
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 605

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Revitalizing Legacy Systems: Extracting Key

Features for Software Transplantation

1Gurjot Singh Sodhi, 2Dhavleesh Rattan
1Research Scholar, Department of Computer Science and Engineering

Punjabi University

Patiala, Punjab, India

e-mail: er.gurjotsinghsodhi@gmail.com
2Assistant Professor, Department of Computer Science and Engineering

Punjabi University

Patiala, Punjab, India

e-mail: dhavleesh@gmail.com

Abstract—The creation of intelligent software depends on the ability to transfer software without any restrictions. In this article, a crucial

stage in software engineering, the feature extraction for effective software transplantation, is discussed. As hardware, operating systems, or

other factors change, it is commonly necessary to move software from one environment to another. It is vital to identify and extract the relevant

software characteristics, which might be challenging given how complex software is, in order to carry out efficient software transplantation.

On the other hand, the procedure to extract these attributes from the software might be time-consuming and need extensive understanding. To

address this, we propose a transplantation strategy that prioritizes automation with the help of AWS. Our approach involves an agent running

on the application server (on-premises). It performs the task of feature identification, extraction and deployment on AWS Cloud. Currently, our

strategy is confined to Java and .NET applications.

Keywords- Feature, Feature extraction, Intelligent Systems, Microservices, Microservice Architecture, Monolithic Architecture,

Transplantation.

I. INTRODUCTION

As the software sector grows, more and more people pick up
coding and writing code. The same code is typically present in
other previously developed software that may be used here when
people construct a function in new software. Although the idea
of automatically transplanting code is intriguing, current
research is mostly focused on experiments that have been
carefully planned.

Each software has similar features and functional cores
independent of the manufacturer. This observation suggests a
similarity to deoxyribose nucleic acid (DNA). Each of us has a
unique appearance, but we are all human beings. We have the
same ancestor that inherited DNA [21, 22]. Therefore, software
transplantation can be defined as:

 “The process of extracting functionality (of interest) from
one software/system and deploying it into another (unrelated
foreign system) without extensive modifications, making it fully
executable, thus minimizing — redesigning, reimplementing and
reinventing efforts required for building them from scratch” [3].

The idea of "code transplantation" was coined by Mark
Harman and his colleagues in 2015 [1]. Drawing inspiration
from the medical field, they likened software to the human body,
code to organs, and the process of transplanting code to an organ
transplant. To facilitate this process, they introduced the
"μScalpel" tool, which can automatically transfer a feature from
one program to another. Additionally, they introduced novel
concepts such as the Donor (the software being transplanted),

1 By hiding information about other features, the abstraction focuses on

selected system features.

Organ (the software that can be reused), and Host (the software
that enables the reuse of the organ).

This process of transplantation — of functions or attributes
between software can save human programmers from
cumbersome standard work and make developing software
faster and cheaper [23]. Software Transplantation basically
make use of Abstraction1 and Refinement2 concepts as shown in
Figure 1. Transplantation approach is based on Genetic
Improvement (GI), which treats the code as ‘genetic material’
that can be manipulated to improve the system. GI can repair
broken functionalities, drastically scale-up performance, and
port between dialects and platforms. This is a program synthesis
that has recently become the subject of much activities.

Figure 1. Abstraction and Refinement in Context to Software [3]

2 Refinement focuses on supplanting certain aspects of the system with some

insights.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 606

IJRITCC | September 2023, Available @ http://www.ijritcc.org

A. Need for Software Transplantation

Software Transplantation is a long-term development
practice aimed at multiple disciplines. In the event that if the
recipient already has features that needs to be transplanted, we
don’t perform software transplantation. If so, at that point we
need to strip the current functionalities from the recipient. Figure
2 portrays the need for software transplantation. Transplantation
will broaden new horizons for upgrading software development
practices [3].

Figure 2. Need for Software Transplantation Software [3]

This approach can be incredibly useful under the

accompanying circumstances:
1. When we don’t have a system with the necessary

computation power.
2. When we are satisfied with the outcomes accomplished

by any exemplar trained on DONOR system, and we
would prefer not to re-train it in the HOST system.

3. When it takes enormous time to train any network on
HOST system.

Employing the proposed technique, we can extricate the
exemplar from the well-trained DONOR and offer them to the
HOST getting the same performance across the subject systems.

B. Software Features

Software features are features that consumers and developers
may both utilise. Software frameworks' source codes are
modified by developers to include the newest features [2],
enhance built-in functionality, and get rid of outmoded ones.

3 The investigation of inter-class connections, method calls, and data types

constitutes structural analysis.
4 Behavioral analysis methodologies revolve around the program's execution

behavior.

When programmers are assigned with modifying the origin code
of a considerable or unknown structure, they dedicate a
significant amount of time and effort in program understanding
tasks to acquire the expertise essential to implement the
modifications. A component of this strategy is referred to as
"feature location", an activity in software development whereby
programmers look for entities in the source code (such as
methods or classes) which implement features [3].

It interprets each component of the source code based on
Structural analysis3, Behavioral analysis4 or Semantic analysis5
when it comes to information acquisition akin to source code [3].
Table 1 demonstrates how to submit such information as needed.

TABLE I. INFORMATION TO BE CAPTURED FROM SOURCE CODE

What we get
Analysis method

Behaviora
l Analysis

Structura
l Analysis

Seman
tic Analysis

Annotations ✓ ✓ ✓

Regular Expressions ✓ ✓ ✓

Classes ✓ ✓ ✓

Attributes ✓ ✓ ✓

Parameters ✓ ✓ ✓

Call Actions ✓ ✓ ✓

Dependencies ✓ ✓ ✓

Relationship with
other classes

✓ ✓ ✓

Methods ✓ ✓ ✓

Structures ✓ ✓ ✓

Return types ✓ ✓ ✓

Inheritance ✓ ✓ ✓

Object Instantiations ✓ ✓ ✓

C. Microservices

In recent times, the field of software engineering has
witnessed a growing trend towards cloud computing [4]. As the
infrastructure landscape evolves, there is a growing need for
architectural styles that can effectively harness the opportunities
provided by cloud infrastructure while addressing the
complexities involved in developing cloud-native applications.

One architectural style that has garnered significant attention
in the industry within this context is the microservices
architecture. This approach has been extensively discussed and
explored in various sources [5, 6, 7, 8]. For many years, software
companies have relied on monolithic enterprise applications as
their preferred architecture. This approach worked well within a
limited scope and manageable support requirements, but
challenges arose as systems grew in size and complexity. In
response, the approach of breaking down monolithic
applications into smaller, autonomous microservices emerged.
Each microservice can be deployed and maintained by an agile
team of software engineers, eliminating the need for extensive
cross-team collaboration.

Microservices architecture (MSA) provides a solution to the
issues associated with traditional monolithic backend
applications. However, simply dividing applications into
containers does not automatically guarantee scalability. It is

5 Semantic analysis provides a supplementary perspective to the structural and

behavioral aspects.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 607

IJRITCC | September 2023, Available @ http://www.ijritcc.org

crucial to undertake proper planning to ensure effective
execution and coordination among these individual containers.
The objective of this work is to thoroughly examine and
establish a formal framework for addressing the key challenges
associated with extracting and transplanting specific features of
interest from one application (DONOR) to another application
(HOST).

The available literature indicates that the term
"microservice" lacks a formal definition [7, 8]. According to
Sam Newman [9], microservices are small, autonomous services
that collaborate to perform a specific task proficiently. This
implies that each microservice focuses on a concise, well-
defined section of the problem domain. Eric Evans introduced
the concept of bounded context, wherein a bounded context
contains domain entities that are relevant only within that
context and shares only the necessary entities for communication
with other bounded contexts [10]. To adhere to the identified
bounded contexts within the domain, the literature on
microservices recommends constructing services [7, 9]. This
approach enables the development of cohesive and decoupled
services that deliver resources or functions specific to their
respective bounded contexts.

In the microservice architecture, a suite of microservices
collaborate to form a single, large application. These
microservices communicate with each other through lightweight
mechanisms such as HTTP or remote procedure calls [7].
Essentially, microservices introduce a new form of
componentization, where a component is not limited to a class,
package, or library, but rather an independently deployable
service that operates in its own processes. This architecture takes
the principle of loose coupling and high cohesion to the extreme
(Jong Kook Lee et al., 2001). As a result, communication
mechanisms are kept lightweight and devoid of business logic,
often referred to as "smart endpoints and dumb pipes" [7].

Each microservice in a microservices architecture is
comparable to a station in an assembly line for manufacturing.
Microservices function in a similar way to stations, where each
is in charge of a single job (Figure 3). Each station or
microservice is a specialist in its specific area of responsibility,
which promotes productivity, consistency, and output quality.
Compare it to a production setting where each station is in charge
of constructing the complete product alone. That is comparable
to a software programme that executes all operations through a
single procedure.

Figure 3. Monolithic and Microservice Architectures

To be clear, since assembly lines and microservices do not
always operate in a strictly serialised manner, the assembly line
comparison does not imply a single linear flow (Figure 4).
Microservices make it simple to copy data, distribute it to
various locations as part of the data pipeline, and then process it
in various ways as in a directed acyclic graph (DAG). This

allows you more freedom in how you build the data pipeline and
makes it easier to expand it should you decide to add more
outputs to the flow.

Figure 4. Data Flow in a Microservices Architecture

D. Identify/Discover Features

The task of identifying the crucial operations carried out by
the programme is known as feature discovery in software
designing [24, 25]. Features are characterized as client-centric
marques that specify how a programme behaves (as an example,
"plays mp3 files") [26]. Programmes are frequently seen of as
implementing a collection of features, hence the idea of features
is important. Through requirements elicitation and domain
analysis [27, 28], software developers identify the features that
need to be implemented. With the use of traceability, engineers
combine feature representations with different software relics
[29]. The software has passed the requisite feature set
actualization test, which is proof of its functionality [30]. For
security or privacy concerns, regulatory regulations frequently
demand that certain features be included [31]. As a result,
understanding the features that are really implemented by a
particular piece of software is a crucial task. Figure 5 illustrates
the taxonomy of feature discovery.Identify/Discover Features

Figure 5. Taxonomy for Feature Discovery [3]

E. Extract Features

By performing feature extraction, the problem of selecting
the most concise and useful set of features is solved. Each
characteristic or parameter of a feature is produced through
either a quantitative or qualitative assessment [12]. Fig 6
illustrates the interaction among common components such as a
package, class, method, attribute, and source file, which are the
features that require extraction.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 608

IJRITCC | September 2023, Available @ http://www.ijritcc.org

1. A package organizes homogenous classes and
associated interfaces.

2. Apiece source file is an individual compilation
component connected with a singular package. It
defines atlas either none or multiple classes or
associated interfaces.

3. Classes subsist containers for assembling functions and
features of interconnected variables and operations.

4. Methods being mere segments of code that furnish a
sequence of directives or declarations for carrying out a
specified task.

5. An attribute being a variable or unchanging value that
pertains to a class or its associated interfaces.

Abstract Syntax Trees (ASTs): These source code

representations, which resemble trees, encapsulate the grammar
and organization of the code. They may be used to glean
information about variables, function calls, and connections
between different areas of the code.

Dependency Analysis: Tools for dependency analysis look at
the connections between various code components and create
dependency graphs. This can help identify which code portions
are interconnected and how changes to one region of the code
may affect other areas.

Detecting Code Clones: In a codebase, duplicated code
fragments are found using code clones detection techniques.
This can be useful for identifying hidden dependencies between
various parts of the code.

Source Code Repository Mining: To learn about code
changes over time, source code repository mining examines a
codebase's version control history. This can help with
understanding the connections between different parts of the
code and how the code has evolved over time.

Program Slicing: A technique for isolating a portion of code
related to a given functionality or feature is known as
programme slicing. This can aid in discovering relationships
between various areas of the code and comprehending how they
contribute to overall functioning.

Figure 6. Package, Class, Method, and Attribute Interconnectivity [3]

Our work makes the following contributions:
1. Minimize the amount of time a programmer spends

identifying/locating/extracting application-of-interest from
the application server;

2. Assist the programmer in analyzing code; and
3. Assist the programmer in transplanting organs.

II. RELATED WORK

We explore the existing literature on software
transplantation, microservices, as well as examine prior research
in traditional software engineering disciplines that offer relevant
methodologies and techniques. These disciplines encompass
areas such as reverse engineering, system decomposition and
maintenance, which provide valuable insights for understanding
and applying microservice principles. By considering these
diverse fields, we can draw upon a comprehensive body of
knowledge to enhance our understanding and approach to
microservices.

A. Software Transplantation

Wenyong [13] provided a comprehensive overview of
decompilers, optimal reduction, control flow, and data flow
analysis on Micro-VAX II, VMS4.4 operating system using
organizational analysis and C language feature recovery.

Poe and co-workers [14] developed a method for generating
feature-based parameterized value-based (transactional)
memory benchmarks. TransPlant, a benchmark developed by
authors can generate parameterized, complete value-based
workloads naturally using decentralized source-code.

Haitao [15] proposed an improved software feature
similarity disposal technique based on the k-means clustering
algorithm that ensure effective software transplantation.

Barr and Harman [1] put forward a theory, a tool (μScalpel),
and an algorithm (μTrans) that integrate static analysis and
dynamic analysis to extract, modify, and transplant code from a
donor system into a host.

A. Marginean in [16] employs a lightweight annotation
framework in conjunction with a Search Based approach
(augmented by static analysis) to automatically transplant
missing features from Kate using the tool Scalpel provided by
[1].

Dash et al. [17] concentrate on the Linux kernel, OMAP-
L138, a Linux Kernel configurability, the workflow of
transplanting U-Boot and the Linux Kernel to the OMAP-L138,
and cross-compiling the Linux kernel to generate architecture-
specific code. GRAFTER, a test transplantation-reuse strategy
that enables runtime behaviour-correlation among clones, was
introduced by Zhang [18].

Petke [19] use genetic development to build a faster variety
of a C++ software called MiniSAT, that being a Boolean
satisfiability solver; incorporating image processing tools
ImageMagick and GraphicsMagick.

Liu [20] demonstrates that program slicing can handle
features such as unknown source, irregular, and ambiguous
function description in the context of open source software that
allows code transplantation.

Wang and co-workers [21] perform an empirical study on
organ removal from the GitHub repository to investigate
transplantation dependence on large-scale datasets for specific
platforms.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 609

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Sodhi and Rattan [3] conducted a systematic research
demonstrating the necessity for software transplantation as well
as a comprehensive examination of how it should be carried out.

B. Microservices

Microservices architecture has gained significant popularity
in recent years due to its ability to address the challenges posed
by monolithic applications. Researchers and software
developers have been actively working on various approaches to
decompose monolithic applications into microservices. One
major challenge in decomposing monolith applications is the
lack of tools and clear measures to evaluate the quality of the
decomposed systems. Several research studies have focused on
addressing this challenge and providing guidelines for the
successful decomposition of monolith applications into
microservices.

The field of microservices is relatively young and lacks a
substantial body of research. Pahl and Jamshidi conducted a
systematic secondary study to review and classify existing
research on microservices [38]. Their study focused on 21
research papers published in 2014 and 2015, making it the first
of its kind for microservices. The findings indicate that the
research on microservices is still in an immature and formative
stage. Moreover, the review highlights the need for more
experimental evaluation of proposed solutions and their benefits
within the microservices research community. The study also
reveals a lack of tool support for microservices in the current
state of the art.

Taibi and others [33] presents a comprehensive review of
literature on microservices and identifies key research trends and
challenges in the field. It explores various aspects of
microservices, including decomposition techniques,
communication protocols, deployment strategies, and
monitoring approaches. The paper also highlights the need for
more empirical studies and guidelines to aid practitioners in
successfully adopting microservices.

Ayas H.M. et al.'s qualitative research [34] analyses 215
StackOverflow conversations and 19 interviews to present an
overview of how microservice migrations occur as well as a
breakdown of high level modes of change to particular solution
results.

In order to map the existing microservices-specific
techniques and understand how to continuously deliver value in
a DevOps pipeline, Taibi D. et al.'s conducted a systematic
mapping study [35] characterising the various microservice
architectural style principles and patterns.

In order to demonstrate the knowledge and significance of
the Microservice architecture (MSA), a systematic mapping
study (SMS) was carried out by [36]. In order to identify trends,
obstacles, successful variables, and possible industrial adoption
connected to microservice architecture, the authors stress the
importance of MSA, the necessity for thorough research on
migration methodologies, and the conclusions of the systematic
mapping study.

In a study published in 2023, Hamza M. looked into the
necessity of moving from monolithic to microservices
architecture, as well as the architectural description for doing so,
refactoring tools, methods, and potential challenges and
strategies while successfully converting to microservices [37].

III. PROPOSED METHODOLOGY

As per Amazon Web Services (AWS), Application
Modernization is the process to create new business value from
existing application environments by updating them with
modern features and capabilities. By modernizing your legacy
application environments, you can include the latest
functionalities that better align with what your business needs to
succeed.

A. Problem Statement

There is no single path that our customers take when they
modernize on AWS, but once you start modernizing your
applications you get many important benefits like below:

1. Agility: Develop and deploy faster to achieve business
goals.

2. Enterprise DevOps: Build and operate utilizing proven
ecosystem of cloud-native tooling.

3. Portable & Isolated: Enable portable, scalable and
isolated application deployment.

4. Operational Efficiency: Reduce IT operational
overhead and achieve optimized compute
infrastructure.

But you have few challenges:
1. The applications are old and the application owner had

left the company years ago without leaving any
documentation behind.

2. You/your team is not expert on the containerization
process, thus, you are not feeling comfortable with
touching these applications.

3. You/your team has recently started your Cloud Journey
with AWS and you want to be sure whether you are
following the Cloud Best practices while deploying the
applications into the Cloud.

4. You/your team is very busy and can't spend too much
time to containerize these applications.

B. Decomposing applications into services

The scale cube, which is depicted in Figure 7 below, is a
really helpful 3-D scalability model that is described in the book
The Art of Scalability [32].

Figure 7. The Scale Cube [32]

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 610

IJRITCC | September 2023, Available @ http://www.ijritcc.org

In this concept, X-axis scaling refers to the widely used
method of scaling an application by running several identical
copies of the application in front of a load balancer. That's a
fantastic approach to increase an application's capacity and
accessibility.

Each server runs an identical copy of the code when Z-axis
scaling is used. It is comparable to X-axis scaling in this way.
The main distinction is that each server is solely in charge of a
portion of the data. Each request is sent to the proper server via
a system component. An property of the request, such as the
main key of the entity being requested, or sharding, is a
frequently used routing criterion. The sort of consumer is
another regular routing criterion. For instance, an application
may route requests from paying users to a different group of
servers with additional capacity, giving them a better SLA than
those from free users.

The capacity and availability of the application are enhanced
by Z-axis scaling, much like with X-axis scaling. However,
neither strategy addresses the issues of growing application and
development complexity. Applying Y-axis scaling is what we
need to do to fix those issues.

Functional decomposition, often known as Y-axis scaling, is
the third dimension of scaling. Y-axis scaling divides items that
are distinct, whereas Z-axis scaling divides things that are
similar. A monolithic application is divided into a number of
services at the application tier thanks to Y-axis scalability. Each
service implements a group of linked features, such as customer
and order management.

C. Methodology

There are many important factors to conceive when
transplanting a microservice-based application to the AWS
cloud. First, the application needs to be decomposed into smaller
microservices that are designed to perform specific tasks or
functions. This decomposition requires careful analysis of the
existing monolithic application to identify logical boundaries
and separate functionalities into distinct services. Once the
decomposition is complete, each microservice can be
containerized using technologies like Docker or Kubernetes for
easy deployment and management on AWS. To enable seamless
interaction and interoperability, standardizing communication
across microservices is also crucial. Via well-defined API calls,
microservices may communicate with one another.

It is vital to take into account the scalability and fault
tolerance offered by containerization technologies like Docker
and AWS' Elastic Container Service or Elastic Kubernetes
Service when transplanting a microservices-based application to
the AWS cloud. Additionally, security precautions must be taken
to safeguard sensitive data and guarantee conformity with
industry regulations. It is crucial to utilize the numerous services
and features provided by AWS in order to properly transplant a
microservice-based application into the AWS cloud. These
include serverless computing solutions like AWS Lambda,
AWS Fargate or container orchestration services such as
Amazon Elastic Container Service, Elastic Kubernetes Service,
as well as security management solutions like AWS Identity and
Access Management.

6 Java applications (Linux) or ASP.NET applications (Windows, Linux).
7 You can save time when containerizing a fleet of machines by automation,

using AWS Systems Manager.

The detailed architecture for the proposed approach is
depicted in the Figure 8.

The application should also be built with scalability in mind
throughout design and development. This may be done by
utilizing auto-scaling tools offered by AWS, such as Application
Load Balancers or Amazon EC2 Auto Scaling. Additionally,
utilizing AWS's cloud-native technologies like Elastic Load
Balancers and auto-scaling groups can aid in ensuring high
availability and fault tolerance for the microservices.

The Anti-corruption Layer serves as a bridge between
bounded contexts, facilitating communication and ensuring that
data in each context aligns with its specific language and
treatment. It acts as a translator, enabling seamless integration
and maintaining consistency between different contexts.

Prerequisites
1. AWS Account with relevant permissions.
2. Remote access to the worker machine on which your

application (monolithic application) is currently
running.

3. Docker engine configured on the worker machine.
4. Confirm your application(s) falls under the supported

applications6 list.

Requirements
1. Amazon Simple Storage Service (S3) bucket to store

your artifacts.
2. Create an AWS Identity and Access Management

(IAM) user that has access to the Amazon S3 buckets
and a designated Amazon Elastic Container Registry
(ECR).

3. Deploy a worker node as an Amazon Elastic Compute
Cloud (Amazon EC2) instance. This will include a
compatible operating system (Linux/Windows), which
will take the artifacts and convert them into containers.

4. Install the Application-Container (A2C) agent7 on each
server (Amazon EC2 instance) that you want to
transplant.

Agent analyzes the selected application, packages up its

dependencies (for example, open network ports or third-party
libraries in use), and generates the relevant container artifacts,
such as the container image, task definitions, and YAML8 files
for easy deployment to Amazon Elastic Container Service
(Amazon ECS) and Amazon Elastic Kubernetes Service
(Amazon EKS).

Figure 9 below shows the sequence of steps, with the output
of each being leveraged as the inputs to the subsequent steps in
the sequence.

8 YAML stands for yet another markup language.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 611

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 8. Architecture Diagram for the Proposed Approach

Figure 9. Automation Sequence

IV. RESULTS AND DISCUSSION

A. Feature Identification/Discovery

First we need to identify the entry points for our application
before we proceed with the transplantation procedure (refer
section 1.4). In this case, the agent will –

1. Creates an inventory list (Figure 10) for all applications

running in virtual machines, on-premises, or in the
cloud which so ever is your use-case and lists them in
a JSON format.

Figure 10. Getting Inventory Information from Application Server

2. Analyzes the run-time dependencies (Figure 12) of
supported applications that are running, including
cooperating processes and network port dependencies.

As you can see in Figure 11, we need to set up an Amazon

EC2 instance (virtual server) as the worker node, an S3 bucket
for the analysis output, and two AWS Systems Manager
documents. The first document is run on the target server. It will
install a container agent and run the analysis steps. The second
document is run on the worker node and handles the deployment
of the container image. Analysis runs on the target server we are
transplanting and deployment runs on the worker node.

Figure 11. Overview of the Working Architecture Supporting Scalability

There are three important aspects of the generated analysis
output:

1. Issues and observations: The agent generates a text file
(named report.txt) providing a list of any issues and
observations found that may need remediating before
proceeding for containerization.

2. Dependency identification: The agent not only
analyzed and gathered details about the applications,
but also identified dependencies via its “Co-operating
process” capability. A snapshot of the analysis.json
depicting this is Figure 12 below.

Figure 12. Snippet of Analysis.json with Dependency Information

In the above screenshot, the application in question (with
processId 1092 is shown as non-dependent in the analysis report.
This analysis.json file also includes a section detailing the
dependency found, such as the port used for connectivity, as well
as other access parameters. Agent uses this information in
subsequent steps to ensure these dependencies (if any) are
factored into the generated containers.

3. Application start-up information: The deep scanning
capabilities supported by the agent also provides an
add-on in terms of identifying the start-up command

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 612

IJRITCC | September 2023, Available @ http://www.ijritcc.org

and information (Figure 13) for each legacy application
available on the application server. Agent uses this
information in subsequent steps to launch these
applications within containers.

Figure 13. Analysis.json with Application Start-Up Command

B. Feature Extraction

The activities in this stage depend on whether all steps are
performed on the application server or whether analysis is
performed on the application server and containerization and
deployment are performed on a worker machine. In this stage,
the agent leveraged all of the application and dependency
information from the analysis step (see section 4.1) to generate
the container image for the applications. Also, there are three
important value add-ons in this stage -

1. Creation of Dockerfile: Agent not only created the
container image (Figure 14), but also generated the
Dockerfile and made it available in an AWS
CodeCommit repository that it created for the
application to hold all the necessary object files. If the
application needs to be changed further later on, this
Dockerfile needs to be updated so that it can be reused
to regenerate the Docker image for the changed code.
This is a great value-add for use cases where the
application is modernized further after it’s transplanted
to the cloud.

Figure 14. Initiating the Containerization Process

2. Image tagging: The Docker file generated
automatically applied image tagging and tagged the
generated image as latest, thus handling versioning
automatically.

Figure 15. Tagging The Docker Image

3. Customization: Agent automatically made intelligent
decisions while generating the Docker file and image,
such as selection of the right base image. In case there

is a need to make changes to these, such as using a
different base image, the generated Dockerfile is
available to be edited as needed. You can also test (this
will run the container in background) and inspect (this
will dump a large amount of information about the
container) your docker image (Figure 16).

Figure 16. Testing and Inspecting the Docker Image

C. Artifacts for Deployment

In this stage, the agent will generate the artifacts needed to
deploy your application container in AWS. It generates the
Amazon ECS task definition (Figure 18) and registers the task to
run on the created ECS cluster; transfers the application
container image you prepared into an Amazon ECR repository
(Figure 17) created by the agent. It then used the Docker images
created earlier to launch the applications into ECS as containers.

Figure 17. Amazon ECR Repository created by Agent

Figure 18. Amazon ECS Task Definition

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 613

IJRITCC | September 2023, Available @ http://www.ijritcc.org

The agent reviews your environment and updates the
CloudFormation template with configuration defined in the
previous steps, results of application analysis (Figure 19).

Figure 19. Snippet of the Cloudformation template generated by the Agent

Your application container image is already existing in the
ECR (Elastic Container Registry) at the final stage, and an ECS
Task definition is produced and registered. For you to
automatically deploy and configure all necessary resources in
AWS, the agent generated the cloudformation template. The
cloudformation template may be used to launch your
application, as a last step.

Figure 20. Deploying your Application in Cloud using the template generated

by Agent

V. CONCLUSION

Microservice-based architectures on AWS cloud offer
several advantages for application transplantation. Firstly, the
microservice approach brings benefits such as better
maintainability, flexibility, scalability, and efficiency. Secondly,
the usage of containers in microservice architectures provides an
ideal host for small and self-contained microservices. Containers
help in packaging all the dependencies of a network function into
a single unit and make it easier to manage and deploy multiple
containers on a large multi-cloud infrastructure. Thirdly,
independent deployment of microservices allows for auto-
scaling and efficient handling of workload spikes. Lastly,
adopting a microservice architecture on AWS cloud allows for
seamless integration with other AWS services such as AWS
Lambda for serverless computing and AWS Identity and Access
Management for secure authentication and authorization.
Overall, the combination of microservice-based architectures
and AWS cloud provides a powerful solution for application
transplantation. By leveraging microservice-based architectures
on the AWS cloud, companies can achieve a high level of
flexibility and scalability for their application transplantation
efforts.

The microservice architecture, coupled with the capabilities
of the AWS cloud, offers a robust and efficient solution for
application transplantation. Transplanting the selected
applications from the application server to the cloud also results
in increased productivity and cost savings.

The proposed approach is powered by AWS App2Container
cuts down the transplantation effort and time as it automates the
assessment of the application server and induces
containerization, and also generates the artifacts needed to
deploy the container images (application of interest) to AWS
This results in quick transplantation cycles. It automates the
tooling on many targets in a secure manner.

The table below highlights the automation that we get during
each phase of the transplantation, and compares it to the effort
and skills that would have been needed if these were done
manually.

TABLE II. ACCELERATING TRANSPLANTATION USING CONTAINERIZATION

Transplantation
Activity

Without proposed approach
With proposed
approach

 Steps
involved

Required Skills

Feature
Identification/
Discovery and
Assessment of
legacy system

Manual /
Custom tools

Strong
understanding of
legacy system

Automated

Dependency
mapping

Manual /
Custom tools

Strong
understanding of
legacy system

Automated

Docker file
creation of the
identified
application of
interest

Manual
Docker /
Container

Automated

Building the
Docker Image (of
application of
interest)

Manual
Docker /
Container

Automated

Pushing Docker
Image to Amazon
Elastic Container
Registry (ECR)

Manual
Docker /
Container

Automated

Creating
Deployment
Manifest for
hosting
containers on
Amazon ECS or
Amazon EKS

AWS
Docker/ Amazon
ECS/ Amazon
EKS

Automated

It is important to keep in mind that every customer portfolio

and application requirements are unique. Therefore, it’s essential
to validate and review any transplantation plans with business
and application stakeholders. With the right planning,
engagement, and implementation, you should have a smooth and
rapid journey transplanting your legacy application to AWS
cloud with AWS Containers.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 614

IJRITCC | September 2023, Available @ http://www.ijritcc.org

REFERENCES

[1] Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean,

and Justyna Petke. Automated software transplantation. In
ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), pages 373–384, Baltimore,
MD, USA, July 2015.

[2] Eddy BP, Kraft NA, Gray J (2017) Impact of structural
weighting on a latent Dirichlet allocation-based feature
location technique. Wiley J Softw Evol Proc 30:1–25.

[3] Sodhi,G.S., Rattan,D. An Insight on Software Features
Supporting Software Transplantation: A Systematic Review.
Arch Computat Methods Eng 29, 275–312 (2022).

[4] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James
Broberg, and Ivona Brandic. Cloud computing and emerging
IT platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation computer
systems, 25(6):599–616, 2009.

[5] Weronika Łabaj. Goodbye microservices, hello right-sized
services. http://particular.net/blog/goodbye-microservices-
hello-right-sized-services, 2015. Accessed On: 01-06-2023.

[6] Chris Richardson. Microservices: Decomposing applications
for deployability and scalability.
https://www.infoq.com/articles/microservices-intro, 2014.
Accessed On: 01-06-2023.

[7] Martin Fowler. Microservices: a definition of this new
architectural term.
https://martinfowler.com/articles/microservices.html, 2014.
Accessed On: 01-06-2023.

[8] Johannes Thönes. Microservices. IEEE Software, 32(1):116–
116, 2015, Sam Newman. Building Microservices. "
O’Reilly Media, Inc.", 2015.

[9] Sam Newman. Building Microservices. " O’Reilly Media,
Inc.", 2015.

[10] Eric Evans. Domain-driven design: tackling complexity in the
heart of software. Addison-Wesley Professional, 2004.

[11] Jong Kook Lee, Seung Jae Jung, Soo Dong Kim, Woo Hyun
Jang, and Dong Han Ham. Component identification method
with coupling and cohesion. In Software Engineering
Conference, 2001. APSEC 2001. Eighth Asia-Pacific, pages
79–86. IEEE, 2001.

[12] Cesare S, Xiang Y (2012) Software similarity and
classification. Springer Briefs in Computer Science, Berlin.

[13] Wenyong H, Jiquan L (1995) Software transplantation and
under- standing tool—the study and realization of the VAX-
C decompile system. In: National air intelligence center,
Jisuanji Gongcheng, China, vol 18, pp 1–4.

[14] Poe J, Hughes C, Li T (2009) TransPlant: a parameterized
methodology for generating transactional memory
workloads. In: Bradley JT, Conrad JM, Field AJ, Harder U,
Riley GF, Knottenbelt WJ (eds) 2009 IEEE international
symposium on modeling, analysis & simulation of computer
and telecommunication systems, London, pp 1–10.
https://doi.org/10.1109/MASCOT.2009. 5366659

[15] Fu HT (2014) Elimination simulation of incompatibility of
software transplantation on different platform. Trans Tech
Publ Appl Mech Mater 687–691:2989–2992.
https://doi.org/10.4028/www.scientific.net/AMM.687-
691.2989

[16] Marginean A, Barr ET, Harman M, Jia Y (2015) Automated
transplantation of call graph and layout features into Kate. In:
Barros M, Labiche Y (eds) Springer symposium on search
based software engineering (SBSE), Bergamo, Italy, pp 262–
268. https://doi.org/10.1007/978-3-319-22183-0_21

[17] Dash SK, Ashokbhai VP, Sanmugasundaram R, Srinivasan D
(2016) Transplantation of U-boot and Linux Kernel to
OMAP-L138. In: Proceedings of IEEE international
conference on microelectronics, computing and
communications (MicroCom), National Institute of
Technology, Durgapur, India 2016, pp 1–5.
https://doi.org/10.1109/MicroCom.2016.7522407.

[18] Zhang T, Kim M (2017) Automated transplantation and
differential testing for clones. In: Uchitel S, Orso A, Robillard
M (eds) Proceedings of the 39th IEEE/ACM international

conference on software engineering (ICSE), Buenos Aires,
Argentina, pp 665–676.
https://doi.org/10.1109/ICSE.2017.67.

[19] Petke J, Harman M, Langdon WB, Weimar W (2018)
Specialising software for different downstream applications
using genetic improvement and code transplantation. IEEE
Trans Softw Eng 44:574–594.
https://doi.org/10.1109/TSE.2017.2702606

[20] Liu L, Mao X (2018) A study on code transplantation
technique based on program slicing. In: Hong Y H, Ke G T,
He W(eds) Proceedings of international conference on
transportation & logistics, information & communication,
smart city (TLICSC), advances in intelligent systems
research, Chengdu City, China, 2018, pp 294–298.
https://doi.org/10.2991/tlicsc-18.2018.47

[21] Wang S, Mao X, Yu Y (2018) An initial step towards organ
trans- plantation based on GitHub repository. IEEE Access
6:59268– 59281.
https://doi.org/10.1109/ACCESS.2018.2872669

[22] R.Ruiz, K. Park and V. Ganzert, “Apocalypse: The end of
Antivirus”, Kindle, 2015, pp. 1-134

[23] James Temperton, ”Code 'transplant' could revolutionise
programming”, 2015. WIRED.co.uk.
https://www.wired.co.uk/article/code-organ-transplant-
software-myscalpel

[24] Dumitru H, Gibiec M, Hariri N, Huang JC, Mobster B,
Herrera CC, Mirakhorli M (2011) On-demand feature
recommendations derived from mining public product
descriptions. In: Taylor RN, Gall H (eds) Proceedings of 33rd
IEEE international confer- ence on software engineering
(ICSE), Honolulu, Hawaii, USA, pp181–190.
https://doi.org/10.1145/1985793.1985819

[25] McMillan C, Hariri N, Poshyvanyk D, Huang JC, Mobasher
B (2012) Recommending source code for use in rapid
software prototypes. In: Glinz M, Murphy G, Pezze M (eds)
Proceedings of 34th international conference on software
engineering (ICSE), Zürich, Switzerland, pp 848–858.
https://doi.org/10.1109/ICSE. 2012.6227134

[26] Classen A, Heymans P, Schobbens PY (2008) What’s in a
feature: a requirements engineering perspective. In: Fiadeiro
J, Inverardi P (eds) Proceedings of international conference
on fundamental approaches to software engineering (FASE),
Berlin, Heidelberg, pp 16–30. https://doi.org/10.1007/978-3-
540-78743-3_2

[27] Kang K, Cohen S, Hess J, Novak W, Peterson S (1990)
Feature- oriented domain analysis (FODA) feasibility study.
Software Engineering Institute, Carnegie Mellon University,
pp 1–161

[28] Goguen JA, Linde C (1993) Techniques for requirements
elicitation. In: Proceedings of the IEEE international
symposium on requirements engineering (ISRE), San Diego,
CA, USA, pp 152–164.
https://doi.org/10.1109/ISRE.1993.324822

[29] Marcus A, Malefic JI, Sergeyev A (2005) Recovery of
traceability links between software documentation and
source code. Int J Softw Eng Knowl 15:811–836.
https://doi.org/10.1142/S0218 194005002543

[30] Beck K (2003) Test-driven development: by example.
Addison- Wesley Professional, Boston

[31] Huang JC, Czauderna A, Gibiec M, Emenecker J (2010) A
machine learning approach for tracing regulatory codes to
product specific requirements. In: Kramer J, Bishop J (eds)
Proceedings of ACM/IEEE 32nd international conference on
software engineering (ICSE), ACM, New York, NY, USA,
pp 155–164. https://doi.org/10.1145/1806799.1806825

[32] Martin L. Abbott, Michael T. Fisher, Art of Scalability, The:
Scalable Web Architecture, Processes, and Organisations for
the Modern Enterprise, 2015, Addison-Wesley Professional.

[33] Taibi, Davide & Lenarduzzi, Valentina & Pahl, Claus. (2018).
Architectural Patterns for Microservices: A Systematic
Mapping Study. 10.5220/0006798302210232.

[34] Michael Ayas, H., Leitner, P. & Hebig, R. An empirical study
of the systemic and technical migration towards
microservices. Empir Software Eng 28, 85 (2023).
https://doi.org/10.1007/s10664-023-10308-9

http://www.ijritcc.org/
https://doi.org/10.1109/MASCOT.2009.%205366659
https://doi.org/10.4028/www.scientific.net/AMM.687-691.2989
https://doi.org/10.4028/www.scientific.net/AMM.687-691.2989
https://doi.org/10.1007/978-3-319-22183-0_21
https://doi.org/10.1109/MicroCom.2016.7522407
https://doi.org/10.1109/ICSE.2017.67
https://doi.org/10.1109/TSE.2017.2702606
https://doi.org/10.2991/tlicsc-18.2018.47
https://doi.org/10.1109/ACCESS.2018.2872669
https://www.wired.co.uk/article/code-organ-transplant-software-myscalpel
https://www.wired.co.uk/article/code-organ-transplant-software-myscalpel
https://doi.org/10.1145/1985793.1985819
https://doi.org/10.1109/ICSE.%202012.6227134
https://doi.org/10.1007/978-3-540-78743-3_2
https://doi.org/10.1007/978-3-540-78743-3_2
https://doi.org/10.1109/ISRE.1993.324822
https://doi.org/10.1142/S0218%20194005002543
https://doi.org/10.1145/1806799.1806825
https://doi.org/10.1007/s10664-023-10308-9

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 615

IJRITCC | September 2023, Available @ http://www.ijritcc.org

[35] Taibi, D., Lenarduzzi, V., Pahl, C. (2019). Continuous
Architecting with Microservices and DevOps: A Systematic
Mapping Study. In: Muñoz, V., Ferguson, D., Helfert, M.,
Pahl, C. (eds) Cloud Computing and Services Science.
CLOSER 2018. Communications in Computer and
Information Science, vol 1073. Springer, Cham.
https://doi.org/10.1007/978-3-030-29193-8_7

[36] Razzaq, A., and Ghayyur, S. A. K., A systematic mapping
study: The new age of software architecture from monolithic
to microservice architecture—awareness and challenges,
Comput. Appl. Eng. Educ. 2023; 31: 421– 451.
https://doi.org/10.1002/cae.22586

[37] Muhammad Hamza. 2023. Transforming Monolithic Systems
to a Microservices Architecture. SIGSOFT Softw. Eng.
Notes 48, 1 (January 2023), 67–69.
https://doi.org/10.1145/3573074.3573091

[38] Claus Pahl and Pooyan Jamshidi. Microservices: A
systematic mapping study. In Proceedings of the 6th
International Conference on Cloud Computing and Services
Science, pages 137–146, 2016

http://www.ijritcc.org/
https://doi.org/10.1007/978-3-030-29193-8_7
https://doi.org/10.1002/cae.22586
https://doi.org/10.1145/3573074.3573091

