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Abstract— This paper presents a new hybrid Swarm Intelligence (SI) algorithm based on the Cuckoo Search Algorithm (CSA) and Grey 

Wolf Optimizer (GWO) called the Grey Wolf Cuckoo Search (GWCS) algorithm. The GWCS algorithm extracts and combines CSA and GWO 

features for efficient optimization. To carry out the comprehensive validation, the developed algorithm is applied to three different scenarios 

with their counterparts. The first validation is carried out on standard optimization benchmark problems. Further, they are used to train 

Feedforward Neural Networks and finally applied to design logic gates. The comprehensive results are presented and it is found that the 

proposed GWCS algorithms perform better compared to the state-of-the-art. 
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I.  INTRODUCTION 

Swarm Intelligence (SI) algorithms are methods for solving 

complex optimization problems and are developed by taking 

inspiration from nature. The complexity of real-world 

engineering and science optimization problems is increasing 

day by day, and most of them have multiple peaks 

(multimodal). Since most of the classical optimization 

algorithms either gives non-feasible solution or fails on 

multimodal problems. Thus, global optimization has attracted 

researchers across the globe. Most of the global optimization 

domain is dominated by SI algorithms. Recently, many SI 

algorithms have been developed [6, 27, 26, 16, 11, 21, 28, 22, 

9, 25] for global optimization. The SI algorithms are used in lot 

of fields [8, 20, 5, 12, 24] including Artificial Neural Network 

(ANN) training [7, 29, 2, 30]. A variant of PSO is used to train 

FNN for data classifications [23]. The supplier’s selection is 

being addressed by PSO and Fuzzy in [13]. The arithmetic 

optimization algorithm (AOA) trains the FNN for medical 

image classification [4]. The detailed survey on ANN using 

PSO is found in [14]. 

The “Artificial Neural Network” (ANN) is computational 

models that mimic the human brain. One of the important 

classes of ANN is “Feedforward Neural Network” (FNN), 

where the information processing takes place only in a single 

direction. The important phase in either ANN or FNN is 

training. The training of FNN turns out to be hard as the 

weights of the hidden layers are highly complex, which turns 

out to be multimodal. Due to the complexity of training FNN, 

the classical optimization algorithms fail, hence SI algorithms 

become the alternative. This paper proposes hybrid SI 

algorithms based on “Grey Wolf Optimizer” and “Cuckoo 

Search” algorithms called Grey Wolf Cuckoo Search (GWCS). 

The proposed GWCS algorithm is systematically tested on 

standard benchmark problems for its efficiency. Further, the 

GWCS algorithm is used for training FNN and designing logic 

gates. 

The work is presented as shown here; Section II describes 

Swarm Intelligence algorithms. Section III presents Neural 

Networks, Problem formulation, and logic gates design. 

Section IV presents the Grey Wolf Cuckoo Search (GWCS) 

algorithm; Section V gives detailed results and discussions. The 

concluding remarks are presented in Section VI. 

II. SWARM INTELLIGENCE ALGORITHMS 

The “Swarm Intelligence” (SI) algorithms are paradigms 

that are being developed by inspecting the searching behavior 

of creatures in nature. The SI algorithms have become very 

popular these days and are widely used in many applications 

including neural networks [24, 10, 6, 27, 26, 16]. The main 

strength of SI algorithms lies in solving very complicated 

optimization problems. 

Following section describe about various SI algorithms 

“Artificial Bee Colony” (ABC) [10, 6], “Cuckoo Search 

Algorithm” (CSA) [27], “Firefly Algorithm” (FFA) [26], “Grey 

Wolf Optimizer” (GWO) [16], “Particle Swarm Optimization” 

(PSO) [11], “Bat Algorithm” (BAA) [28, 18], “Bald Eagle 

Search” (BES) [3], “Lightning Search Algorithm” (LSA) [22, 

1], “Rat Swarm Optimizer” (RSO) [9] and “Sparrow Search 

Algorithm” (SSA) [25] used in the simulations. 

A. Artificial Bee Colony: ABC 

In 2005, Karaboga has developed an “Artificial Bee 

Colony” (ABC) algorithm [10][6]. It mimics the nectar 

searching behavior of honey bees. Honey bees are of three 
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categories: onlookers, scouts, and employed bees. Half of the 

total bees are considered to be employed and the other half as 

onlookers. Each employed bee is deployed with every food 

source (nectar) and they have the knowledge about the nectar 

concentration. The employed bee will become the scout if no 

more food source is available. The information that the 

employed bees have with them, they exchange with other bees 

through waggle dance. The onlooker bees choose the best food 

source for their next foraging. 

B. Bat Algorithm: BAA 

The “Bat” (BAA) algorithm is developed by Xin-She Yang 

and Amir in 2012 [28, 18]. The main inspiration for this 

algorithm is the echo-sounding actions of bat species. The 

swarm of bats during their prey search, produces sound with 

varying frequency, loudness, and emission rate. When they find 

the prey, they change their strategy of frequency, loudness, and 

emission rate. This strategy helps the bats to find the best prey 

hence similar to finding the optimum solution [28, 18]. As an 

algorithm, the above said parameters become the tuning 

parameter, hence it does well even in dynamic problems. 

C. Bald Eagle Search: BES 

The “Bald Eagle Search” (BES) algorithm was developed 

in 2020 by Sattar and Bilal [3]. The BES algorithm extracts the 

fish hunting strategy of bald eagles. The hunting strategy is 

divided into three stages: selecting, searching, and swooping 

[3]. First, they select the space with densely populated prey, 

move inside the space and then enter into the swooping stage 

(best point) [3]. This is how BES will be able to solve 

optimization problems. 

D. Cuckoo Search Algorithm: CSA 

“Cuckoo Search Algorithm” (CSA) was developed in 2009 

by Xin-she et al. [27]. It is based on pattern of laying eggs by 

cuckoo species into other bird’s nest. The CSA follows rules 

like each cuckoo bird lays one egg at a time and chooses the 

nest randomly for laying. Good quality eggs are carried out to 

the next generation. Further, the host bird recognizes the laid 

eggs as a foreign egg with a certain probability, then either 

through away the egg or quits the existing nest and builds the 

new one. 

E. Grey Wolf Optimizer: GWO 

The “Grey Wolf Optimizer” (GWO) was introduced by 

Seyedali et. al. in 2014 [16], which mimics hunting behavior of 

Wolves. There are four categories of Wolves like alphas, beta, 

omega, and delta in their hierarchy. The alpha is at the highest, 

and strongest, and the omega is weak and lowest in the 

hierarchy. Wolves follow the main steps like tracking, chasing, 

approaching, encircling, and attacking the prey [16]. 

F. Lightning Search Algorithm: LSA 

The “Lightning Search Algorithm” (LSA) was developed 

by Mohamed et. al in 2021 [22, 1]. The inspiration for LSA 

algorithms comes from natural lighting phenomena and 

propagation. The LSA divides the searching strategy into three 

stages, one is exponential space projectile, the opposition 

theory, and local search by the chief projectile. These strategies 

of LSA be used for solving optimization problems [22, 1]. 

G. Particle Swarm Optimization: PSO 

“Particle Swarm Optimization” (PSO) was developed in 

1995 by Kennedy and Eberhart [11]. It is developed based on 

food searching and social life of birds. During their food 

search, all the birds exchange their information and follow the 

best profitable decision. While searching for the food, every 

particle remembers the best information in their journey and 

exchanges it, thus they reach the goal [11] and solves 

optimization problems. 

III. NEURAL NETWORKS AND PROBLEM FORMULATION 

This section describes the basic foundation of “Artificial 

Neural Network” (ANN), “Feedforward Neural Network” 

(FNN), and the problem formulation. 

A. Neural Network foundation 

The “Artificial Neural Networks” (ANNs) are the 

computational strategies developed from the working of the 

human brain. They are basically, interconnected nodes to do 

simple and specific operations. The output of a node is 

determined by the mathematical operation that they perform. 

The interconnection of these simple nodes by appropriate 

parameter setting would learn even highly complex functions. 

The ANNs have made technological advancements in robotics, 

voice / image recognition, communication, cloud, and many 

more. 

 

 

Figure 1.  Feedforward Neural Networks Architecture 
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Figure 2.  Two Layered structure of Feedforward Neural Networks 

The “Feedforward Neural Networks” (FNNs) are the 

important subset of ANNs. The difference is, in FNNs, the 

interconnection of nodes does not make a closed circle and is 

very simple compared to their counterparts. The FNNs are 

called feedforward, due to the unidirectional information flow 

as shown in Figure 1 The FNNs are usually used for supervised 

learning. It does not matter whether data is sequential or time-

dependent. Thus in simpler terms, they compute a function “f” 

on fixed size input x such that f (x) ≈ y for training pairs (x, y). 

The simple architecture of ANN comprises a bunch of 

neurons as input, output, and hidden layers. These are 

connected to each other by a set of synaptic weights. When 

ANNs go for the learning process, the weights will be 

continuously changed until they learn sufficiently. Sufficient 

learning may be determined by either maximum iterations or 

error value threshold. Once the learning process is over, the 

model may be used for valuation over various problems, and 

thus they can classify with acceptable accuracy. 

 

The training of ANNs or FNNs itself has become an issue 

recently, mostly due to the complexity of the underlying 

problem. Additionally, there are several training methods being 

developed. Since the problems encountered nowadays turn out 

to be complex and multimodal, hence most of the classical 

methods fail to achieve the desired solution. Thus some 

alternate strategies such as Bio-inspired or nature-inspired 

algorithms are used for ANNs training. 

The Bio-inspired or Nature-inspired algorithms are very 

powerful for solving optimization problems, especially when 

multimodal and non-continuous. The basic concept of these 

algorithms is defined in [7]. The work in [7, 29] explains these 

algorithms as a system with simple and unintelligent agents that 

have limited capabilities when working together in the social 

form to develop a tremendous power. Bio-inspired or Nature-

inspired algorithms are widely used in training ANNs [29, 2]. 

The detailed work, on how the Bio-inspired or Nature-inspired 

algorithms are used for training can be found in [29, 30]. 

B. FNN training problem formulation 

The training of ANNs or FNNs turns out to be complex due 

to the reason that, the interconnected nodes with their weights 

are highly interdependent and non-separable. Due to these, it 

becomes difficult to attain the goal by optimizing a single 

weight or node. These problems may be reduced by assigning 

random weights and evaluating repeatedly. This strategy may 

be good with fewer weights and nodes; however, if weights 

become large in number, the problem will be complex and may 

diverge the optimizing algorithms. Take a simple example of 

ANNs with a number of neurons in various layers, like 500 in 

the input layer, 100 in the hidden layer, and 50 in the output 

layer. This turns out to be 500x100x50 = 2500000 weights. 

Further, if the biases are added then it becomes more complex 

and higher dimensional. 

The cost function used for evaluation in this paper is 

considered as in [31, 15]. Figure 2 shows the FNN with a single 

input, hidden, and output layer. The number of nodes in each 

layer is represented as n, h, and m for input, hidden, and output 

layers respectively. The output of hidden nodes is calculated as 

follows in the equation. 
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Here wij is the weight from ith node to jth hidden node and αj 

is the bias of the jth node, sj and xi are the number of hidden and 

input nodes respectively. 

The final output can be calculated as in equation (2) 
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Where wkj is the weight from jth hidden node to kth output 

node, the αk is the bias of the kth output node, the Ok and sj are 

the number of output and hidden nodes respectively. 

Finally, the error function E (learning function) is 

calculated as in equation (3) 
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Where q is the count of training samples, Di

k is the desired 

output of the ith unit when the kth training sample is used. The 

equation (4) is used as a fitness function for optimizing 

algorithms. 

Thus the fitness function for ith training sample can be 

defined as follows: 

(5)      )()( ii XEXFitness =
 

Further, the encoding strategy used in this article is the 

matrix encoding strategy as in [15]. 

C. Logic gates design 

As is already explained in the previous sections; a neural 

network receives data through its input layer, and then 

transmits it to its hidden layers. Through a network of weighted 
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connections, processing occurs in the hidden layers. The data 

from the input layer is then combined with a set of coefficients 

by nodes in the hidden layer, and the inputs are then given the 

proper weights. The sum of these input and weight products is 

transmitted through a node’s activation function, which 

chooses how far a signal must go through the network before it 

has an impact on the output. The output layer is where the 

outputs are retrieved, and the hidden layers link to it. The basic 

architecture of the FNN is shown in Figure 3. In order to get 

the desired input, this FNN (Figure 3) is trained using input 

from logic gates. According to the Perceptron algorithm, if 

Wx+b > 0 then prediction (y′) = 1; otherwise, it is 0. Similarly, 

if Wx+b <= 0, then, y′ = 0 

Thus, the SI algorithms initialize the weights and biases, 

forward propagate and check the error with the output obtained 

and adjust weights and bias till the error is under an acceptable 

range. This is repeated for all training examples. The dataset 

used for FNN training is taken from Kaggle [19]. 

 

 

Figure 3.  Simplified FNN training model 

IV. GREY WOLF CUCKOO SEARCH ALGORITHM: 

GWCS 

This article presents a Hybrid algorithm, which harnesses 

the searching capability of “Grey Wolf Optimizer” (GWO) and 

“Cuckoo Search” (CS) algorithms. The following section 

describes GWO and CS algorithms used for obtaining a Hybrid 

algorithm called Grey Wolf Cuckoo Search (GWCS). In 

GWCS, the updating equations of both GWO and CS 

algorithms are systematically combined and implemented.  

According to GWO, wolves follow a very strict hierarchy 

and divide the population as; alphas, beta, omega, and delta. 

The power and guidelines that this division follows are 

explained in Section II and [16]. The goal searching behavior 

of the GWO algorithm can be modeled as follows. 

The position of the whole group (Wolves) can be updated 

using the following equation and as in [16] 

(7)        K*A-(t)X1)(tX

(6)         )()(*

p=+

−= tXtXCK p

  

the t represents generation count, A ,  and C   are the 

coefficients, 
pX

 is target location, and X  is grey wolf 

location [16]. The coefficients A ,  and C  can found using 

below equations: 
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here a is decreased from 2 to 0 linearly over a given 

generation and r1, r2 are pseudorandom numbers in the range 

[0, 1] as used in [16]. 

All the wolves approach the target prey and attack. Their 

progressive movements are governed by alpha, beta, and delta 

positions, given by the below equations. 
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Further, the “Cuckoo Search” (CS) algorithms are mainly 

based on the breeding and egg laying strategy of the Cuckoo 

bird. These birds give their eggs into different species’ nests. 

The laid Cuckoo eggs will become young if they are not 

recognized by host birds and they will not be removed. This 

strategy shows that the Cuckoo bird has found the optimal nest 

or place for reproduction as seen in Section II and [27]. The CS 

algorithm follows very simple rules 

1. Every Cuckoo bird gives only one egg. 

2. The Cuckoo eggs are placed randomly into the 

given nest. 

3. The Good eggs will be retained and taken to 

further generation. 

4. Total foreign nests for laying eggs are constant. 

5. The host birds will find the foreign eggs with a 

certain probability. 

6. With this probability host bird can reject an egg or 

it will leave its own nest and build a new one 

somewhere else. 

The simple and very dominant strategy of the CS algorithm 

is in generating new solutions using the “Levy” flights method. 

The “Levy” flight is basically a random strategy that follows 

the well-calculated step length by a good probability 

distribution. The following equation shows how the CS 

algorithm generates new solutions.  

  

 
(12)           )()()1( LevytXtX +=+

 

Here, 0  is the step length, however, it relates to 

problem dimensions. Generally, its value 
1=

 considered, 

similarly the value of  is considered to be 31      
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The hybrid GWCS algorithm use equation 11 and 12 for 

generating new solutions 

 

The proposed Hybrid GWCS algorithm is implemented as 

shown in Algorithm 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. RESULTS AND DISCUSSIONS 

This section presents the details of the simulation setup, 

results, and discussions.  

A. Simulation setup 

The simulations are conducted using “MATLAB 2022a” 

software on the “Windows 11” platform over an “Intel Core I5” 

processor with 8GB of RAM. The standard benchmark 

problems are taken from CEC2005 [17].  The dataset used for 

FNN training is taken from [19]. All the SI algorithms are 

executed over 1000 iterations with a population size of 30. The 

other parameters of SI algorithms are set as per their original 

settings. Since all the SI algorithms are “stochastic” and hence 

give lots of variation in the results every time they are 

executed. Thus, the average of 10 trials is considered to record 

the results  

B. Results 

The simulations were first carried out to validate SI 

algorithms on standard benchmark problems [17] and then 

tested for training FNN [31] [15] over data from [19]. Further, 

the FNN is used for digital logic gates. 

1. Validation on benchmark problems 

To validate the given SI algorithms, six benchmark problems 

viz. Ackley, Griewank, Powell, Rastrigin, Rosenbrock and 

Zakharov are taken from CEC2005 [17]. Since the selected 

problems are scalable in dimension, hence higher dimensions 

like 50, 100, and 200 are set for all the problems. The 

algorithms are executed 10 times on each problem and results 

are documented. The documented results are presented in both 

numerical and graphical form. The numerical results are 

shown in Table I, Table II, and Table III as mean results. The 

mean results convey the quality of SI algorithms on a given 

problem. Similarly, the graphical results are shown from 

Figure 4 to Figure 9. The graphical results show the manner in 

which the SI algorithms approach the optimum results.   

 

TABLE I.   AVERAGE VALUES OBTAINED WITH 50D PROBLEMS 

Problem ABC BAA BES CSA GWO LSA PSO GWCS 

Ackley 1.26e+1 1.99e+1 2.16e+1 3.17 8.64 1.13e+1 2.70 3.46e-14 

Griewank 9.79e-1 2.92 1.44e+1 3.17e-2 1.05 1.17 1.66e-1 0.0 

Powell 1.67e+5 2.64e+7 1.54e+7 3.81e+2 9.94e+5 3.24e+5 1.25e+2 1.12e-5 

Rastrigin 5.06e+2 7.97e+3 5.41e+4 3.87e+2 7.56e+2 1.12e+3 3.71e+2 1.14e-14 

Rosenbrock 1.05e+5 2.89e+8 5.31e+9 8.59e+2 3.50e+7 2.21e+6 4.85e+2 4.71e+1 

Zakharov 1.13e+4 8.11e+4 1.90e+9 9.62e+3 1.94e+4 1.14e+4 1.54e+2 6.21e-3 

TABLE II.   AVERAGE VALUES OBTAINED WITH 100D PROBLEMS 

Problem ABC BAA BES CSA GWO LSA PSO GWCS 

Ackley 1.68e+1 2.03e+1 2.16e+1 7.78 2.02e+1 1.24e+1 2.80 1.34e-13 

Griewank 1.45 5.39 2.78e+1 4.95e-1 3.82 1.36 1.86e-1 0.0 

Powell 9.26e+5 1.06e+8 3.21e+7 9.31e+3 6.91e+6 6.76e+5 2.48e+2 7.78e-6 

Rastrigin 2.29e+3 1.80e+4 1.08e+5 1.40e+3 1.24e+4 2.17e+3 7.79e+2 3.64e-13 

Rosenbrock 1.53e+7 1.03e+9 1.07e+10 1.34e+5 1.08e+9 5.97e+6 1.19e+3 9.82e+1 

Zakharov 2.70e+4 7.50e+6 4.69e+19 2.48e+4 4.67e+4 2.18e+4 1.11e+3 6.56e+2 

 

 

 

TABLE III.   AVERAGE VALUES OBTAINED WITH 200D PROBLEMS 

Algorithm 1: Implementation of GWCS algorithm 
1. Decide the Generation parameter (MaxIter) 
2. Decide the Population size (N) 
3. Randomly initialize the coordinates X1 to XN 
4. Set the parameters a, A, α, λ , Pa and C  
5. Calculate f (X ) (Fitness of Population)  
6. Find Xα (first best candidate) 
7. Find Xβ (second best candidate)) 
8. Find Xδ (third best candidate) 
9. While t ≤ MaxItr do 
10.           While i ≤ N do 
11.                      Update X as per Equation ( 11) 
12.                      Update X as per Equation ( 12) 
13.            End While 
14.             i←i+1  go to step 10 
15.             Update a, A, C, α, λ and Pa  
16.             Update Xα , Xβ and Xδ 
17.           Calculate f (X ) (Fitness of Population) 
18.          Check for optimal result 
19.  End While 
20. Report Results 
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Problem ABC BAA BES CSA GWO LSA PSO GWCS 

Ackley 1.87e+1 2.02e+1 2.16e+1 1.18e+1 2.10e+1 1.27e+1 2.88 2.91e-11 

Griewank 3.45 1.11e+1 5.47e+1 1.15 1.35e+1 1.73 2.42e-1 1.11e-16 

Powell 1.75e+7 2.44e+8 6.41e+7 8.73e+4 4.61e+7 2.18e+6 6.96e+2 1.24e-4 

Rastrigin 1.14e+4 3.92e+4 2.17e+5 4.17e+3 5.22e+4 4.73e+3 1.60e+3 5.71 

Rosenbrock 2.01e+8 1.56e+9 2.16e+10 2.55e+6 3.38e+9 1.04e+7 2.33e+3 1.98e+2 

Zakharov 6.00e+4 1.59e+10 1.18e+22 5.10e+4 1.10e+5 3.91e+4 1.57e+5 8.40e+3 

 

The figures are self-explanatory, that show how SI algorithms 

along with the proposed algorithm achieve the optimal results 

over 1000 iterations. The best results are shown in bold in 

Table I, Table II and Table III, it is seen that the proposed 

GWCS algorithm performs well on almost all the benchmark 

problems. The convergence graphs are shown from Figure 4 to 

Figure 9, for Ackley to Zakharov problems respectively. Here 

also the proposed GWCS algorithm converges fast to optimum 

results compared to other algorithms on all the problems. 

2. Validation on FNN training 

The FNN training is carried out using dataset from [19]. Here, 

the number of hidden nodes for FNN is varied from 5 to 30 in 

the step of 5 and a higher number of hidden layers like 50 and 

100 are used. The SI algorithms are applied for training FNN 

for 10 trails and the results are recorded. The recorded results 

are presented in two forms: Numeral and Graphical. 

The graphical results show the behavior of SI algorithms in 

attaining the goal. The figures from Figure 10 to Figure 17 

show the convergence graphs. From these figures, it is seen 

that the proposed algorithm GWCS performs well and 

converges to the optimum results very quickly. These graphs 

show that as the number of hidden layers increases, the SI 

algorithms take more iterations and time for convergence. This 

is due to the fact that the complexity is proportional to the 

number of hidden layers.  

The tables from Table IV to Table XI show the numerical 

results, which depict the quality of results obtained by SI 

algorithms on FNN training. The results presented in tables are 

the average of 10 trials, best and worst results over 1000 

iterations. The robustness of SI algorithms is shown by the 

standard deviation and the exact execution time (in seconds) of 

SI algorithms is also recorded. From tables Table IV to Table 

XI, it is seen the GWCS and BES algorithms obtain good 

results including average, best, and worst results. The same 

tables show the robustness of algorithms. It can be further 

noted that the applications where the quality of results matters, 

the GWCS and BES algorithms may be used. 

3. Validation on Logic gates 

Simulations were carried out to validate SI algorithms on 

training FNN. The number of neurons for the FNN model is 

considered to be 10. All the mentioned SI algorithms are 

initialized with a population of 30 and other parameters of 

algorithms are set as per the individual algorithmic 

specification. The dataset used for FNN training is from 

Kaggle [19]. The SI algorithms follow the Perceptron rule and 

minimize the error between the expected output and obtained 

output. 

The results are documented in numerical and graphical forms. 

The convergence characteristics of SI algorithms on 

optimizing weights and biases are shown in figures from 

Figure 18 to Figure 22. Figure 18 shows the convergence of all 

the algorithms over AND gate. It shows that the GWCS 

algorithm outperforms the other algorithms. A similar trend of 

the GWCS algorithm is seen on all the other gates. The Figure 

19 shows a convergence graph on OR gate, Figure 21 show for 

NAND gate, Figure 22 shows for NOR gate, and Figure 20 

show for XOR gate. 

Table XII show the minimum error values obtained after 

optimizing the cost function. From the table it can be observed  

 

 

Figure 4.  Convergence graph on Ackley with 50D 

 

Figure 5.  Convergence graph on Griewank with 50D 
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Figure 6.  Convergence graph on Powell with 50D 

that all the SI algorithms perform better, further the GWCS 

algorithm outperforms all the SI algorithms. 

The FNN model is trained for two input logic gates like AND, 

OR, NAND, NOR, and XOR using SI algorithms. The well-

trained FNN can be called the FNN logic unit, like the FNN 

logic unit of AND gate gives similar functionality compared to 

the original digital AND gate and so on.   

 

Figure 7.  Convergence graph on Rastrigin with 50D 

 

Figure 8.  Convergence graph on Rosenbrock with 50D 

 

Figure 9.  Convergence graph on Zakharov with 50D 

These units can be used for independent analysis or can be part 

of the larger digital logic circuit.  

The designed FNN logic unit is used for validation, however, 

in this paper, only the FNN logic unit trained by GWCS is 

demonstrated by giving random inputs as shown in Table XIII 

to Table XVII. These tables show that the logic gates designed 

by FNN are exactly the same as the original logic gates. 

TABLE IV.   RESULTS WITH FNN HIDDEN NODES 5 

Alg mean std best worst 

ABC 0.553 0.089 0.474 0.681 

BAA 0.593 0.154 0.382 0.776 

BES 0.025 0.005 0.019 0.031 

CSA 0.027 0.003 0.023 0.030 

GWO 0.023 0.002 0.021 0.026 

LSA 0.313 0.152 0.046 0.418 

PSO 0.258 0.064 0.174 0.332 

GWCS 0.004 0.005 0.001 0.013 

TABLE V.  RESULTS WITH FNN HIDDEN NODES 10 

Alg mean std best worst 

ABC 0.564 0.067 0.445 0.604 

BAA 0.566 0.112 0.416 0.684 

BES 0.024 0.006 0.018 0.035 

CSA 0.036 0.008 0.025 0.047 

GWO 0.023 0.003 0.017 0.025 

LSA 0.435 0.185 0.253 0.684 

PSO 0.254 0.109 0.112 0.382 

GWCS 0.002 0.003 0.000 0.007 

TABLE VI.  RESULTS WITH FNN HIDDEN NODES 15 

Alg mean std best worst 

ABC 0.475 0.155 0.240 0.666 

BAA 0.556 0.084 0.449 0.628 

BES 0.021 0.003 0.016 0.025 

CSA 0.032 0.004 0.027 0.036 

GWO 0.022 0.003 0.018 0.027 

LSA 0.345 0.113 0.201 0.447 

PSO 0.294 0.075 0.212 0.414 

GWCS 0.001 0.003 0.000 0.007 
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TABLE VII.  RESULTS WITH FNN HIDDEN NODES 20 

Alg mean std best worst 

ABC 0.532 0.050 0.476 0.602 

BAA 0.590 0.069 0.531 0.695 

BES 0.022 0.003 0.018 0.024 

CSA 0.040 0.008 0.027 0.047 

GWO 0.021 0.004 0.019 0.029 

LSA 0.234 0.088 0.133 0.341 

PSO 0.326 0.056 0.270 0.413 

GWCS 0.001 0.003 0.000 0.007 

TABLE VIII.  RESULTS WITH FNN HIDDEN NODES 25 

Alg mean std best worst 

ABC 0.582 0.074 0.483 0.679 

BAA 0.562 0.038 0.521 0.622 

BES 0.020 0.004 0.015 0.024 

CSA 0.047 0.010 0.037 0.060 

GWO 0.016 0.002 0.013 0.019 

LSA 0.279 0.144 0.148 0.507 

PSO 0.350 0.069 0.234 0.419 

GWCS 0.002 0.003 0.000 0.007 

TABLE IX.  RESULTS WITH FNN HIDDEN NODES 30 

Alg mean std best worst 

ABC 0.545 0.029 0.509 0.589 

BAA 0.610 0.102 0.446 0.692 

BES 0.020 0.006 0.014 0.029 

CSA 0.049 0.013 0.033 0.067 

GWO 0.017 0.004 0.014 0.023 

LSA 0.309 0.103 0.178 0.411 

PSO 0.306 0.039 0.261 0.368 

GWCS 0.006 0.005 0.000 0.013 

TABLE X.  RESULTS WITH HIDDEN FNN NODES 50 

Alg mean std best worst 

ABC 0.583 0.049 0.518 0.646 

BAA 0.613 0.067 0.545 0.707 

BES 0.018 0.002 0.015 0.020 

CSA 0.056 0.018 0.036 0.073 

GWO 0.015 0.002 0.014 0.017 

LSA 0.329 0.083 0.183 0.394 

PSO 0.348 0.046 0.280 0.409 

GWCS 0.001 0.003 0.000 0.007 

TABLE XI.  RESULTS WITH FNN HIDDEN NODES 100 

Alg mean std best worst 

ABC 0.616 0.040 0.548 0.649 

BAA 0.611 0.143 0.453 0.798 

BES 0.084 0.149 0.010 0.351 

CSA 0.048 0.013 0.031 0.066 

GWO 0.015 0.003 0.012 0.020 

LSA 0.314 0.153 0.151 0.495 

PSO 0.371 0.066 0.267 0.433 

GWCS 0.005 0.006 0.000 0.013 

 
Figure 10 Convergence on FNN with hidden nodes 5 

 

 
Figure 11 Convergence on FNN with hidden nodes 10 

 

 
Figure 12 Convergence on FNN with hidden nodes 15   

 

 
Figure 13 Convergence on FNN with hidden nodes 20 
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Figure 14 Convergence on FNN with hidden nodes 25 

 

 
Figure 15 Convergence on FNN with hidden nodes 30 

 

 
Figure16 Convergence on FNN with hidden nodes 50 

 

 
Figure 17 Convergence on FNN with hidden nodes 100 

 

 

 
Figure 18 Convergence graph on AND Gate 

 

 
Figure 19 Convergence graph on OR Gate   

 

 
Figure 20 Convergence graph on XOR Gate 

 

 
Figure 21 Convergence graph on NAND Gate 
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Figure 22 Convergence graph on NOR Gate 

TABLE XII.  ERROR VALUES ACHIEVED BY SI ALGORITHMS 

TABLE XIII.  AND GATE FNN LOGIC UNIT VALIDATION BY GWCS 

X1 X2 Y 

0.318897034 0.350152533 0 

0.037386179 0.642586447 0 

0.836101491 0.1899943 0 

0.673633733 0.971855481 1 

TABLE XIV.  OR GATE FNN LOGIC UNIT VALIDATION BY GWCS 

X1 X2 Y 

0.318897034 0.350152533 0 

0.037386179 0.642586447 1 

0.836101491 0.1899943 1 

0.673633733 0.971855481 1 

TABLE XV.  NAND GATE FNN LOGIC UNIT VALIDATION BY GWCS 

X1 X2 Y 

0.318897034 0.350152533 1 

0.037386179 0.642586447 1 

0.836101491 0.1899943 1 

0.673633733 0.971855481 0 

TABLE XVI.  NOR GATE FNN LOGIC UNIT VALIDATION BY GWCS 

X1 X2 Y 

0.318897034 0.350152533 1 

0.037386179 0.642586447 0 

0.836101491 0.1899943 0 

0.673633733 0.971855481 0 

TABLE XVII.  XOR GATE FNN LOGIC UNIT VALIDATION BY GWCS 

X1 X2 Y 

0.318897034 0.350152533 0 

0.037386179 0.642586447 1 

0.836101491 0.1899943 1 

0.673633733 0.971855481 0 

VI. CONCLUSIONS 

Swarm Intelligence (SI) algorithms have proved to be the 

alternative for classical optimization algorithm. However, still 

there is a requirement of efficient SI algorithms for complex 

optimization problems. This paper presents the development of 

new hybrid Swarm Intelligence (SI) algorithm based on the 

Cuckoo Search Algorithm (CSA) and Grey Wolf Optimizer 

(GWO) called the Grey Wolf Cuckoo Search (GWCS) 

algorithm. This combines CSA and GWO features for efficient 

optimization. The developed algorithm is well tested on 

optimization benchmark problems with higher dimensions for 

its efficiency. Further this algorithm is used to train 

“Feedforward Neural Network” (FNN) with higher number of 

hidden layers and design of logic gates. The results confirm 

that the developed algorithm is powerful in handling higher 

dimensional problems, training complex FNN and logic gates 

design.  
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