
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 722

IJRITCC | September 2023, Available @ http://www.ijritcc.org

 Grey Wolf Cuckoo Search Algorithm for Training

Feedforward Neural Network and Logic Gates Design

Layak Ali

Department of Electronics and Communication Engineering,

School of Engineering, Central University of Karnataka,

Aland Road Kadaganchi, Kalaburagi, 585367, Karnataka, India

e-mail: layakali@cuk.ac.in

Abstract— This paper presents a new hybrid Swarm Intelligence (SI) algorithm based on the Cuckoo Search Algorithm (CSA) and Grey

Wolf Optimizer (GWO) called the Grey Wolf Cuckoo Search (GWCS) algorithm. The GWCS algorithm extracts and combines CSA and GWO

features for efficient optimization. To carry out the comprehensive validation, the developed algorithm is applied to three different scenarios

with their counterparts. The first validation is carried out on standard optimization benchmark problems. Further, they are used to train

Feedforward Neural Networks and finally applied to design logic gates. The comprehensive results are presented and it is found that the

proposed GWCS algorithms perform better compared to the state-of-the-art.

Keywords- Swarm Intelligence; Artificial Neural Network; Feedforward Neural Network; Logic Gates

I. INTRODUCTION

Swarm Intelligence (SI) algorithms are methods for solving

complex optimization problems and are developed by taking

inspiration from nature. The complexity of real-world

engineering and science optimization problems is increasing

day by day, and most of them have multiple peaks

(multimodal). Since most of the classical optimization

algorithms either gives non-feasible solution or fails on

multimodal problems. Thus, global optimization has attracted

researchers across the globe. Most of the global optimization

domain is dominated by SI algorithms. Recently, many SI

algorithms have been developed [6, 27, 26, 16, 11, 21, 28, 22,

9, 25] for global optimization. The SI algorithms are used in lot

of fields [8, 20, 5, 12, 24] including Artificial Neural Network

(ANN) training [7, 29, 2, 30]. A variant of PSO is used to train

FNN for data classifications [23]. The supplier’s selection is

being addressed by PSO and Fuzzy in [13]. The arithmetic

optimization algorithm (AOA) trains the FNN for medical

image classification [4]. The detailed survey on ANN using

PSO is found in [14].

The “Artificial Neural Network” (ANN) is computational

models that mimic the human brain. One of the important

classes of ANN is “Feedforward Neural Network” (FNN),

where the information processing takes place only in a single

direction. The important phase in either ANN or FNN is

training. The training of FNN turns out to be hard as the

weights of the hidden layers are highly complex, which turns

out to be multimodal. Due to the complexity of training FNN,

the classical optimization algorithms fail, hence SI algorithms

become the alternative. This paper proposes hybrid SI

algorithms based on “Grey Wolf Optimizer” and “Cuckoo

Search” algorithms called Grey Wolf Cuckoo Search (GWCS).

The proposed GWCS algorithm is systematically tested on

standard benchmark problems for its efficiency. Further, the

GWCS algorithm is used for training FNN and designing logic

gates.

The work is presented as shown here; Section II describes

Swarm Intelligence algorithms. Section III presents Neural

Networks, Problem formulation, and logic gates design.

Section IV presents the Grey Wolf Cuckoo Search (GWCS)

algorithm; Section V gives detailed results and discussions. The

concluding remarks are presented in Section VI.

II. SWARM INTELLIGENCE ALGORITHMS

The “Swarm Intelligence” (SI) algorithms are paradigms

that are being developed by inspecting the searching behavior

of creatures in nature. The SI algorithms have become very

popular these days and are widely used in many applications

including neural networks [24, 10, 6, 27, 26, 16]. The main

strength of SI algorithms lies in solving very complicated

optimization problems.

Following section describe about various SI algorithms

“Artificial Bee Colony” (ABC) [10, 6], “Cuckoo Search

Algorithm” (CSA) [27], “Firefly Algorithm” (FFA) [26], “Grey

Wolf Optimizer” (GWO) [16], “Particle Swarm Optimization”

(PSO) [11], “Bat Algorithm” (BAA) [28, 18], “Bald Eagle

Search” (BES) [3], “Lightning Search Algorithm” (LSA) [22,

1], “Rat Swarm Optimizer” (RSO) [9] and “Sparrow Search

Algorithm” (SSA) [25] used in the simulations.

A. Artificial Bee Colony: ABC

In 2005, Karaboga has developed an “Artificial Bee

Colony” (ABC) algorithm [10][6]. It mimics the nectar

searching behavior of honey bees. Honey bees are of three

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 723

IJRITCC | September 2023, Available @ http://www.ijritcc.org

categories: onlookers, scouts, and employed bees. Half of the

total bees are considered to be employed and the other half as

onlookers. Each employed bee is deployed with every food

source (nectar) and they have the knowledge about the nectar

concentration. The employed bee will become the scout if no

more food source is available. The information that the

employed bees have with them, they exchange with other bees

through waggle dance. The onlooker bees choose the best food

source for their next foraging.

B. Bat Algorithm: BAA

The “Bat” (BAA) algorithm is developed by Xin-She Yang

and Amir in 2012 [28, 18]. The main inspiration for this

algorithm is the echo-sounding actions of bat species. The

swarm of bats during their prey search, produces sound with

varying frequency, loudness, and emission rate. When they find

the prey, they change their strategy of frequency, loudness, and

emission rate. This strategy helps the bats to find the best prey

hence similar to finding the optimum solution [28, 18]. As an

algorithm, the above said parameters become the tuning

parameter, hence it does well even in dynamic problems.

C. Bald Eagle Search: BES

The “Bald Eagle Search” (BES) algorithm was developed

in 2020 by Sattar and Bilal [3]. The BES algorithm extracts the

fish hunting strategy of bald eagles. The hunting strategy is

divided into three stages: selecting, searching, and swooping

[3]. First, they select the space with densely populated prey,

move inside the space and then enter into the swooping stage

(best point) [3]. This is how BES will be able to solve

optimization problems.

D. Cuckoo Search Algorithm: CSA

“Cuckoo Search Algorithm” (CSA) was developed in 2009

by Xin-she et al. [27]. It is based on pattern of laying eggs by

cuckoo species into other bird’s nest. The CSA follows rules

like each cuckoo bird lays one egg at a time and chooses the

nest randomly for laying. Good quality eggs are carried out to

the next generation. Further, the host bird recognizes the laid

eggs as a foreign egg with a certain probability, then either

through away the egg or quits the existing nest and builds the

new one.

E. Grey Wolf Optimizer: GWO

The “Grey Wolf Optimizer” (GWO) was introduced by

Seyedali et. al. in 2014 [16], which mimics hunting behavior of

Wolves. There are four categories of Wolves like alphas, beta,

omega, and delta in their hierarchy. The alpha is at the highest,

and strongest, and the omega is weak and lowest in the

hierarchy. Wolves follow the main steps like tracking, chasing,

approaching, encircling, and attacking the prey [16].

F. Lightning Search Algorithm: LSA

The “Lightning Search Algorithm” (LSA) was developed

by Mohamed et. al in 2021 [22, 1]. The inspiration for LSA

algorithms comes from natural lighting phenomena and

propagation. The LSA divides the searching strategy into three

stages, one is exponential space projectile, the opposition

theory, and local search by the chief projectile. These strategies

of LSA be used for solving optimization problems [22, 1].

G. Particle Swarm Optimization: PSO

“Particle Swarm Optimization” (PSO) was developed in

1995 by Kennedy and Eberhart [11]. It is developed based on

food searching and social life of birds. During their food

search, all the birds exchange their information and follow the

best profitable decision. While searching for the food, every

particle remembers the best information in their journey and

exchanges it, thus they reach the goal [11] and solves

optimization problems.

III. NEURAL NETWORKS AND PROBLEM FORMULATION

This section describes the basic foundation of “Artificial

Neural Network” (ANN), “Feedforward Neural Network”

(FNN), and the problem formulation.

A. Neural Network foundation

The “Artificial Neural Networks” (ANNs) are the

computational strategies developed from the working of the

human brain. They are basically, interconnected nodes to do

simple and specific operations. The output of a node is

determined by the mathematical operation that they perform.

The interconnection of these simple nodes by appropriate

parameter setting would learn even highly complex functions.

The ANNs have made technological advancements in robotics,

voice / image recognition, communication, cloud, and many

more.

Figure 1. Feedforward Neural Networks Architecture

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 724

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 2. Two Layered structure of Feedforward Neural Networks

The “Feedforward Neural Networks” (FNNs) are the

important subset of ANNs. The difference is, in FNNs, the

interconnection of nodes does not make a closed circle and is

very simple compared to their counterparts. The FNNs are

called feedforward, due to the unidirectional information flow

as shown in Figure 1 The FNNs are usually used for supervised

learning. It does not matter whether data is sequential or time-

dependent. Thus in simpler terms, they compute a function “f”

on fixed size input x such that f (x) ≈ y for training pairs (x, y).

The simple architecture of ANN comprises a bunch of

neurons as input, output, and hidden layers. These are

connected to each other by a set of synaptic weights. When

ANNs go for the learning process, the weights will be

continuously changed until they learn sufficiently. Sufficient

learning may be determined by either maximum iterations or

error value threshold. Once the learning process is over, the

model may be used for valuation over various problems, and

thus they can classify with acceptable accuracy.

The training of ANNs or FNNs itself has become an issue

recently, mostly due to the complexity of the underlying

problem. Additionally, there are several training methods being

developed. Since the problems encountered nowadays turn out

to be complex and multimodal, hence most of the classical

methods fail to achieve the desired solution. Thus some

alternate strategies such as Bio-inspired or nature-inspired

algorithms are used for ANNs training.

The Bio-inspired or Nature-inspired algorithms are very

powerful for solving optimization problems, especially when

multimodal and non-continuous. The basic concept of these

algorithms is defined in [7]. The work in [7, 29] explains these

algorithms as a system with simple and unintelligent agents that

have limited capabilities when working together in the social

form to develop a tremendous power. Bio-inspired or Nature-

inspired algorithms are widely used in training ANNs [29, 2].

The detailed work, on how the Bio-inspired or Nature-inspired

algorithms are used for training can be found in [29, 30].

B. FNN training problem formulation

The training of ANNs or FNNs turns out to be complex due

to the reason that, the interconnected nodes with their weights

are highly interdependent and non-separable. Due to these, it

becomes difficult to attain the goal by optimizing a single

weight or node. These problems may be reduced by assigning

random weights and evaluating repeatedly. This strategy may

be good with fewer weights and nodes; however, if weights

become large in number, the problem will be complex and may

diverge the optimizing algorithms. Take a simple example of

ANNs with a number of neurons in various layers, like 500 in

the input layer, 100 in the hidden layer, and 50 in the output

layer. This turns out to be 500x100x50 = 2500000 weights.

Further, if the biases are added then it becomes more complex

and higher dimensional.

The cost function used for evaluation in this paper is

considered as in [31, 15]. Figure 2 shows the FNN with a single

input, hidden, and output layer. The number of nodes in each

layer is represented as n, h, and m for input, hidden, and output

layers respectively. The output of hidden nodes is calculated as

follows in the equation.

(1) ,2,1 Where,

1

1
)(

1

*

hj

e

sf n

i

jiij xw
j =


+

=

=

−− 

Here wij is the weight from ith node to jth hidden node and αj

is the bias of the jth node, sj and xi are the number of hidden and

input nodes respectively.

The final output can be calculated as in equation (2)

(2) ,,2,1k Where,)(*
1

msfwO
h

j

kjkjk =−=
=



Where wkj is the weight from jth hidden node to kth output

node, the αk is the bias of the kth output node, the Ok and sj are

the number of output and hidden nodes respectively.

Finally, the error function E (learning function) is

calculated as in equation (3)


=

−=
k

i

k

i

k

ik DOE
1

2 (3))(


=

=
q

k

kE
1

k (4)
q

E

Where q is the count of training samples, Di

k is the desired

output of the ith unit when the kth training sample is used. The

equation (4) is used as a fitness function for optimizing

algorithms.

Thus the fitness function for ith training sample can be

defined as follows:

(5))()(ii XEXFitness =

Further, the encoding strategy used in this article is the

matrix encoding strategy as in [15].

C. Logic gates design

As is already explained in the previous sections; a neural

network receives data through its input layer, and then

transmits it to its hidden layers. Through a network of weighted

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 725

IJRITCC | September 2023, Available @ http://www.ijritcc.org

connections, processing occurs in the hidden layers. The data

from the input layer is then combined with a set of coefficients

by nodes in the hidden layer, and the inputs are then given the

proper weights. The sum of these input and weight products is

transmitted through a node’s activation function, which

chooses how far a signal must go through the network before it

has an impact on the output. The output layer is where the

outputs are retrieved, and the hidden layers link to it. The basic

architecture of the FNN is shown in Figure 3. In order to get

the desired input, this FNN (Figure 3) is trained using input

from logic gates. According to the Perceptron algorithm, if

Wx+b > 0 then prediction (y′) = 1; otherwise, it is 0. Similarly,

if Wx+b <= 0, then, y′ = 0

Thus, the SI algorithms initialize the weights and biases,

forward propagate and check the error with the output obtained

and adjust weights and bias till the error is under an acceptable

range. This is repeated for all training examples. The dataset

used for FNN training is taken from Kaggle [19].

Figure 3. Simplified FNN training model

IV. GREY WOLF CUCKOO SEARCH ALGORITHM:

GWCS

This article presents a Hybrid algorithm, which harnesses

the searching capability of “Grey Wolf Optimizer” (GWO) and

“Cuckoo Search” (CS) algorithms. The following section

describes GWO and CS algorithms used for obtaining a Hybrid

algorithm called Grey Wolf Cuckoo Search (GWCS). In

GWCS, the updating equations of both GWO and CS

algorithms are systematically combined and implemented.

According to GWO, wolves follow a very strict hierarchy

and divide the population as; alphas, beta, omega, and delta.

The power and guidelines that this division follows are

explained in Section II and [16]. The goal searching behavior

of the GWO algorithm can be modeled as follows.

The position of the whole group (Wolves) can be updated

using the following equation and as in [16]

(7) K*A-(t)X1)(tX

(6))()(*

p=+

−= tXtXCK p

the t represents generation count, A , and C are the

coefficients,
pX

 is target location, and X is grey wolf

location [16]. The coefficients A , and C can found using

below equations:

 (9) r2C

(8) *2

2

1

=

−= araA

here a is decreased from 2 to 0 linearly over a given

generation and r1, r2 are pseudorandom numbers in the range

[0, 1] as used in [16].

All the wolves approach the target prey and attack. Their

progressive movements are governed by alpha, beta, and delta

positions, given by the below equations.

(11)
3

XXX
1)(tX

 (10) * ,* ,*

* ,* ,*

321

332211

321

++
=+

−=−=−=

−=−=−=





KAXXKAXXKAXX

XXCKXXCKXXCK

Further, the “Cuckoo Search” (CS) algorithms are mainly

based on the breeding and egg laying strategy of the Cuckoo

bird. These birds give their eggs into different species’ nests.

The laid Cuckoo eggs will become young if they are not

recognized by host birds and they will not be removed. This

strategy shows that the Cuckoo bird has found the optimal nest

or place for reproduction as seen in Section II and [27]. The CS

algorithm follows very simple rules

1. Every Cuckoo bird gives only one egg.

2. The Cuckoo eggs are placed randomly into the

given nest.

3. The Good eggs will be retained and taken to

further generation.

4. Total foreign nests for laying eggs are constant.

5. The host birds will find the foreign eggs with a

certain probability.

6. With this probability host bird can reject an egg or

it will leave its own nest and build a new one

somewhere else.

The simple and very dominant strategy of the CS algorithm

is in generating new solutions using the “Levy” flights method.

The “Levy” flight is basically a random strategy that follows

the well-calculated step length by a good probability

distribution. The following equation shows how the CS

algorithm generates new solutions.

(12))()()1(LevytXtX +=+

Here, 0 is the step length, however, it relates to

problem dimensions. Generally, its value
1=

 considered,

similarly the value of  is considered to be 31  

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 726

IJRITCC | September 2023, Available @ http://www.ijritcc.org

The hybrid GWCS algorithm use equation 11 and 12 for

generating new solutions

The proposed Hybrid GWCS algorithm is implemented as

shown in Algorithm 1

V. RESULTS AND DISCUSSIONS

This section presents the details of the simulation setup,

results, and discussions.

A. Simulation setup

The simulations are conducted using “MATLAB 2022a”

software on the “Windows 11” platform over an “Intel Core I5”

processor with 8GB of RAM. The standard benchmark

problems are taken from CEC2005 [17]. The dataset used for

FNN training is taken from [19]. All the SI algorithms are

executed over 1000 iterations with a population size of 30. The

other parameters of SI algorithms are set as per their original

settings. Since all the SI algorithms are “stochastic” and hence

give lots of variation in the results every time they are

executed. Thus, the average of 10 trials is considered to record

the results

B. Results

The simulations were first carried out to validate SI

algorithms on standard benchmark problems [17] and then

tested for training FNN [31] [15] over data from [19]. Further,

the FNN is used for digital logic gates.

1. Validation on benchmark problems

To validate the given SI algorithms, six benchmark problems

viz. Ackley, Griewank, Powell, Rastrigin, Rosenbrock and

Zakharov are taken from CEC2005 [17]. Since the selected

problems are scalable in dimension, hence higher dimensions

like 50, 100, and 200 are set for all the problems. The

algorithms are executed 10 times on each problem and results

are documented. The documented results are presented in both

numerical and graphical form. The numerical results are

shown in Table I, Table II, and Table III as mean results. The

mean results convey the quality of SI algorithms on a given

problem. Similarly, the graphical results are shown from

Figure 4 to Figure 9. The graphical results show the manner in

which the SI algorithms approach the optimum results.

TABLE I. AVERAGE VALUES OBTAINED WITH 50D PROBLEMS

Problem ABC BAA BES CSA GWO LSA PSO GWCS

Ackley 1.26e+1 1.99e+1 2.16e+1 3.17 8.64 1.13e+1 2.70 3.46e-14

Griewank 9.79e-1 2.92 1.44e+1 3.17e-2 1.05 1.17 1.66e-1 0.0

Powell 1.67e+5 2.64e+7 1.54e+7 3.81e+2 9.94e+5 3.24e+5 1.25e+2 1.12e-5

Rastrigin 5.06e+2 7.97e+3 5.41e+4 3.87e+2 7.56e+2 1.12e+3 3.71e+2 1.14e-14

Rosenbrock 1.05e+5 2.89e+8 5.31e+9 8.59e+2 3.50e+7 2.21e+6 4.85e+2 4.71e+1

Zakharov 1.13e+4 8.11e+4 1.90e+9 9.62e+3 1.94e+4 1.14e+4 1.54e+2 6.21e-3

TABLE II. AVERAGE VALUES OBTAINED WITH 100D PROBLEMS

Problem ABC BAA BES CSA GWO LSA PSO GWCS

Ackley 1.68e+1 2.03e+1 2.16e+1 7.78 2.02e+1 1.24e+1 2.80 1.34e-13

Griewank 1.45 5.39 2.78e+1 4.95e-1 3.82 1.36 1.86e-1 0.0

Powell 9.26e+5 1.06e+8 3.21e+7 9.31e+3 6.91e+6 6.76e+5 2.48e+2 7.78e-6

Rastrigin 2.29e+3 1.80e+4 1.08e+5 1.40e+3 1.24e+4 2.17e+3 7.79e+2 3.64e-13

Rosenbrock 1.53e+7 1.03e+9 1.07e+10 1.34e+5 1.08e+9 5.97e+6 1.19e+3 9.82e+1

Zakharov 2.70e+4 7.50e+6 4.69e+19 2.48e+4 4.67e+4 2.18e+4 1.11e+3 6.56e+2

TABLE III. AVERAGE VALUES OBTAINED WITH 200D PROBLEMS

Algorithm 1: Implementation of GWCS algorithm
1. Decide the Generation parameter (MaxIter)
2. Decide the Population size (N)
3. Randomly initialize the coordinates X1 to XN
4. Set the parameters a, A, α, λ , Pa and C
5. Calculate f (X) (Fitness of Population)
6. Find Xα (first best candidate)
7. Find Xβ (second best candidate))
8. Find Xδ (third best candidate)
9. While t ≤ MaxItr do
10. While i ≤ N do
11. Update X as per Equation (11)
12. Update X as per Equation (12)
13. End While
14. i←i+1 go to step 10
15. Update a, A, C, α, λ and Pa
16. Update Xα , Xβ and Xδ
17. Calculate f (X) (Fitness of Population)
18. Check for optimal result
19. End While
20. Report Results

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 727

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Problem ABC BAA BES CSA GWO LSA PSO GWCS

Ackley 1.87e+1 2.02e+1 2.16e+1 1.18e+1 2.10e+1 1.27e+1 2.88 2.91e-11

Griewank 3.45 1.11e+1 5.47e+1 1.15 1.35e+1 1.73 2.42e-1 1.11e-16

Powell 1.75e+7 2.44e+8 6.41e+7 8.73e+4 4.61e+7 2.18e+6 6.96e+2 1.24e-4

Rastrigin 1.14e+4 3.92e+4 2.17e+5 4.17e+3 5.22e+4 4.73e+3 1.60e+3 5.71

Rosenbrock 2.01e+8 1.56e+9 2.16e+10 2.55e+6 3.38e+9 1.04e+7 2.33e+3 1.98e+2

Zakharov 6.00e+4 1.59e+10 1.18e+22 5.10e+4 1.10e+5 3.91e+4 1.57e+5 8.40e+3

The figures are self-explanatory, that show how SI algorithms

along with the proposed algorithm achieve the optimal results

over 1000 iterations. The best results are shown in bold in

Table I, Table II and Table III, it is seen that the proposed

GWCS algorithm performs well on almost all the benchmark

problems. The convergence graphs are shown from Figure 4 to

Figure 9, for Ackley to Zakharov problems respectively. Here

also the proposed GWCS algorithm converges fast to optimum

results compared to other algorithms on all the problems.

2. Validation on FNN training

The FNN training is carried out using dataset from [19]. Here,

the number of hidden nodes for FNN is varied from 5 to 30 in

the step of 5 and a higher number of hidden layers like 50 and

100 are used. The SI algorithms are applied for training FNN

for 10 trails and the results are recorded. The recorded results

are presented in two forms: Numeral and Graphical.

The graphical results show the behavior of SI algorithms in

attaining the goal. The figures from Figure 10 to Figure 17

show the convergence graphs. From these figures, it is seen

that the proposed algorithm GWCS performs well and

converges to the optimum results very quickly. These graphs

show that as the number of hidden layers increases, the SI

algorithms take more iterations and time for convergence. This

is due to the fact that the complexity is proportional to the

number of hidden layers.

The tables from Table IV to Table XI show the numerical

results, which depict the quality of results obtained by SI

algorithms on FNN training. The results presented in tables are

the average of 10 trials, best and worst results over 1000

iterations. The robustness of SI algorithms is shown by the

standard deviation and the exact execution time (in seconds) of

SI algorithms is also recorded. From tables Table IV to Table

XI, it is seen the GWCS and BES algorithms obtain good

results including average, best, and worst results. The same

tables show the robustness of algorithms. It can be further

noted that the applications where the quality of results matters,

the GWCS and BES algorithms may be used.

3. Validation on Logic gates

Simulations were carried out to validate SI algorithms on

training FNN. The number of neurons for the FNN model is

considered to be 10. All the mentioned SI algorithms are

initialized with a population of 30 and other parameters of

algorithms are set as per the individual algorithmic

specification. The dataset used for FNN training is from

Kaggle [19]. The SI algorithms follow the Perceptron rule and

minimize the error between the expected output and obtained

output.

The results are documented in numerical and graphical forms.

The convergence characteristics of SI algorithms on

optimizing weights and biases are shown in figures from

Figure 18 to Figure 22. Figure 18 shows the convergence of all

the algorithms over AND gate. It shows that the GWCS

algorithm outperforms the other algorithms. A similar trend of

the GWCS algorithm is seen on all the other gates. The Figure

19 shows a convergence graph on OR gate, Figure 21 show for

NAND gate, Figure 22 shows for NOR gate, and Figure 20

show for XOR gate.

Table XII show the minimum error values obtained after

optimizing the cost function. From the table it can be observed

Figure 4. Convergence graph on Ackley with 50D

Figure 5. Convergence graph on Griewank with 50D

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 728

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 6. Convergence graph on Powell with 50D

that all the SI algorithms perform better, further the GWCS

algorithm outperforms all the SI algorithms.

The FNN model is trained for two input logic gates like AND,

OR, NAND, NOR, and XOR using SI algorithms. The well-

trained FNN can be called the FNN logic unit, like the FNN

logic unit of AND gate gives similar functionality compared to

the original digital AND gate and so on.

Figure 7. Convergence graph on Rastrigin with 50D

Figure 8. Convergence graph on Rosenbrock with 50D

Figure 9. Convergence graph on Zakharov with 50D

These units can be used for independent analysis or can be part

of the larger digital logic circuit.

The designed FNN logic unit is used for validation, however,

in this paper, only the FNN logic unit trained by GWCS is

demonstrated by giving random inputs as shown in Table XIII

to Table XVII. These tables show that the logic gates designed

by FNN are exactly the same as the original logic gates.

TABLE IV. RESULTS WITH FNN HIDDEN NODES 5

Alg mean std best worst

ABC 0.553 0.089 0.474 0.681

BAA 0.593 0.154 0.382 0.776

BES 0.025 0.005 0.019 0.031

CSA 0.027 0.003 0.023 0.030

GWO 0.023 0.002 0.021 0.026

LSA 0.313 0.152 0.046 0.418

PSO 0.258 0.064 0.174 0.332

GWCS 0.004 0.005 0.001 0.013

TABLE V. RESULTS WITH FNN HIDDEN NODES 10

Alg mean std best worst

ABC 0.564 0.067 0.445 0.604

BAA 0.566 0.112 0.416 0.684

BES 0.024 0.006 0.018 0.035

CSA 0.036 0.008 0.025 0.047

GWO 0.023 0.003 0.017 0.025

LSA 0.435 0.185 0.253 0.684

PSO 0.254 0.109 0.112 0.382

GWCS 0.002 0.003 0.000 0.007

TABLE VI. RESULTS WITH FNN HIDDEN NODES 15

Alg mean std best worst

ABC 0.475 0.155 0.240 0.666

BAA 0.556 0.084 0.449 0.628

BES 0.021 0.003 0.016 0.025

CSA 0.032 0.004 0.027 0.036

GWO 0.022 0.003 0.018 0.027

LSA 0.345 0.113 0.201 0.447

PSO 0.294 0.075 0.212 0.414

GWCS 0.001 0.003 0.000 0.007

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 729

IJRITCC | September 2023, Available @ http://www.ijritcc.org

TABLE VII. RESULTS WITH FNN HIDDEN NODES 20

Alg mean std best worst

ABC 0.532 0.050 0.476 0.602

BAA 0.590 0.069 0.531 0.695

BES 0.022 0.003 0.018 0.024

CSA 0.040 0.008 0.027 0.047

GWO 0.021 0.004 0.019 0.029

LSA 0.234 0.088 0.133 0.341

PSO 0.326 0.056 0.270 0.413

GWCS 0.001 0.003 0.000 0.007

TABLE VIII. RESULTS WITH FNN HIDDEN NODES 25

Alg mean std best worst

ABC 0.582 0.074 0.483 0.679

BAA 0.562 0.038 0.521 0.622

BES 0.020 0.004 0.015 0.024

CSA 0.047 0.010 0.037 0.060

GWO 0.016 0.002 0.013 0.019

LSA 0.279 0.144 0.148 0.507

PSO 0.350 0.069 0.234 0.419

GWCS 0.002 0.003 0.000 0.007

TABLE IX. RESULTS WITH FNN HIDDEN NODES 30

Alg mean std best worst

ABC 0.545 0.029 0.509 0.589

BAA 0.610 0.102 0.446 0.692

BES 0.020 0.006 0.014 0.029

CSA 0.049 0.013 0.033 0.067

GWO 0.017 0.004 0.014 0.023

LSA 0.309 0.103 0.178 0.411

PSO 0.306 0.039 0.261 0.368

GWCS 0.006 0.005 0.000 0.013

TABLE X. RESULTS WITH HIDDEN FNN NODES 50

Alg mean std best worst

ABC 0.583 0.049 0.518 0.646

BAA 0.613 0.067 0.545 0.707

BES 0.018 0.002 0.015 0.020

CSA 0.056 0.018 0.036 0.073

GWO 0.015 0.002 0.014 0.017

LSA 0.329 0.083 0.183 0.394

PSO 0.348 0.046 0.280 0.409

GWCS 0.001 0.003 0.000 0.007

TABLE XI. RESULTS WITH FNN HIDDEN NODES 100

Alg mean std best worst

ABC 0.616 0.040 0.548 0.649

BAA 0.611 0.143 0.453 0.798

BES 0.084 0.149 0.010 0.351

CSA 0.048 0.013 0.031 0.066

GWO 0.015 0.003 0.012 0.020

LSA 0.314 0.153 0.151 0.495

PSO 0.371 0.066 0.267 0.433

GWCS 0.005 0.006 0.000 0.013

Figure 10 Convergence on FNN with hidden nodes 5

Figure 11 Convergence on FNN with hidden nodes 10

Figure 12 Convergence on FNN with hidden nodes 15

Figure 13 Convergence on FNN with hidden nodes 20

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 730

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 14 Convergence on FNN with hidden nodes 25

Figure 15 Convergence on FNN with hidden nodes 30

Figure16 Convergence on FNN with hidden nodes 50

Figure 17 Convergence on FNN with hidden nodes 100

Figure 18 Convergence graph on AND Gate

Figure 19 Convergence graph on OR Gate

Figure 20 Convergence graph on XOR Gate

Figure 21 Convergence graph on NAND Gate

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 731

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 22 Convergence graph on NOR Gate

TABLE XII. ERROR VALUES ACHIEVED BY SI ALGORITHMS

TABLE XIII. AND GATE FNN LOGIC UNIT VALIDATION BY GWCS

X1 X2 Y

0.318897034 0.350152533 0

0.037386179 0.642586447 0

0.836101491 0.1899943 0

0.673633733 0.971855481 1

TABLE XIV. OR GATE FNN LOGIC UNIT VALIDATION BY GWCS

X1 X2 Y

0.318897034 0.350152533 0

0.037386179 0.642586447 1

0.836101491 0.1899943 1

0.673633733 0.971855481 1

TABLE XV. NAND GATE FNN LOGIC UNIT VALIDATION BY GWCS

X1 X2 Y

0.318897034 0.350152533 1

0.037386179 0.642586447 1

0.836101491 0.1899943 1

0.673633733 0.971855481 0

TABLE XVI. NOR GATE FNN LOGIC UNIT VALIDATION BY GWCS

X1 X2 Y

0.318897034 0.350152533 1

0.037386179 0.642586447 0

0.836101491 0.1899943 0

0.673633733 0.971855481 0

TABLE XVII. XOR GATE FNN LOGIC UNIT VALIDATION BY GWCS

X1 X2 Y

0.318897034 0.350152533 0

0.037386179 0.642586447 1

0.836101491 0.1899943 1

0.673633733 0.971855481 0

VI. CONCLUSIONS

Swarm Intelligence (SI) algorithms have proved to be the

alternative for classical optimization algorithm. However, still

there is a requirement of efficient SI algorithms for complex

optimization problems. This paper presents the development of

new hybrid Swarm Intelligence (SI) algorithm based on the

Cuckoo Search Algorithm (CSA) and Grey Wolf Optimizer

(GWO) called the Grey Wolf Cuckoo Search (GWCS)

algorithm. This combines CSA and GWO features for efficient

optimization. The developed algorithm is well tested on

optimization benchmark problems with higher dimensions for

its efficiency. Further this algorithm is used to train

“Feedforward Neural Network” (FNN) with higher number of

hidden layers and design of logic gates. The results confirm

that the developed algorithm is powerful in handling higher

dimensional problems, training complex FNN and logic gates

design.

REFERENCES

[1] Laith Abualigah, Mohamed Elsayed Abd Elaziz, Abdelazim Hussien,

Bisan Alsalibi, Seyed Mohammad Jalali, and Amir Gandomi. Lightning

search algorithm: a comprehensive survey. Applied Intelligence, 51, 04

2021. doi: 10.1007/s10489-020-01947-2.

[2] E. Alba and R. Marti. Metaheuristic Procedures for Training Neural

Networks. Operations Research/Computer Science Interfaces Series,

Springer, New York, NY, USA, 2006.

[3] H. Alsattar, A. Zaidan, and Bilal Bahaa. Novel meta-heuristic bald eagle

search optimisation algorithm. Artificial Intelligence Review, 53, 03

2020. doi: 10.1007/s10462-019-09732-5.

[4] Koon Meng Ang, Wei Hong Lim, Sew Sun Tiang, Hameedur Rahman,

Chun Kit Ang, Elango Natarajan, Mohamed Khan Afthab Ahamed

Khan, and Li Pan. Training feedforward neural networks using

arithmetic optimization algorithm for medical classification. In

Muhammad Amirul Abdullah, Ismail Mohd. Khairuddin, Ahmad Fakhri

Ab. Nasir, Wan Hasbullah Mohd. Isa, Mohd. Azraai Mohd. Razman,

Mohd. Azri Hizami Rasid, Sheikh Muhammad Hafiz Fahami Zainal,

Barry Bentley, and Pengcheng Liu, editors, Advances in Intelligent

Manufacturing and Mechatronics, pages 313– 323, Singapore, 2023.

Springer Nature Singapore.

[5] Azrina Abd Aziz, Y. Ahmet Sekercioglu, Paul Fitzpatrick, and Milosh

Ivanovich. A survey on distributed topology control techniques for

extending the lifetime of battery powered wireless sensor networks.

IEEE Communications Surveys Tutorials, 15(1):121–144, 2013. doi:

10.1109/SURV.2012. 031612.00124.

[6] B. Basturk and Dervis Karaboga. An artificial bee colony (abc)

algorithm for numeric function optimization. in proceedings of the ieee

swarm intelligence symposium, indianapolis, in, usa. May, 2006:12–14,

01 2006.

[7] Gerardo Beni and Jing Wang. Swarm intelligence in cellular robotic

systems. In Paolo Dario, Giulio Sandini, and Patrick Aebischer, editors,

Robots and Biological Systems: Towards a New Bionics?, pages 703–

 AND OR XOR NAND NOR

ABC 3.6081 5.5651 5.9538 6.0229 2.6209

BAA 240.40 7089.9 321.631 163.02 150.824

BES 9.30e-6 2.70e-4 4.97e-5 4.71e-5 7.39e-5

CSA 0.0258 0.0268 0.02219 0.01791 0.01763

GWO 1.08e-4 5.50e-7 3.71e-5 2.06e-4 1.97e-4

LSA 0.17094 0.2279 0.16963 0.63056 0.08663

PSO 0.0288 0.1663 0.20555 0.16215 0.15451

GWCS 1.1e-7 3.7e-7 3.4e-5 7.6e-7 2.9e-8

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 732

IJRITCC | September 2023, Available @ http://www.ijritcc.org

712, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg. ISBN 978-3-

642-58069-7.

[8] Gabriel Loba˜o da Silva Fre´, Jonathan de Carvalho Silva, Felipe Andery

Reis, and Lucas Dias Palha˜o Mendes. Particle swarm optimization

implementation for minimal transmission power providing a fully

connected cluster for the internet of things. In 2015 International

Workshop on Telecommunications (IWT), pages 1–7, 2015. doi:

10.1109/IWT.2015.7224573.

[9] Gaurav Dhiman, Meenakshi Garg, Atulya Nagar, and Vijay Chahar. A

novel algorithm for global optimization: Rat swarm optimizer. Journal of

Ambient Intelligence and Humanized Computing, 12, 08 2021. doi:

10.1007/s12652-020-02580-0.

[10] Dervis Karaboga. An idea based on honey bee swarm for numerical

optimization, technical report - tr06. Technical Report, Erciyes

University, 01 2005.

[11] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings

of ICNN’95 - International Conference on Neural Networks, volume 4,

pages 1942–1948 vol.4, 1995. doi: 10.1109/ICNN.1995.488968.

[12] Raghavendra V. Kulkarni and Ganesh Kumar Venayagamoorthy.

Particle swarm optimization in wireless-sensor networks: A brief survey.

IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), 41(2):262–267, 2011. doi:

10.1109/TSMCC.2010.2054080.

[13] R.J. Kuo, S.Y. Hong, and Y.C. Huang. Integration of particle swarm

optimization-based fuzzy neural network and artificial neural network

for supplier selection. Applied Mathematical Modelling, 34(12):3976–

3990, 2010. ISSN 0307-904X. doi:

https://doi.org/10.1016/j.apm.2010.03.033. URL

https://www.sciencedirect.com/science/article/pii/ S0307904X10001526.

[14] Pooria Mazaheri, Shahryar Rahnamayan, and Azam Asilian Bidgoli.

Designing artificial neural network using particle swarm optimization: A

survey. In Marco Antonio Aceves-Ferna´ndez, editor, Swarm

Intelligence, chapter 3. IntechOpen, Rijeka, 2022.

[15] Seyed Mohammad Mirjalili, S.Z.M. Hashim, and Hossein Moradian

Sardroudi. Training feedforward neural networks using hybrid particle

swarm optimization and gravitational search algorithm. Appl. Math.

Comput., 218:11125–11137, 2012.

[16] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. Grey

wolf optimizer. Advances in Engineering Software, 69:46–61, 2014.

ISSN 0965-9978. doi: https://doi.org/10.1016/j.advengsoft.2013.12.007.

URL https://www.sciencedirect.com/science/article/pii/

S0965997813001853.

[17] Suganthan P N, Hansen N, Liang J J, Deb K, Chen Y P, Auger A, and

Tiwari S. Problem definitions and evaluation criteria for the cec 2005

special session on real-parameter optimization. Technical Report

2005005, Nanyang Technological University, Singapore and IIT Kanpur,

India,, Technical Report, Nanyang Technological University, Singapore,

AND KanGAL Report 2005005, IIT Kanpur, India, 2005.

[18] Rodrigo Nakamura, Luis Pereira, Kellen Costa, Douglas Rodrigues, Joao

Papa, and Xin-She Yang, and. Bba: A binary bat algorithm for feature

selection. In Brazilian Symposium of Computer Graphic and Image

Processing, pages 291 –297, 08 2012. ISBN 9780124051638.

[19] Online. Dataset. https://www.kaggle.com, 2023. [Online; accessed Feb-

2023].

[20] V. Rodoplu and T.H. Meng. Minimum energy mobile wireless networks.

IEEE Journal on Selected Areas in Communications, 17(8):1333–1344,

1999. doi: 10.1109/49.779917.

[21] Hamed Shah, Hosseini. The intelligent water drops algorithm: a nature-

inspired swarm based optimization algorithm. Int. J. Bio-Inspired

Comput., 1(1/2):71–79, January 2009. ISSN 1758-0366.

[22] Hussain Shareef, Ahmad Ibrahim, and Ammar Mutlag. Lightning search

algorithm. Applied Soft Computing, 36:315–333, 08 2015. doi:

10.1016/j. asoc.2015.07.028.

[23] Omid Tarkhaneh and Haifeng Shen. Training of feedforward neural

networks for data classification using hybrid particle swarm

optimization, mantegna le´vy flight and neighborhood search.

Heliyon, 5(4):e01275, 2019. ISSN 2405-8440. doi:

https://doi.org/10.1016/j.heliyon.2019.e01275.

[24] T. White and B. Pagurek. Towards multi-swarm problem solving in

networks. In Multi-Agent Systems, International Conference on, page

333, Los Alamitos, CA, USA, jul 1998. IEEE Computer Society. doi:

10.1109/ ICMAS.1998.699217. URL

https://doi.ieeecomputersociety.org/ 10.1109/ICMAS.1998.699217.

[25] Jiankai Xue and Bo Shen. A novel swarm intelligence optimization

approach: sparrow search algorithm. Systems Science & Control

Engineering, 8(1): 22–34, 2020. doi: 10.1080/21642583.2019.1708830.

URL https://doi.org/10.1080/21642583.2019.1708830.

[26] Xin-She Yang. Firefly algorithms for multimodal optimization. In

Osamu Watanabe and Thomas Zeugmann, editors, Stochastic

Algorithms: Foundations and Applications, pages 169–178, Berlin,

Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-04944-

6.

[27] Xin-She Yang and Suash Deb. Cuckoo search via le´vy flights. In

2009 World Congress on Nature Biologically Inspired Computing

(NaBIC), pages 210–214, 2009. doi: 10.1109/NABIC.2009.5393690.

[28] Xin-She Yang and Amir Gandomi. Bat algorithm: A novel approach for

global engineering optimization. Engineering Computations, 29, 11

2012.

[29] Xin Yao. Evolving artificial neural networks. Proceedings of the IEEE,

87 (9):1423–1447, 1999. doi: 10.1109/5.784219.

[30] Jianbo Yu, Lifeng Xi, and Shijin Wang. An improved particle swarm

optimization for evolving feedforward artificial neural networks. Neural

Processing Letters, 26:217–231, 10 2007. doi: 10.1007/s11063-007-

9053-x.

[31] Jing-Ru Zhang, Jun Zhang, Tat-Ming Lok, and Michael R. Lyu. A

hybrid particle swarm optimization back-propagation algorithm for

feedforward neural network training. Appl. Math. Comput., 185:1026–

1037, 2007

http://www.ijritcc.org/

