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 Abstract— Natural Language Processing (NLP) forms the basis of several computational tasks. However,  when applied to the software 

system’s, NLP provides several irrelevant features and the noise gets mixed up while extracting features. As the scale of software system’s 

increases,   different   metrics are needed to assess these systems. Diagrammatic and visual representation of the SE projects code forms an 

essential component of Source Code Analysis (SCA). These SE projects cannot be analyzed by traditional source code analysis methods nor can 

they be analyzed by traditional diagrammatic representation. Hence, there is a need to modify the traditional approaches in lieu of changing 

environments to reduce learning gap for the developers and traceability engineers. The traditional approaches fall short in addressing specific 

metrics in terms of document similarity and graph dependency approaches. In terms of source code analysis, the graph dependency graph can be 

used for finding the relevant key-terms and keyphrases as they occur not just intra-document but also inter-document. In this work, a similarity 

measure based on context is proposed which can be employed to find a traceability link between the source code metrics and API documents 

present in a package.   Probabilistic graph-based keyphrase extraction approach is used for searching across the different project files.   

Keywords- Keyphrase Extraction;Software Traceability;Source Code Analysis;Text Mining;Program Comprehension. 

 

I.  INTRODUCTION   

Keyphrase Extraction (KE) implies extracting relevant 

key-terms or phrases from the source.  It is beginning phase 

employed in various computing tasks with the intent to extract 

the most relevant features. This includes extracting essential 

and relevant text from a given document [1]. It forms the part 

of text and data mining in which processing is done on text or 

data in general. KE finds close application with the various 

satellite fields of NLP and text mining such as Information 

Retrieval, Information storage, sentiment mining, opinion 

mining and other such related fields.  

Source Code Analysis or code analysis implies analysing 

the source code written in standard programming languages. 

The source code must first be parsed before it can be 

understood hence, parsing of the source code entails scanning 

each keyword, literal, identifiers for enhancing better 

understanding of the code. There are different parsers which 

parse the source code through various means and extract 

relevant information. Several models, graphs, meta-data, 

developer’s profile, developer’s expertise can be extracted 

from such analysis of the code. Keyphrase extraction for 

source code involves parsing the code to extraction of useful 

key terms or phrases [2].   
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 Traditional keyphrase extraction approaches can be 

applied on large source code projects owing to very high run 

time to extract relevant keywords.  The relevant features can 

be extracted across the documents or within a document by 

studying similarity across these documents. The similarity can 

be in terms of the context or in terms of word to word 

similarity. In the literature of text mining, various similarity 

measures are proposed. The similarity hence generated can aid 

in creating a traceability link between different software 

artifacts across the SDLC.  

 Software’s traceability mechanism needs a rigorous 

investigation and which can simulated by making use of 

Keyphrase extraction. The relationships existing between the 

different source code artifacts which Keyphrase extraction can 

also be done manually. However, this results in lots of time 

getting consumed especially in case of large textual documents 

or projects with large source code documents. Our current 

work focuses on a methodology of extracting keyphrases from 

different API documents within a package.   

A. Importance of Keyphrase Extraction in Software 

Traceability 

Software traceability aims to capture relevance of context and 

similarity as it occurs across different software documents. In 

order to accomplish successful software traceability, 

keyphrases occurring in different documents must be 

extracted. There are various text mining approaches applied in 

achieving keyphrase extraction [15]. Software Traceability 

needs these keyphrase as input in order to trace linkages across 

different documents. 

II. LITERATURE REVIEW 

Graph based extraction approaches have been enhanced by 

making using knowledge graphs. These knowledge graphs are 

more knowledgeable as the latent relationships existing 

between two or more keyphrases are introduced within the 

graph. There are various graph based approaches which are 

used on source code as well [3].  

The keyphrase extraction can also be done in the process of 

conducting tasks such as multi-model retrieval. In this research 

authors use Fisher-LDA technique which is a extension of 

LDA technique to assign weights for each modality. The 

author’s work included query reformulation but had textual 

keyphrase based component as well [4].   

Graph based keyphrase extraction approaches are used in N-

gram filtration technique. The authors here use statistical 

features present in the document as well the co-location 

strength. These approaches are hybrid as both statistical and 

numerical approaches are used in addition to lookup with 

Dbpedia text in achieving automated keyphrase extraction [5].  

Graph based, language independent keyphrase extractor is 

developed by Litvak et. al.  The proposed methodology is 

compared with standard metrics of precision, recall, f-score.  

The tool gave better improvement in the precision and recall 

when compared with Text rank methodology. However, the 

proposed tool only gave a fare improvement for recall and f-

score metrics [6].   

The feature extraction is made better by first conducting 

feature selection. The feature selection strategy can be 

improved using optimization techniques for getting smaller 

number of useful features. This technique is proposed by 

Huang [7]. 

Automatic keyphrase extraction is proposed by yang et.al. The 

author considers relationship between words and sentences 

while extracting keyphrases. The graph based approach 

constructs graph between sentences, words separately and also 

between both sentences and words. K-means clustering is used 

for clustering related terms together. The evaluation metrics 

used are precision, recall and f-measure [8].    

Research for automated keyphrase extraction and ranking has 

been done for short documents by Marina et. al.  The proposed 

a new framework for generating topic based keyphrases and 

ranking them according to a well-defined ranking function. 

Ranking function had characteristics of coverage, purity, 

phraseness and completeness [9]. 

Top K-keywords and top K-documents extraction is done by 

ciprian et. al. The authors utilized weighed vocabulary for 

creating top K-keyword. The extracted top K-keyword evolves 

further to provide a document level top K documents. The 

benchmark used for evaluation were Okapi BM-25 weighting 

schemes, relational databases, document oriented database 

implementation [10].  

Overlapping phrases are used for extracting accurate 

keyphrases by Mounia et. al. The authors make use of DPM-

index for overlapping keyphrase in text document. The 

author’s use supervised learning system. Semeval-2010 corpus 

is used in evaluation of the proposed methodology. The 

precision and F1-score are used for comparison [11]. 

There have been considerable attempt to map source code and 

its associated documentation by several authors [12][13]. 

Authors propose a modified version of Abstract Syntax Tree 

(AST). The tools uses IntelliJ IDE for extracting relevant code 

syntax and developing insights for code analysis [12].  

Amir and Amir develop a bag of words and conduct similarity 

of source code based documents using such information. It is 

noted by authors that several variations in similarity 

calculation can be done [13]. 

Authors conduct unsupervised keyphrase extraction using 

position-rank algorithm. The approach proposes a graph from 

unique words and generates a position-biased ranking system 

using these graphs. The candidate phrases are then scored by 

calculating sum of individual words [14].   
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Table-1 gives the summary of different research paper’s 

methodology and the technologies which are used in 

comparing the proposed methodology.   

TABLE I.  RESEARCH METHDOLOGIES USED AND COMPARATIVE 

ANALYSIS DONE IN LITERATURE 

Ref

. 

Title Type of 

Keyphrase 

Extraction 

Methodology 

Used 

Comparison 

Done With 

3 Keyphrase 

extraction 

using 

knowledge 

graphs 

Automated Distance 

computation, 

clustering 

Single Rank, 

Expand Rank, 

Sccocurance, 

SCWiki 

4 Multimodal 

retrieval using 

mutual 

information 

based textual 

query 

reformulation 

Automated Fisher-

LDA,KEA 

Wiki parallel 

dataset 

5 A graph-based 

unsupervised 

N-gram 

filtration 

technique for 

automatic 

keyphrase 

extraction 

Automatic Statistical 

feature, Co-

location 

strength, N-

gram graph 

Sem Eval 2010, 

Duc 2001 

dataset 

6 Degext: a 

language-

independent 

keyphrase 

extractor 

Automatic Graph based 

keyphrase 

extraction 

Text Rank   

7 An efficient 

automatic 

multiple 

objectives 

optimization 

feature 

selection 

strategy for 

internet text 

classification 

Automatic Multiple 

objective 

optimization 

Reuters-

21578,Newsgro

up-20, KI-04, 

7-Web 

8 A graph-based 

approach of 

automatic 

keyphrase 

extraction 

Automated keyphrase 

extraction in 

relation to topic 

modelling 

Hulth2003, 

DUC2001 

9 Automatic 

construction 

and ranking of 

topical 

keyphrases on 

collections of 

short 

documents 

Automated Ranking By 

Topic 

bLDA, 

Newton-

Raphson 

iteration 

method, 

kpRelInt,  

kpRel 

10 Benchmarking 

top-k keyword 

and top-k 

document 

processing 

with T2K2 

and T2K2D2 

Automatic Creating 

benchmark 

using the most 

essential K 

keywords and 

documents. 

Okapi BM25, 

TF-IDF 

III. PROPOSED METHODOLOGY 

This section describes the proposed work. The first 

section of proposed work is keyphrase extraction and 

construction of source code dependency graph.  The second 

section is calculating the graph based similarity related to the 

source code from the constructed graph.  The proposed 

methodology is shown in figure-1.   

 

Figure 1.  Proposed Methodology 

A. Keyphrase Extraction and Source Code Dependency 

Graph 

  This section involves parsing each source code file and 

creating the keyphrase dependency graph. The algorithm is 

titled as Source Code to Keyphrase Extraction (SC2KE). The 

algorithm for extracting the keyphrase from the source code is 

presented in Figure-2.   

INPUT: Source code files 

Parameters: path to source code directory 

START 

Step:1 Read the input source code file 

Step: 2 Parse the source code   

Step : 2.1Apply document pre-processing using NLP parser 

To do tokenization, stemming of each word. 

Step : 2.2 Extract Methods , Variables, Class name from 

Each File  

Step: 2.3 construct a tabular representation for each file as 

follows 

For Every Document D in Package, apply Annexure-I to 

segregate the textual documents with non-textual documents. 

 For Every filtered Document D in package, 

Do, 

1. Perform Basic NLP tasks of Tokenization, stemming, 

stop word removal using Stanford NLP Parser. 

 2. Extract programming constructs, keywords, literals to 

create bag of words. 

File 

Name 

Method 

Name 

Variable 

Name 

Class 

Name 

FN1 MN1 VN1 CN1 

FN2 MN2 VN2 CN2 

FN3 MN3 VN3 CN3 

.. … … … 

FNN MNN VNN CNN 

Figure 2.  Keyphrase Based Source Code Dependency Graph-SC2KE 
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3.2. Source code and documentation similarity measure 

INPUT: source code metrics collected from 3.1 section and 

document metrics 

Parameters: path to source code directory 

Output: contextual similarity measure 

START 

Step:1 For every file scan the input file 

Step:2 Parse the source code to construct a dependency   

graph 

Step : 2.1 Apply document pre-processing using NLP 

parser. 

Step : 2.2 Construct the dependency graph consisting of 

the vertices and the edges. Vertices represent the source 

code methods and fields while edge represents strength of 

connection  between the    connection between vertices. 

Step :2.3  Edges weight between the two vertex Vi  & Vj is 

calculated using equation-1 

Edge weight : w(i,j)=
𝑻𝑭(𝐕𝐢)+𝑻𝑭(𝐕𝐣)

𝑻𝑭(𝑽𝒊,𝑽𝒋)−𝑻𝑭(𝑽𝒊)−𝑻𝑭(𝑽𝒋)
……………eq-1 

 

Where, TF(Vi)  is the Term Frequency of Vertex Vi, 

             TF(Vj)  is the Term Frequency of Vertex Vj 

Edge weights are sorted with positive edge weights sorted.  

Step 2.4: The graph based similarity measure is calculated 

using vertex nodes as follows: 

Let FV(Mi) = (m1,m2,….mn) represent at vertex i, all the 

methods. 

FV(Fi) = (f1,f2,….fn) represent at  vertex i, all the variables. 

F(Mk)= (dm1, dm2,….dmk) represent at vertex k,  the API 

document  methods vector. 

F(Vi) =  (df1, df2,….dfk)  denotes  the API document 

Variable vector at vertex k. 

|FV(Mi)|=√ FV(M1)2 +  FV(M2) 2 + ...+FV(Mi) 2   

|FV(Fi)|=√ FV(F1) 2 +  FV(F2) 2 + ...+FV(Fl) 2    

|(FMk)|=√ (FM1) 2 +  (FM2) 2+ ...+(FMn) 2   

|(FVk)|=√ (FV1) 2 +  (FV2) 2+ ...+(FVz) 2   

|FV(Mi).FMj|=FV(M1).FM1+FV(M2).FM2+…+ FV(Mi).FMj 

The contextual similarity based on the graph constructed is 

given as follows:-  

CSE= 
√|FV(Mi).FMj|∗|FV(Mi)|∗|FMj|

csc(FV(Mi,FMj)∗|FV(Mi)|∗|FMj|
 

STOP 

IV. RESULTS AND DISCUSSION 

The proposed methodology was evaluated on several open 

source projects. Figure 4,5,6,7,8 shows different stages of 

inputs and output got from the proposed system. As an 

example, the open source pinot project was used for getting 

the results. Figure-4 shows how system accepts the path for 

the package. Figure-5 shows providing the keyword 

“derivtivesIndirection” for searching. Figure-7 and Figure 8 

provides the result of running the algorithm SC2KE. 

 

 
Figure 3.   Adding package of source code files 

 
Figure 4.  Adding package API documentation to project 

 

 
Figure 5.  Parsing the package for the keyword “derivativesIndirection” 

 

 

Figure 6.  Output for searching derivatesIndirection keyword 
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Figure 7.  derivatesIndirection keyword found in DSComplier.java 

V. CONCLUSION 

This work proposes contextual similarity approach in 

order to find traceability links between the source code and the 

API documentation. The authors proposed a contextual 

similarity based keyphrase extraction mechanism for searching 

across different project source code. The proposed system is 

evaluated using Apache Pinot database. The similarity 

measure can be used to create and fire query for query-based 

software traceability linkages. The linkage hence created can 

aid in various program comprehension and SCA tasks.   
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Annexure-I 

Algorithm for determining candidate documents for similarity calculation 

START 

Step 1: Check the extension of each document in the package. 

Step 2: If the file extension is .dll,.exe, then ignore  the file 

Step 3: if the file extension is .chm, .txt,.doc,.xml then include it for calculating the similarity.  

STOP. 
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