefetching techniques while implemented on top of partitioning.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 904

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 11 shows the percentage distribution of hit and miss

in the bridge-buffer. A block, if missed in LLC, first search in

bridge-buffer. A hit in the bridge-buffer eliminates the needs to

going to main memory. Hence the total LLC misses can be

divided into total bridge-buffer hits and total bridge-buffer

misses. From the figure, it can be observed that on average

34.4% LLC misses are getting hit in the bridge-buffer which

helps in improving the performance of the system.

V. OTHER SENSITIVE ISSUES

A. Applying PP-Bridge with non-partitioned LLC

The proposed PP-Bridge is only applicable when the

prefetching techniques are applied on a a partitioned LLC. It

does not show significant improvement when the prefetching

techniques are applied over an LLC which is not partitioned

dynamically. Since the main motive of this work is to enhance

the performance of prefetching in a partitioned LLC, its under-

performance in non-partition LLC does not fall under the scope

of this paper. Also, LLC partitioning now a days is not just

used for fairly distributing the LLC. It is also used to prevent

the applications from side channel [29] and covert channel

attacks [30], [31]. Hence, a secure LLC may also have partition

which is a perfect example of the need of an idea like PP-

Bridge

Fig. 9: Cache pollution of the prefetch techniques with partitioning. The pollution for PP-Bridge is shown only with the PP-

Bridge technique used to reduce the inter-application pollution

Fig. 10: Cache pollution of the prefetch techniques with partitioning. The pollution for PP-Bridge is shown after reducing both

the inter-application and intra-application pollution.

Fig. 11: The percentage distribution of hits and misses in

bridge-buffer of the proposed PP-Bridge.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 905

IJRITCC | September 2023, Available @ http://www.ijritcc.org

B. Scalability of PP-Bridge

The proposed PP-Bridge can be used for any large sized

multicore system. Though the proposed idea is only experi-

mented for a single bank LLC, the idea can also be applied to

the modern multi-banked LLC [2] without any major hardware

overhead. The additional hardware will be required for the

bridge-buffer required for in the PP-Bridge. In case of a multi-

banked LLC, one bridge-buffer will be required for each LLC

bank.

VI. CONCLUSION

Contemporary computer processors are equipped with mul-

tiple cores, each having its dedicated private cache memories,

while they collectively share a spacious Last Level Cache

(LLC). To ensure equitable allocation of LLC resources among

concurrently executing applications on different cores and

bolster system security, partitioning techniques have been

introduced. These techniques enable the dynamic partitioning

of the LLC space based on the varying demands of the running

applications. Prefetching mechanisms are employed to

proactively load data blocks into the cache before they are

requested by the core, ensuring quicker access. Prefetching

decisions are typically made by specialized prefetch engines

associated with each core. However, unbridled prefetching can

result in an excess of cached blocks that may never be utilized,

leading to cache pollution and performance degradation. To

reap the benefits of prefetching while minimizing this

pollution, it becomes imperative to strike a balance.

Surprisingly, our research has unveiled that when existing

prefetching techniques are combined with partitioning

strategies, they tend to exacerbate cache pollution within the

LLC, consequently undermining system performance. In this

paper, we propose an innovative approach to mitigate cache

pollution arising from the combination of prefetching and

partitioning, aiming to enhance overall system performance.

The proposed PP-Bridge can be used as a bridge between any

spatial prefetching techniques with UCP-based partitioning

techniques.

REFERENCES

[1] R. Balasubramonian, N. P. Jouppi, and N. Muralimanohar,

“Multi-Core Cache Hierarchies,” Synthesis Lectures on

Computer Architecture, vol. 6, no. 3, pp. 1–153, 2011.

[2] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W.

Keckler, “A NUCA Substrate for Flexible CMP Cache

Sharing,” in Intl. Conf. on Supercomputing, p. 31–40, 2005.

[3] S. Das and H. K. Kapoor, “Dynamic Associativity

Management in Tiled CMPs by Runtime Adaptation of

Fellow Sets,” Transactions on Parallel and Distributed

Systems, vol. 28, no. 8, pp. 2229–2243, 2017.

[4] M. K. Qureshi and Y. N. Patt, “Utility-based cache

partitioning: A low-overhead, high-performance, runtime

mechanism to partition shared caches,” in Proceedings of

the 39th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO 39, pp. 423–432, 2006.

[5] C. Yang, L. Liu, K. Luo, S. Yin, and S. Wei, “Ciacp: A

correlation-and iteration-aware cache partitioning

mechanism to improve performance of multiple coarse-

grained reconfigurable arrays,” IEEE Transactions on

Parallel and Distributed Systems, vol. 28, no. 1, pp. 29–43,

2016.

[6] G. Saileshwar, S. Kariyappa, and M. Qureshi, “Bespoke

cache enclaves: Fine-grained and scalable isolation from

cache side-channels via flex-ible set-partitioning,” in 2021

International Symposium on Secure and Private Execution

Environment Design (SEED), pp. 37–49, IEEE, 2021.

[7] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D.

Pono-marev, “Non-Monopolizable Caches: Low-

Complexity Mitigation of Cache Side Channel Attacks,”

Transactions on Architecture and Code Optimization, vol. 8,

no. 4, pp. 1–21, 2012.

[8] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C.

Wilkerson, and Z. Chishti, “Path Confidence based

Lookahead Prefetching,” in 49th Annual International

Symposium on Microarchitecture, pp. 1–12, 2016.

[9] S. Mittal, “A Survey of Recent Prefetching Techniques for

Processor Caches,” ACM Computing Surveys, vol. 49, no. 2,

pp. 35:1–35:35, 2016.

[10] D. Deb, J. Jose, and M. Palesi, “COPE: Reducing Cache

Pollution and Network Contention by Inter-Tile

Coordinated Prefetching in NoC-Based MPSoCs,” ACM

Trans. Des. Autom. Electron. Syst., vol. 26, no. 3, pp. 1–31,

2021.

[11] S. Vanderwiel, S. Vanderwiel, D. J. Lilja, and D. J. Lilja, “A

Survey of Data Prefetching Techniques,” tech. rep., 1996.

[12] C.-J. Wu, A. Jaleel, M. Martonosi, S. C. Steely, and J.

Emer, “PACMan: Prefetch-Aware Cache Management for

high performance caching,” in 2011 44th Annual

IEEE/ACM International Symposium on Microarchi-tecture

(MICRO), pp. 442–453, 2011.

[13] S. Mittal, “A Survey of Recent Prefetching Techniques for

Processor Caches,” vol. 49, no. 2, 2016.

[14] B. Falsafi and T. F. Wenisch, A Primer on Hardware

Prefetching. Morgan & Claypool Publishers, 2014.

[15] P. Michaud, “Best-Offset Hardware Prefetching,” in High

Performance Computer Architecture, pp. 469–480, 2016.

[16] E. Bhatia, G. Chacon, S. Pugsley, E. Teran, P. V. Gratz, and

D. A. Jimenez,´ “Perceptron-Based Prefetch Filtering,” in

46th International Symposium on Computer Architecture,

pp. 1–13, 2019.

[17] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C.

Wilkerson, and Z. Chishti, “Path Confidence based

Lookahead Prefetching,” in 49th International Symposium

on Microarchitecture, pp. 1–12, 2016.

[18] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,”

ACM SIGARCH Computer Architecture News, vol. 34, no.

4, pp. 1–17, 2006.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 906

IJRITCC | September 2023, Available @ http://www.ijritcc.org

[19] Y. Ishii, M. Inaba, and K. Hiraki, “Access Map Pattern

Matching for Data Cache Prefetch,” in Supercomputing,

pp. 499–500, 2009.

[20] S. H. Pugsley, Z. Chishti, C. Wilkerson, P. Chuang, R. L.

Scott, A. Jaleel, S. Lu, K. Chow, and R. Balasubramonian,

“Sandbox Prefetching: Safe Run-time Evaluation of

Aggressive Prefetchers,” in High Performance Computer

Architecture, pp. 626–637, 2014.

[21] J. Kim, E. Teran, P. V. Gratz, D. A. Jimenez,´ S. H.

Pugsley, and C. Wilkerson, “Kill the Program Counter:

Reconstructing Program Behavior in the Processor Cache

Hierarchy,” in Architectural Support for Programming

Languages and Operating Systems, pp. 737–749, 2017.

[22] R. Bera, A. V. Nori, O. Mutlu, and S. Subramoney,

“DSPatch: Dual Spatial Pattern Prefetcher,” in

Microarchitecture, pp. 531–544, 2019.

[23] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons,

M. A. Kozuch, and T. C. Mowry, “ Mitigating Prefetcher-

Caused Pollution Using Informed Caching Policies for

Prefetched Blocks,” ACM Trans. Archit. Code Optim., vol.

11, no. 4, pp. 51:1–51:22, 2015.

[24] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad,

“Domino Temporal Data Prefetcher,” in International

Symposium on High Per-formance Computer Architecture,

pp. 131–142, 2018.

[25] A. Jain and C. Lin, “Linearizing Irregular Memory

Accesses for Im-proved Correlated Prefetching,” in 46th

International Symposium on Microarchitecture, p. 247–259,

2013.

[26] H. Wu, K. Nathella, D. Sunwoo, A. Jain, and C. Lin,

“Efficient Metadata Management for Irregular Data

Prefetching,” in 46th International Symposium on

Computer Architecture, p. 449–461, 2019.

[27] H. Wu, K. Nathella, J. Pusdesris, D. Sunwoo, A. Jain, and

C. Lin, “Temporal Prefetching Without the Off-Chip

Metadata,” in 52nd Annual International Symposium on

Microarchitecture, p. 996–1008, 2019.

[28] Online Available: https://github.com/ChampSim/ChampSim,

Champsim Simulator.

[29] Q. et. al., “CEASER: Mitigating Conflict-Based Cache

Attacks via Encrypted-Address and Remapping,” in MICRO

2018.

[30] J. Kaur and S. Das, “A survey on cache timing channel

attacks for multicore processors,” Journal of Hardware and

Systems Security, vol. 5, no. 2, pp. 169–189, 2021.

[31] J. Kaur and S. Das, “TPPD: Targeted Pseudo Partitioning

based Defence for cross-core covert channel attacks,”

Journal of Systems Architecture, vol. 135, p. 102805, 2023.

http://www.ijritcc.org/

