
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 832

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Graph-Based Keyphrase Extraction for Software

Traceability in Source Code and Documentation

Mapping

Nakul Sharma1, Mandar Diwakar2, Swapnil Shinde3, Vishnu Suryawanshi4, Varsha Jadhav5
1Dept of Artificial Intelligence and Data Science

Vishwakarma Institute of Information Technology

Pune, India

nakul777@gmail.com
2Dept of Artificial Intelligence and Data Science

Vishwakarma Institute of Information Technology

Pune, India

mpdiwakar30@gmail.com
3Dept of Artificial Intelligence and Data Science

Vishwakarma Institute of Information Technology

Pune, India

swapnil.shinde@viit.ac.in
4Department of Electronics and Telecommunication,

Trinity Academy of Engineering,

 Pune, India

vishnusam2007@gmail.com
5Dept of Artificial Intelligence and Data Science

Vishwakarma Institute of Information Technology

Pune, India

varsha.jadhav@viit.ac.in

 Abstract— Natural Language Processing (NLP) forms the basis of several computational tasks. However, when applied to the software

system’s, NLP provides several irrelevant features and the noise gets mixed up while extracting features. As the scale of software system’s

increases, different metrics are needed to assess these systems. Diagrammatic and visual representation of the SE projects code forms an

essential component of Source Code Analysis (SCA). These SE projects cannot be analyzed by traditional source code analysis methods nor can

they be analyzed by traditional diagrammatic representation. Hence, there is a need to modify the traditional approaches in lieu of changing

environments to reduce learning gap for the developers and traceability engineers. The traditional approaches fall short in addressing specific

metrics in terms of document similarity and graph dependency approaches. In terms of source code analysis, the graph dependency graph can be

used for finding the relevant key-terms and keyphrases as they occur not just intra-document but also inter-document. In this work, a similarity

measure based on context is proposed which can be employed to find a traceability link between the source code metrics and API documents

present in a package. Probabilistic graph-based keyphrase extraction approach is used for searching across the different project files.

Keywords- Keyphrase Extraction;Software Traceability;Source Code Analysis;Text Mining;Program Comprehension.

I. INTRODUCTION

Keyphrase Extraction (KE) implies extracting relevant

key-terms or phrases from the source. It is beginning phase

employed in various computing tasks with the intent to extract

the most relevant features. This includes extracting essential

and relevant text from a given document [1]. It forms the part

of text and data mining in which processing is done on text or

data in general. KE finds close application with the various

satellite fields of NLP and text mining such as Information

Retrieval, Information storage, sentiment mining, opinion

mining and other such related fields.

Source Code Analysis or code analysis implies analysing

the source code written in standard programming languages.

The source code must first be parsed before it can be

understood hence, parsing of the source code entails scanning

each keyword, literal, identifiers for enhancing better

understanding of the code. There are different parsers which

parse the source code through various means and extract

relevant information. Several models, graphs, meta-data,

developer’s profile, developer’s expertise can be extracted

from such analysis of the code. Keyphrase extraction for

source code involves parsing the code to extraction of useful

key terms or phrases [2].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 833

IJRITCC | September 2023, Available @ http://www.ijritcc.org

 Traditional keyphrase extraction approaches can be

applied on large source code projects owing to very high run

time to extract relevant keywords. The relevant features can

be extracted across the documents or within a document by

studying similarity across these documents. The similarity can

be in terms of the context or in terms of word to word

similarity. In the literature of text mining, various similarity

measures are proposed. The similarity hence generated can aid

in creating a traceability link between different software

artifacts across the SDLC.

 Software’s traceability mechanism needs a rigorous

investigation and which can simulated by making use of

Keyphrase extraction. The relationships existing between the

different source code artifacts which Keyphrase extraction can

also be done manually. However, this results in lots of time

getting consumed especially in case of large textual documents

or projects with large source code documents. Our current

work focuses on a methodology of extracting keyphrases from

different API documents within a package.

A. Importance of Keyphrase Extraction in Software

Traceability

Software traceability aims to capture relevance of context and

similarity as it occurs across different software documents. In

order to accomplish successful software traceability,

keyphrases occurring in different documents must be

extracted. There are various text mining approaches applied in

achieving keyphrase extraction [15]. Software Traceability

needs these keyphrase as input in order to trace linkages across

different documents.

II. LITERATURE REVIEW

Graph based extraction approaches have been enhanced by

making using knowledge graphs. These knowledge graphs are

more knowledgeable as the latent relationships existing

between two or more keyphrases are introduced within the

graph. There are various graph based approaches which are

used on source code as well [3].

The keyphrase extraction can also be done in the process of

conducting tasks such as multi-model retrieval. In this research

authors use Fisher-LDA technique which is a extension of

LDA technique to assign weights for each modality. The

author’s work included query reformulation but had textual

keyphrase based component as well [4].

Graph based keyphrase extraction approaches are used in N-

gram filtration technique. The authors here use statistical

features present in the document as well the co-location

strength. These approaches are hybrid as both statistical and

numerical approaches are used in addition to lookup with

Dbpedia text in achieving automated keyphrase extraction [5].

Graph based, language independent keyphrase extractor is

developed by Litvak et. al. The proposed methodology is

compared with standard metrics of precision, recall, f-score.

The tool gave better improvement in the precision and recall

when compared with Text rank methodology. However, the

proposed tool only gave a fare improvement for recall and f-

score metrics [6].

The feature extraction is made better by first conducting

feature selection. The feature selection strategy can be

improved using optimization techniques for getting smaller

number of useful features. This technique is proposed by

Huang [7].

Automatic keyphrase extraction is proposed by yang et.al. The

author considers relationship between words and sentences

while extracting keyphrases. The graph based approach

constructs graph between sentences, words separately and also

between both sentences and words. K-means clustering is used

for clustering related terms together. The evaluation metrics

used are precision, recall and f-measure [8].

Research for automated keyphrase extraction and ranking has

been done for short documents by Marina et. al. The proposed

a new framework for generating topic based keyphrases and

ranking them according to a well-defined ranking function.

Ranking function had characteristics of coverage, purity,

phraseness and completeness [9].

Top K-keywords and top K-documents extraction is done by

ciprian et. al. The authors utilized weighed vocabulary for

creating top K-keyword. The extracted top K-keyword evolves

further to provide a document level top K documents. The

benchmark used for evaluation were Okapi BM-25 weighting

schemes, relational databases, document oriented database

implementation [10].

Overlapping phrases are used for extracting accurate

keyphrases by Mounia et. al. The authors make use of DPM-

index for overlapping keyphrase in text document. The

author’s use supervised learning system. Semeval-2010 corpus

is used in evaluation of the proposed methodology. The

precision and F1-score are used for comparison [11].

There have been considerable attempt to map source code and

its associated documentation by several authors [12][13].

Authors propose a modified version of Abstract Syntax Tree

(AST). The tools uses IntelliJ IDE for extracting relevant code

syntax and developing insights for code analysis [12].

Amir and Amir develop a bag of words and conduct similarity

of source code based documents using such information. It is

noted by authors that several variations in similarity

calculation can be done [13].

Authors conduct unsupervised keyphrase extraction using

position-rank algorithm. The approach proposes a graph from

unique words and generates a position-biased ranking system

using these graphs. The candidate phrases are then scored by

calculating sum of individual words [14].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 834

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Table-1 gives the summary of different research paper’s

methodology and the technologies which are used in

comparing the proposed methodology.

TABLE I. RESEARCH METHDOLOGIES USED AND COMPARATIVE

ANALYSIS DONE IN LITERATURE

Ref

.

Title Type of

Keyphrase

Extraction

Methodology

Used

Comparison

Done With

3 Keyphrase

extraction

using

knowledge

graphs

Automated Distance

computation,

clustering

Single Rank,

Expand Rank,

Sccocurance,

SCWiki

4 Multimodal

retrieval using

mutual

information

based textual

query

reformulation

Automated Fisher-

LDA,KEA

Wiki parallel

dataset

5 A graph-based

unsupervised

N-gram

filtration

technique for

automatic

keyphrase

extraction

Automatic Statistical

feature, Co-

location

strength, N-

gram graph

Sem Eval 2010,

Duc 2001

dataset

6 Degext: a

language-

independent

keyphrase

extractor

Automatic Graph based

keyphrase

extraction

Text Rank

7 An efficient

automatic

multiple

objectives

optimization

feature

selection

strategy for

internet text

classification

Automatic Multiple

objective

optimization

Reuters-

21578,Newsgro

up-20, KI-04,

7-Web

8 A graph-based

approach of

automatic

keyphrase

extraction

Automated keyphrase

extraction in

relation to topic

modelling

Hulth2003,

DUC2001

9 Automatic

construction

and ranking of

topical

keyphrases on

collections of

short

documents

Automated Ranking By

Topic

bLDA,

Newton-

Raphson

iteration

method,

kpRelInt,

kpRel

10 Benchmarking

top-k keyword

and top-k

document

processing

with T2K2

and T2K2D2

Automatic Creating

benchmark

using the most

essential K

keywords and

documents.

Okapi BM25,

TF-IDF

III. PROPOSED METHODOLOGY

This section describes the proposed work. The first

section of proposed work is keyphrase extraction and

construction of source code dependency graph. The second

section is calculating the graph based similarity related to the

source code from the constructed graph. The proposed

methodology is shown in figure-1.

Figure 1. Proposed Methodology

A. Keyphrase Extraction and Source Code Dependency

Graph

 This section involves parsing each source code file and

creating the keyphrase dependency graph. The algorithm is

titled as Source Code to Keyphrase Extraction (SC2KE). The

algorithm for extracting the keyphrase from the source code is

presented in Figure-2.

INPUT: Source code files

Parameters: path to source code directory

START

Step:1 Read the input source code file

Step: 2 Parse the source code

Step : 2.1Apply document pre-processing using NLP parser

To do tokenization, stemming of each word.

Step : 2.2 Extract Methods , Variables, Class name from

Each File

Step: 2.3 construct a tabular representation for each file as

follows

For Every Document D in Package, apply Annexure-I to

segregate the textual documents with non-textual documents.

 For Every filtered Document D in package,

Do,

1. Perform Basic NLP tasks of Tokenization, stemming,

stop word removal using Stanford NLP Parser.

 2. Extract programming constructs, keywords, literals to

create bag of words.

File

Name

Method

Name

Variable

Name

Class

Name

FN1 MN1 VN1 CN1

FN2 MN2 VN2 CN2

FN3 MN3 VN3 CN3

.. … … …

FNN MNN VNN CNN

Figure 2. Keyphrase Based Source Code Dependency Graph-SC2KE

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 835

IJRITCC | September 2023, Available @ http://www.ijritcc.org

3.2. Source code and documentation similarity measure

INPUT: source code metrics collected from 3.1 section and

document metrics

Parameters: path to source code directory

Output: contextual similarity measure

START

Step:1 For every file scan the input file

Step:2 Parse the source code to construct a dependency

graph

Step : 2.1 Apply document pre-processing using NLP

parser.

Step : 2.2 Construct the dependency graph consisting of

the vertices and the edges. Vertices represent the source

code methods and fields while edge represents strength of

connection between the connection between vertices.

Step :2.3 Edges weight between the two vertex Vi & Vj is

calculated using equation-1

Edge weight : w(i,j)=
𝑻𝑭(𝐕𝐢)+𝑻𝑭(𝐕𝐣)

𝑻𝑭(𝑽𝒊,𝑽𝒋)−𝑻𝑭(𝑽𝒊)−𝑻𝑭(𝑽𝒋)
……………eq-1

Where, TF(Vi) is the Term Frequency of Vertex Vi,

 TF(Vj) is the Term Frequency of Vertex Vj

Edge weights are sorted with positive edge weights sorted.

Step 2.4: The graph based similarity measure is calculated

using vertex nodes as follows:

Let FV(Mi) = (m1,m2,….mn) represent at vertex i, all the

methods.

FV(Fi) = (f1,f2,….fn) represent at vertex i, all the variables.

F(Mk)= (dm1, dm2,….dmk) represent at vertex k, the API

document methods vector.

F(Vi) = (df1, df2,….dfk) denotes the API document

Variable vector at vertex k.

|FV(Mi)|=√ FV(M1)2 + FV(M2) 2 + ...+FV(Mi) 2

|FV(Fi)|=√ FV(F1) 2 + FV(F2) 2 + ...+FV(Fl) 2

|(FMk)|=√ (FM1) 2 + (FM2) 2+ ...+(FMn) 2

|(FVk)|=√ (FV1) 2 + (FV2) 2+ ...+(FVz) 2

|FV(Mi).FMj|=FV(M1).FM1+FV(M2).FM2+…+ FV(Mi).FMj

The contextual similarity based on the graph constructed is

given as follows:-

CSE=
√|FV(Mi).FMj|∗|FV(Mi)|∗|FMj|

csc(FV(Mi,FMj)∗|FV(Mi)|∗|FMj|

STOP

IV. RESULTS AND DISCUSSION

The proposed methodology was evaluated on several open

source projects. Figure 4,5,6,7,8 shows different stages of

inputs and output got from the proposed system. As an

example, the open source pinot project was used for getting

the results. Figure-4 shows how system accepts the path for

the package. Figure-5 shows providing the keyword

“derivtivesIndirection” for searching. Figure-7 and Figure 8

provides the result of running the algorithm SC2KE.

Figure 3. Adding package of source code files

Figure 4. Adding package API documentation to project

Figure 5. Parsing the package for the keyword “derivativesIndirection”

Figure 6. Output for searching derivatesIndirection keyword

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 836

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 7. derivatesIndirection keyword found in DSComplier.java

V. CONCLUSION

This work proposes contextual similarity approach in

order to find traceability links between the source code and the

API documentation. The authors proposed a contextual

similarity based keyphrase extraction mechanism for searching

across different project source code. The proposed system is

evaluated using Apache Pinot database. The similarity

measure can be used to create and fire query for query-based

software traceability linkages. The linkage hence created can

aid in various program comprehension and SCA tasks.

REFERENCES

[1] G. Martinčić-Ipšić, Sanda, and Ana Meštrović. "Language

Networks."

[2] Kirkov, Radoslav, and Gennady Agre. "Source code analysis–an

overview." Cybernetics and Information Technologies 10.2

(2010): 60-77.

[3] Shi, Wei, Weiguo Zheng, Jeffrey Xu Yu, Hong Cheng, and Lei

Zou. "Keyphrase extraction using knowledge graphs." Data

Science and Engineering 2, no. 4 (2017): 275-288.

[4] Datta Deepanwita, Shubham Varma, and Sanjay K. Singh.

"Multimodal retrieval using mutual information based textual

query reformulation." Expert Systems with Applications 68

(2017): 81-92.

[5] Kumar, Niraj, Kannan Srinathan, and Vasudeva Varma. "A

graph-based unsupervised N-gram filtration technique for

automatic keyphrase extraction." International Journal of Data

Mining, Modelling and Management 8, no. 2 (2016): 124-143.

[6] Litvak, Marina, Mark Last, and Abraham Kandel. "Degext: a

language-independent keyphrase extractor." Journal of Ambient

Intelligence and Humanized Computing 4 (2013): 377-387.

[7] Huang, Changqin, Jia Zhu, Yuzhi Liang, Min Yang, Gabriel Pui

Cheong Fung, and Junyu Luo. "An efficient automatic multiple

objectives optimization feature selection strategy for internet

text classification." International Journal of Machine Learning

and Cybernetics 10 (2019): 1151-1163.

[8] Ying, Yan, Tan Qingping, Xie Qinzheng, Zeng Ping, and Li

Panpan. "A graph-based approach of automatic keyphrase

extraction." Procedia Computer Science 107 (2017): 248-255.

[9] Danilevsky, Marina, Chi Wang, Nihit Desai, Xiang Ren, Jingyi

Guo, and Jiawei Han. "Automatic construction and ranking of

topical keyphrases on collections of short documents." In

Proceedings of the 2014 SIAM International Conference on Data

Mining, pp. 398-406. Society for Industrial and Applied

Mathematics, 2014.

[10] Truică, Ciprian-Octavian, Jérôme Darmont, Alexandru Boicea,

and Florin Rădulescu. "Benchmarking top-k keyword and top-k

document processing with T2K2 and T2K2D2." Future

Generation Computer Systems 85 (2018): 60-75.

[11] Haddoud, Mounia, and Said Abdeddaim. "Accurate keyphrase

extraction by discriminating overlapping phrases." Journal of

Information Science 40, no. 4 (2014): 488-500.

[12] Spirin, Egor, Egor Bogomolov, Vladimir Kovalenko, and

Timofey Bryksin. "PSIMiner: A tool for mining rich abstract

syntax trees from code." In 2021 IEEE/ACM 18th International

Conference on Mining Software Repositories (MSR), pp. 13-17.

IEEE, 2021.

[13] Amir Hossein Rasekh, Amir Hossein Arshia, Seyed Mostafa

Fakhrahmad, Mohammad Hadi Sadreddini; Mining and

discovery of hidden relationships between software source codes

and related textual documents, Digital Scholarship in the

Humanities, Volume 33, Issue 3, 1 September 2018, Pages 651–

669, https://doi.org/10.1093/llc/fqx052.

[14] Florescu, Corina, and Cornelia Caragea. "A position-biased

pagerank algorithm for keyphrase extraction." Proceedings of

the AAAI conference on artificial intelligence. Vol. 31. No. 1.

2017.

Annexure-I

Algorithm for determining candidate documents for similarity calculation

START

Step 1: Check the extension of each document in the package.

Step 2: If the file extension is .dll,.exe, then ignore the file

Step 3: if the file extension is .chm, .txt,.doc,.xml then include it for calculating the similarity.

STOP.

http://www.ijritcc.org/

