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Abstract—Securing computer networks has become crucial due to the ongoing emergence of diverse network attacks. The popularity of 

Software Defined Networks (SDN) has risen because of its ability to enhance network agility, efficiency, and adaptability to recent networking 

challenges. However, it is essential to note that SDNs, which depend on centralized controllers, can be severely affected by Distributed Denial 

of Service (DDoS) attacks. The threat of DDoS attacks has grown exponentially, resulting in the evolution of robust Machine Learning-based 

DDoS attack detection systems within SDN. DDoS attack detection systems may deliver poor performance when trained on imbalanced 

datasets. Traditional techniques for handling imbalanced datasets need to be revised. Recent advances in generative adversarial networks 

(GANs) have revealed significant potential in generating synthetic data while preserving the probability distribution of the original data. This 

innovative procedure offers a promising solution to mitigate the challenges of imbalanced data in DDoS attack detection. To address challenges 

originating from imbalanced training datasets, we employed Generative Adversarial models to generate adversarial attacks from one viewpoint 

and evaluate their quality from another perspective. We chose Generative Adversarial Networks (GANs), Bidirectional GANs (Bi-GANs), and 

Wasserstein GANs (WGANs) based on extensive usage and reliability criteria in various domains. We conducted a comprehensive assessment 

to evaluate their effectiveness and resilience in generating high-quality attacks. It helps to develop, train, and fine-tune machine and deep 

learning models to estimate their impacts. We utilized NSL-KDD and CICIDS-2017 datasets to ensure generalization, implementing both ML 

and DL approaches. The outcomes demonstrate that the WGAN model outperformed GAN, Bi-GAN, and the models trained on the original 

imbalanced dataset and traditional sampling techniques in binary and multiclass classifications for both datasets. 
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I.  INTRODUCTION  

In the ever-evolving landscape of network security, 
Software-Defined Networking (SDN) has brought tremendous 
advantages and unique challenges. SDN's centralized control 
and dynamic adaptability have significantly enhanced network 
management and efficiency. However, these benefits come with 
an increased vulnerability to malicious threats, particularly 
DDoS attacks. DDoS attacks pose a grave risk to the availability 
and performance of network services. They involve massive 
malicious traffic intended to overwhelm network resources and 
disrupt normal operations. In SDN, where centralized controllers 
play a pivotal role in network decision-making, DDoS attacks 
can directly impact the controller, potentially leading to severe 
network-wide congestion and service degradation. 

In response to this critical security concern, developing 
effective DDoS attack detection systems tailored for SDN 
environments has become imperative. These systems leverage 
Machine Learning (ML) and Deep Learning (DL) techniques to 
monitor network traffic patterns, identify anomalies, and swiftly 
mitigate DDoS threats. This integration of advanced 
technologies promises to fortify SDN networks against the 

escalating menace of DDoS attacks, ensuring modern network 
infrastructures' continued reliability and security. 

However, the practical implementation of machine learning-
based models in the real world poses unique challenges. A key 
challenge lies in acquiring an extensive dataset encompassing 
attack and normal data samples, an essential prerequisite for 
training robust detection models. However, the collection of 
attack data, characterized by its scarcity and associated costs, 
starkly contrasts the relative abundance of normal data. 
Consequently, this imbalance in data distribution poses a 
formidable hurdle, impacting the accuracy and effectiveness of 
machine learning-based intrusion detection. 

This research paper introduces an innovative solution to 
tackle the pervasive issue of imbalanced datasets in IDS. This 
approach pioneers the generation of synthetic attack data by 
employing the proficiencies of Generative Adversarial Networks 
(GANs). These artificially crafted attack instances are 
seamlessly integrated with the original dataset, forming an 
augmented training dataset. We train various Machine and Deep 
Learning classifiers on this augmented dataset. The research 
presents comprehensive experimental findings spanning 
datasets, including NSL-KDD, and CICIDS2017 dataset. The 
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results unequivocally demonstrate that the MDL algorithms 
exhibit superior performance when trained on the augmented 
dataset generated by GANs, surpassing the performance of 
models trained on the datasets generated through SMOTE 
technique and the original dataset. 

This research addresses the pervasive challenge of 
imbalanced datasets in intrusion detection with an innovative 
solution grounded in Generative Adversarial Networks. By 
augmenting the machine learning-based IDS with synthetically 
generated attack data, this approach seeks to elevate the 
precision and efficacy of intrusion detection, thus contributing 
significantly to the enhancement of network security in a rapidly 
evolving digital landscape. 

The primary objective of this work lies in demonstrating the 
effectiveness of Generative Adversarial Networks (GANs) in 
dealing with the pervasive issue of imbalanced datasets in 
Intrusion Detection System (IDS) datasets. In this paper, we 
present an enhanced version of using GANs to generate synthetic 
data and thoroughly examine their performance across a diverse 
range of benchmark datasets. The article is organized as follows 
to provide a complete understanding of our procedure. Section 
II briefly examines earlier research on ML applications detecting 
DDoS attacks and examines existing techniques for dealing with 
imbalanced datasets, which form the background for our novel 
approach. Section III delivers the materials and methods for 
developing the proposed method. Section IV furnishes a detailed 
illustration of our approach, explaining how GANs are 
employed to generate synthetic attack data and seamlessly 
incorporate it with the original dataset. Section V provides the 
results of our comprehensive experimentation. We examine the 
performance of our approach on various network attack datasets 
and thoroughly investigate the results. This section offers 
valuable insights into the effectiveness of GANs in enhancing 
the model's performance. Lastly, Section VI concludes our 
results and examines potential avenues for future research. 
Overall, this paper offers a comprehensive exploration of the use 
of GANs to address imbalanced datasets in detecting DDoS 
arracks, focusing on enhancing network security in an ever-
evolving digital landscape. 

II. RELATED WORKS 

The significance of a DDoS attack detection system depends 
on several aspects. They are a) the number of features utilized. 
b) the characteristics of data within each feature, c) the number 
of samples used for attack training and testing, and d) the 
selection of a classifier (machine learning or deep learning). 
Generative adversarial models can enhance the performance of 
DDoS attack detection by providing improved training data. 

The authors in [1] introduced the Deep Convolutional GAN 
(DCGAN), which utilizes a Long Short-Term Memory (LSTM) 
algorithm to generate adversarial attacks from original data. The 
DCGAN technique is employed to extract accurate features, 
reducing false detections. For feature selection, a Simple 
Recurrent Unit algorithm is applied for feature extraction from 
original data, followed by LSTM execution for real-time attack 
detection. In the same year, the authors [2] employed Auto 
Encoders (AE) with GANs to address data imbalance issues and 
improve anomaly detection using the Random Forest (RF) 
algorithm. Three models were considered: RF, hybrid of Auto 
Encoders with RF, and a hybrid of Auto Encoders with 
Conditional GAN, the AE-RF model utilizes AE to reduce data 
dimensionality for learning and RF for detection. AE-CGAN 

incorporates CGAN after AE feature extraction, achieving better 
performance than Single-RF and AE-RF. However, this work 
was applied to only 20% of the NSL-KDD training set. 

In 2020, a new model was introduced based on AE and 
statistical analysis techniques for AIDS [3]. Pre-processing 
includes outlier analysis using the Median Absolute Deviation 
Estimator method, min-max normalization, and one-hot 
encoding for non-numeric features. The authors in [4] proposed 
a model that combines Conditional Wasserstein GANs 
(CWGAN) and Cost-Sensitive Stacked Auto-Encoders 
(CSSAE). The CWGAN component was used to obtain more 
samples representing rare attacks, while the CSSAE component 
extracted relevant features. This model effectively addressed 
imbalanced data, especially for rare attacks. It introduced a cost 
function that heavily penalized minor classes, resulting in high 
accuracy for detecting minority attacks. In the same year, the 
authors in [5] developed various classifiers for an IDS using a 
machine learning approach. They applied AE and PCA for 
dimensionality reduction and utilized the Uniform Distribution 
Based Balancing approach to address data imbalance. 

In 2020, the authors in [6] proposed reducing loss function 
in GANs through supervised learning, improving AIDS 
performance for various classifiers, including RF, SVM, KNN, 
and ANN. During the same year, the authors in [7] introduced 
the Monte Carlo tree search algorithm to obtain more samples 
for cross-site scripting (XSS) attacks using GANs. GANs were 
also applied for detecting adversarial attacks, significantly 
improving AIDS performance. In 2023, the authors in [8] 
suggested using GANs in IDS to enhance attack detection on the 
NSL-KDD dataset. GANs were applied to synthesize instances, 
improving attack detection with ML classifiers, including KNN, 
Decision Tree (DT), RF, SVM, and ANN. However, the study 
did not apply the official NSL-KDD split and used different 
evaluation metrics, emphasizing Recall and F1 score. The author 
in [9] employed Weighted Support Vector machine to handle 
class imbalance by assigning highest weights to the minority 
class which allows the model to give more importance to those 
samples during training and reduce bias. Much of the research 
has focused on detecting DDoS attacks with various 
architectures employing machine learning and deep learning 
[10]. Deep learning has consistently demonstrated improved 
performance in terms of detection rates and F1 scores. However, 
no study has evaluated the effectiveness of different GAN-based 
AIDS for binary and multi-class classification on NSL-KDD and 
CICIDS-2017 datasets. Additionally, many studies have focused 
on subsets of the dataset, leading to bias and potentially 
misleading results. 

The contributions of our research are as follows: 

• Identifying significant features related to label 
classes for building a robust model using a hybrid 
of Information Gain and Random Forest Feature 
Importance feature selection techniques, a novel 
approach. 

• Developing and utilizing generative adversarial 
models (GAN, BiGAN, and WGAN) for generating 
realistic adversarial attacks, considering various 
parameter values. 

• Providing a comparative analysis of Original, 
SMOTE, GAN, BiGAN, and WGAN models and 
their impact on DDoS attack detection model 
performance across classification types and DML 
approaches (ML and DL). 
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• Identifying the most beneficial generative 
adversarial models for diverse attack classes using 
cross-datasets and domain adaptation to enhance 
generalization and robustness. 

III. MATERIALS AND METHODS 

A. Generative Adversarial Network 

The Generative Adversarial Network (GAN) is a modern and 
potent DL technique for creating artificial data. GAN comprises 
two neural networks i.e., a Generator (G) and a Discriminator 
(D). In this adversarial framework, the generator takes random 
noise as input and generates synthetic data samples, while the 
discriminator receives two kinds of input: genuine data samples 
from the training dataset and synthetic samples created by the 
generator [11]. The primary goal of the discriminator is to 
differentiate between real and synthetic data. These two 
networks engage in an ongoing training process, with the 
generator learning to produce increasingly realistic samples, and 
the discriminator striving to enhance its ability to discriminate 
among genuine and generated data. This competitive learning 
dynamic often results in generated samples that are hard to 
distinguish from real ones. 

From a mathematical standpoint, if we denote the random 
noise as 'z' and the generator's output as 'X_fake = G(z),' the 
discriminator (D) accepts either a real data sample 'x' or a 
generated sample 'G(z)' as input and generates a value 
representing the likelihood of the input being real data. In other 
words, the discriminator is trained to maximize the probability 
of correctly identifying real data and minimize the probability of 
incorrectly classifying generated data. This training objective is 
captured by the loss function outlined in Equation (1): 

𝐿 = 𝐸[log 𝐷(𝑥)] + 𝐸 [log (1 − 𝐷(𝐺(𝑧)))]           (1) 

 

Figure 1.  Architecture of Generative Adversarial Networks  

One significant advantage of GANs is their completely 
unsupervised nature, enabling them to be trained without 
requiring labeled data. This unsupervised training can then be 
utilized to use the GAN's generator and discriminator as feature 
extractors for various supervised responsibilities. Nevertheless, 
it's crucial to recognize that GANs can be challenging to train 
due to their inherent instability. The adversarial training process 
entails the training of two networks opposing each other, which 
is a departure from the typical single back-propagation 
employed in neural networks. As a result, GANs may generate 
outputs that may seem illogical or unrealistic. Figure 1 illustrates 
the framework of the GAN.  

B. Wasserstein Generative Adversarial Network 

Wasserstein Generative Adversarial Network (WGAN) is a 
significant advancement in the field of generative models, aimed 
at addressing the training stability challenges that have plagued 
traditional Generative Adversarial Networks (GANs). Unlike 
the standard GANs, WGAN introduces the Wasserstein 
distance, also known as the Earth Mover's distance, as the 
primary metric for quantifying the dissimilarity between 
probability distributions. This shift from metrics like the JSD or 
KL divergence results in remarkable improvements in training 
stability, a critical concern in vanilla GANs. 

The Wasserstein distance plays a crucial role in WGAN by 
seeking the optimal mapping between samples from two 
distributions: the original data distribution and the synthetic data 
distribution. This mapping minimizes the overall cost and 
effectively measures the discrepancy between the distributions. 
As a result, the loss function for WGAN is redefined in Equation 
(2), reflecting this innovative approach [12, 13]. 

𝐿(𝑝𝑟 , 𝑝𝑔) = 𝑊(𝑝𝑟 , 𝑝𝑔) = 𝑚𝑎𝑥𝑤∈𝑊𝐸𝑥~𝑝𝑟
[𝑓𝑤(𝑥)]  −

 𝐸𝑧~𝑝𝑟(𝑧)
[𝑓𝑤(𝑔𝜃(𝑧))]             (2) 

The choice of the Wasserstein distance over JSD and KL-
divergence is driven by its ability to handle overlapping 
distributions seamlessly. Unlike its counterparts, the 
Wasserstein distance maintains its properties even when the 
gradient descent value (θ) equals zero, resulting in a zero 
distance. In contrast, KL and JSD divergences become 
unbounded (infinity) and non-differentiable under similar 
conditions. This intrinsic stability and favorable gradient 
behavior make WGAN a powerful tool for various generative 
tasks, particularly in the context of training generative models 
with improved ease and reliability. 

C. Bi-Directional Generative Adversarial Network 

A BiGAN is a generative model that evolves from the 
standard GAN [14]. The structure of a BiGAN is akin to that of 
a GAN, with an additional Autoencoder (AE) component. This 
AE comprises an Encoder (E) and a Decoder (D). The Encoder 
takes high-dimensional input and transforms it into a lower-
dimensional (latent) space, represented as E(input). 
Subsequently, the Decoder reconstructs the encoded data to 
produce data resembling the original input. 

Figure 2.  Architecture of Bi-Directional Generative Adversarial 

Networks  

Within a BiGAN, the Generator (G) and Encoder (E) 
collaborate closely. The Encoder compresses real data into a 
latent space represented as 'z,' and the Generator then 
reconstructs this encoded data, generating data that closely 
resembles the original input, denoted as 'x.' The inclusion of an 
Autoencoder in the GAN serves to mitigate the issue of mode 
collapse, where the model might focus on learning from one 
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class while ignoring the others. As a result, the Autoencoder 
enhances the stability of a GAN by linking real data to the latent 
space 'z.' Moreover, this leads to a more abstract representation 
of the data, making it less susceptible to minor modifications, 
and the GAN's generator can produce high-quality, novel 
samples. 

In contrast to the GAN's generator, which learns from the 
original data distribution, a BiGAN learns from both the original 
data and the latent space (Z). However, the role of the 
discriminator in a BiGAN differs somewhat from that in a 
vanilla GAN. The discriminator in a BiGAN distinguishes 
between fake samples and genuine data by assessing a joint 
probability distribution. Consequently, it discriminates between 
(G(z); z) and (x; E(x)) and aims to maximize the MiniMax 
objective function across three components: the discriminator, 
encoding, and generator. The optimization process for this 
model is akin to that of the standard GAN but includes the joint 
distribution for both the latent space (z) and the original data (x). 
Figure 2 demonstrates the architecture of the BiGAN. 

IV. PROPOSED METHODOLOGY 

This section outlines the comprehensive framework for 
developing an efficient DDoS Detection System, comprising 
seven essential steps. The process commences in step one by 

acquiring raw input records from the NSL ‐ KDD and 

CICIDS‐2017 datasets. Subsequently, in step two, the dataset 

undergoes necessary preparation to facilitate further processing 
and eventual input to generative models. In step three, feature 
selection is conducted to identify and retain the most relevant 
attributes. Step four involves incorporating additional rare attack 
data through standard generative adversarial models to enhance 
the dataset's ability to detect rare attacks. Step five encompasses 
establishing the proposed model architecture, combining both 
ML and DL techniques, followed by training and optimization 
to determine the most effective hyper parameter settings. In step 
six, the model's performance is rigorously assessed based on a 
training dataset, evaluating its ability to detect known attacks 
effectively. In step 7, the model is tested against formerly 

unrecognized (0‐ day) attacks, allowing for evaluating its 

performance under real-world circumstances. Figure 3 visually 
depicts these sequential steps, illustrating the order followed to 
build a robust DDoS detection system. 

Figure 3.  Architecture of the Proposed Framework  

A. Datasets 

In this study, selecting datasets is vital in assessing the 
effectiveness of the DDoS attack detection system against 

generative adversarial attacks. We employed the NSL‐KDD 

[15] and CICIDS‐2017 [16] datasets due to their importance in 

DDoS attack detection and applicability to generate generative 
adversarial attack traffic. These datasets are widely determined 
for providing realistic network traffic data, encompassing 

various attack classes and types. The NSL ‐ KDD and 

CICIDS‐2017 datasets are known for their high diversity and 

complexity, guaranteeing robust, reliable, and generalized 
results. They also function as valuable benchmarks for 
evaluating the ability of generative models like GANs, BiGAN, 
and WGAN to produce adversarial attacks by training on diverse 
and rare attacks, yielding high-quality outcomes to detect DDoS 
attacks in SDN. 

The NSL‐KDD dataset is derived from the KDD CUP 99 

dataset [17], which contains 15,000 records, ignoring 
redundancy and reducing training time. This dataset presents a 
comprehensive evaluation of a model compared to the original 
KDD CUP 99 dataset. Figure 4 outlines the distribution of 

attacks across classifications within the NSL‐KDD dataset. 

The NSL‐KDD dataset delivers an exciting characteristic 

where the training set includes attacks not present in the testing 
set and vice versa. Additionally, the User to Root (U2R) and 
Root to Local (R2L) attack classes contain minimal samples, 
posing challenges to the model performance in these types. 

On the other hand, the CICIDS‐2017 dataset is a valuable 

resource for IDS research as it reflects real-world attacks and 
encompasses various protocols and attack categories. It includes 
Brute Force Attacks, Heartbleed Attacks, Botnets, Denial of 
Service (DoS) Attacks, Distributed Denial of Service (DDoS) 
Attacks, Web Attacks, and Infiltration Attacks. This dataset was 
captured over five days, featuring network traffic with diverse 
protocols and attack scenarios.  

One noteworthy aspect of the CICIDS‐2017 dataset is the 

class imbalance, with approximately 80% representing benign 
traffic and only 0.1% comprising rare attacks like Infiltration, 
Heartbleed, and specific Web Attacks. This imbalance presents 
a significant challenge for IDSs, particularly in accurately 
detecting and classifying rare and adversarial attacks.  

Overall, the choice of these datasets ensures the rigorous 
evaluation of IDSs and the effectiveness of generative 
adversarial models in producing high-quality adversarial attacks 
for enhancing the capabilities of IDSs in handling real-world 
network security threats. Figure 4 shows the class distribution of 
the CICIDS 2017 dataset. 

 

Figure 4.  Traffic distribution in NSL-KDD and CIC-IDS 2017 Datasets. 
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B. Data pre-processing and feature extraction 

Data pre-processing and feature extraction are essential in 
preparing the NSL-KDD and CICIDS-2017 datasets for DDoS 
attack detection model and generative adversarial attack 
generation. This process involves several key steps to ensure 
data quality and relevance. 

In the initial step, benign records are labelled as "one," while 
attack records are labelled as "zero," establishing a binary 
classification scheme that distinguishes normal from adversarial 
network traffic. The second step addresses missing values within 
both datasets by employing median imputation. This strategy 
ensures that incomplete data does not impede the subsequent 
analysis and modelling efforts. The third step focuses on 
enhancing computational efficiency by identifying and 
removing quasi-constant features. These are features with values 
that remain the same across most data records, and eliminating 
them streamlines the model learning process. In this case, twelve 
quasi-constant features were dropped. Numeric data undergoes 
scaling in the fourth step using the Standard Scaler. Scaling 
ensures that data values are on a consistent scale, a prerequisite 
for many machine learning algorithms to perform optimally. 
Non-numeric or categorical features are handled in the fifth step 
using One-Hot Encoding. This conversion transforms 
categorical attributes into a numerical format that can be 
effectively utilized by machine learning models. 

TABLE I.  TOP FEATURES WITH HIGHEST IMPORTANCE SCORES FROM 

NSL-KDD AND CIC-IDS 2017 DATASETS. 

NSL-KDD Dataset CIC-IDS 2017 Dataset 

Duration num file creations DestinationPort 

source bytes  num shells FlowDuration 

destination bytes  num access files BwdPacketLengthMin 

wrong fragment count FlowIATMean 

urgent srv count  FlowIATMax 

hot dst host count FwdIATMean 

number failed logins dst host srv count FwdPackets/s 

num compromised level  BwdPackets/s 

 su attempted   MinPacketLength 

num root,   min_seg_size_forward 

 
Feature selection, the final step, is a critical phase to identify 

the most relevant attributes for both DDoS attack detection and 
generative adversarial models. Two distinct techniques, 
Information Gain (IG) [18] and Random Forest Feature 
Importance (RFFI) [19], are employed for this purpose. IG is a 
filter-based approach that quantifies attribute relevance by 
calculating entropy. Features with higher IG values are deemed 
more relevant, and these top-ranking features are selected based 
on their ability to distinguish between normal and DDoS traffic. 
On the other hand, RFFI is an embedded feature selection 
technique known for its accuracy. It involves training a Random 
Forest classifier with the selected features and evaluating each 
feature's contribution to predictive accuracy. The top features 
with the highest importance scores are then chosen for further 
modelling and analysis. The table 1 presents the top features with 
highest feature importance scores from both the datasets. 

By meticulously following these data pre-processing and 
feature extraction steps, the NSL-KDD and CICIDS-2017 
datasets are optimized for effective use in DDoS attack detection 
model evaluation and generating high-quality adversarial 
attacks, ultimately bolstering network security systems' 
capabilities. 

C. Apply generative adversarial models 

Assessing the generative adversarial models' performance 
involves a crucial step of testing our model against unseen 
attacks. To ensure the robustness of the model, synthetic 
adversarial samples for all attack categories are combined with 
the training data. Importantly, the entire dataset is used for 
constructing the model instead of relying on a subset. For the 
NSL-KDD dataset, the official split is applied, while no official 
split exists for CICIDS-2017. Nonetheless, an equal number of 
samples, 70,343, is utilized for each attack category in both 
datasets, promoting balanced evaluation. 

The process of obtaining adversarial attacks using GAN, 
BiGAN, and WGAN models consists of several key steps: 

• Select the training sample set (either NSL-KDD or 
CICIDS-2017) as input for the generative model. 

• Apply the generator (G) to the selected samples 
from Step 1 using a latent space (Z) in 2D format. 

• Calculate the loss error value for the original data 
(loss of real data) and the generated data (loss of 
fake data). 

• Obtain the discriminator results by adding the loss 
error values of the real and original data, then 
multiplying the sum by 0.5. 

• Update the weights of the discriminator and 
generator using gradient descent in the back 
propagation process. 

• Monitor the loss error values between the generator 
and discriminator across multiple epochs, with 
specific conditions established through extensive 
experiments. These conditions ensure that the 
training process is optimized and that the generated 
adversarial attacks meet predefined quality criteria, 
such as low discriminator loss and stable generator 
loss. 

This systematic approach to obtaining adversarial attacks 
through GANs, BiGANs, and WGANs is critical for training 
robust DDoS attacks detection model capable of effectively 
detecting a wide range of network attacks, including rare and 
previously unseen ones. 

D. Proposed Framework 

This research has developed a comprehensive model 
leveraging both ML and DL algorithms to enhance the 
effectiveness of DDoS attack detection. In the realm of machine 
learning, the Support Vector Machine (SVM), Decision Tree 
(DT), and Random Forest (RF) algorithms were employed. For 
fine-tuning purposes in Decision Tree and Random Forest, 
parameters such as tree depth and the number of jobs were 
adjusted. The tree depth parameter was varied within the range 
of 1 to 13, while the number of jobs was set to one, enabling 
parallel computation of trees. In contrast, the deep learning 
approach involved the utilization of Convolutional Neural 
Networks (CNN), Long Short-Term Memory (LSTM), and 
Gated Recurrent Unit (GRU) algorithms for investigation. 
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In the case of the NSL-KDD dataset, the model’s framework 
comprises of two key components: Convolutional and Dense 
layers. The convolutional layer employs a (3*3) kernel size with 
standard kernel initialization parameters. A flattened layer seeks 
the convolutional layer, introducing a dropout strategy with a 
value of 0.1. After that, we employ a dense layer with a standard 
kernel initializer and ReLU activation function. Then, we 
employ a Kernel regularization to optimize the model, with an 
L1 parameter value of 0.02. In the CICIDS-2017 dataset, a 
similar architecture is employed, with variations in dropout, 
kernel regularization, and activation function.  

We implement a three-layer architecture for the GRU 
algorithm in the NSL-KDD dataset. The first layer comprises the 
GRU layer, followed by three dense layers, all utilizing the 
ReLU activation function. A dropout strategy is involved 
immediately after the GRU layer, with a value of 0.1. In contrast, 
the model for CICIDS-2017 consists of four layers, with the first 
three being GRU layers and the final being a dense layer with an 
L1 value of 0.005. Finally, we employ the tanh activation 
function across all layers. The LSTM algorithm comprises two 
layers, i.e., an LSTM and a dense layer. The LSTM layer 
possesses a dropout layer with a value of 0.5 and employs ReLU 
activation functions on both layers. These algorithmic 
preferences and architectural configurations contribute to the 
model's robustness and efficacy in detecting DDoS attacks 
across diverse datasets. 

V. EXPERIMENTAL SETUP AND RESULTS EVALUATION 

A. Evaluation Metrics 

Several metrics are employed to assess the performance of 
the proposed technique quantitatively. These metrics include 
Accuracy, Precision, Recall, and F1-Score. 

1) Accuracy: This metric computes the ratio of 
correctly classified samples to the total samples. 

 

                       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
           (3) 

 

2) Precision: It specifies the quality of an optimistic 
prediction made by the model by calculating the 
ratio of true positive predictions to the overall 
instances that are predicted correctly. 

 

            𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                    (4) 

 
3) Recall: Recall denotes the ratio of correctly 

identified positive class samples to the total number 
of positive instances. It is also known as True 
Positive Rate. 
 

                    𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                           (5) 

 
4) F-Score (F1 Score): The F1-Score is an evaluation 

metric, functioning as the weighted harmonic mean 
of Precision and Recall. It evaluates a model's 
performance by integrating Precision and Recall 
into a single score. 
 

              𝐹 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                       (6) 

B. Experimental Results 

Here, we perform a broad comparison of various ML and DL 
models when trained on diverse datasets, including augmented 
datasets generated by GAN, Bi-GAN, and WGAN, as well as the 
original dataset and datasets generated using the Synthetic 
Minority Over-sampling Technique (SMOTE) [20]. The ML 
algorithms considered for evaluation include DT, RF, and SVM. 
On the DL side, the methods include CNN, LSTM, and GRU. 
The aim is to assess and compare these algorithms' accuracy 
when encountering various data sources, including synthetic 
data generated by generative adversarial networks and 
oversampled data from SMOTE. Table 3 exemplifies the 
performance of various DML Learning models in binary 
classification for both the datasets. 

TABLE II.  RESULTS OF VARIOUS DML METHODS ON MULTI 

CLASSIFICATION FOR NSL-KDD DATASETS. 

Dataset Type 

Classifier 

(Accuracy 

in %) 

Attack Type  

DoS Probe R2L U2R 

Original 

DT 90 58 30 16 

RF 89 65 24 20 

SVM 89 65 24 0 

CNN 76 52 0 0 

LSTM 84 72 18 0 

GRU 80 79 0 0 

SMOTE 

DT 90 60 35 16 

RF 90 76 24 10 

SVM 89 65 24 0 

CNN 80 56 0 0 

LSTM 86 75 15 0 

GRU 82 82 0 0 

GAN 

DT 89 77 42 20 

RF 92 82 24 21 

SVM 94 89 63 28 

CNN 86 86 45 20 

LSTM 92 89 52 26 

GRU 94 92 64 18 

Bi-GAN 

DT 84 76 44 30 

RF 89 76 28 0 

SVM 88 72 38 20 

CNN 76 58 0 24 

LSTM 82 76 24 24 

GRU 82 74 36 28 

WGAN 

DT 86 76 49 40 

RF 89 8 43 70 

SVM 88 82 44 18 

CNN 82 65 28 10 

LSTM 86 82 48 14 
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GRU 88 78 38 21 

 

 
 

TABLE III.  OUTCOMES OF VARIOUS DML METHODS ON BINARY CLASSIFICATION FOR NSL-KDD AND CICIDS2017 DATASETS. 

ataset 

Type Classifier 

NSL-KDD CIC-IDS 2017 

Accuracy 

in (%) 

Precision 

in (%) 

Recall 

in (%) 

F-score 

in (%) 

Accuracy 

in (%) 

Precision 

in (%) 

Recall 

in (%) 

F-score 

in (%) 

original 

DT 84 86 86 91 92 93 92 95 

RF 86 87 89 90 94 96 96 97 

SVM 89 87 86 89 93 92 96 95 

CNN 80 87 85 87 96 94 99 97 

LSTM 89 87 85 89 97 97 99 98 

GRU 90 87 87 92 98 97 98 97 

SMOTE 

DT 86 86 89 89 92 93 92 95 

RF 89 87 90 90 95 96 98 98 

SVM 91 90 90 92 97 98 98 98 

CNN 92 90 91 92 98 98 99 98 

LSTM 90 92 89 92 96 97 99 98 

GRU 92 94 92 94 98 97 98 98 

GAN 

DT 94 96 93 94 94 93 96 94 

RF 94 96 89 91 97 96 99 98 

SVM 92 96 94 94 97 96 98 98 

CNN 96 95 95 96 98 99 98 99 

LSTM 95 95 94 95 98 97 99 98 

GRU 94 96 94 95 99 98 99 98 

Bi-GAN 

DT 82 86 89 93 94 92 96 92 

RF 89 87 86 90 96 95 99 99 

SVM 86 83 84 83 97 97 98 97 

CNN 89 86 84 89 98 97 99 98 

LSTM 89 87 82 83 98 97 98 98 

GRU 88 86 83 89 98 97 100 98 

WGAN 

DT 93 95 92 93 91 89 89 92 

RF 89 87 84 89 97 97 99 98 

SVM 89 93 88 90 97 96 100 98 

CNN 90 92 92 92 98 97 99 98 

LSTM 88 87 82 89 98 97 98 98 

GRU 89 87 84 90 98 98 98 98 

1) Experiment with GAN 
This investigation assesses the Generative Adversarial 

Network (GAN) model's ability to generate high-quality attack 
traffic and its impact on binary and multi-class classification 
tasks using the NSL-KDD and CICIDS-2017 datasets. First, we 
fine-tune the GAN model to produce high-quality synthetic 
attack traffic. We use cosine similarity as a metric to measure the 
quality of generated attack traffic. In the NSL-KDD dataset, the 
GAN achieved a cosine similarity of 18.1343, while in the 
CICIDS-2017 dataset, it achieved 4.6018. The difference in 
cosine similarity between the datasets is attributed to variations 

in the type and number of attacks in each variety. Observing the 
generation of synthetic attacks by the GAN, the model's 
performance is evaluated using GAN-generated, original, and 
SMOTE technique-generated data. We develop the DDoS attack 
detection system using  ML approaches such as DT, RF, and 
SVM, as well as DL approaches including CNN, LSTM, and 
GRU. 

In the NSL-KDD dataset, the model performance improved 
for all algorithms with CNN achieving the best results with a 
16% increase in the accuracy, followed by decision tree with 
10% on original data. Whereas, DT improved 8% and RF, CNN 
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by 5% when compared with SMOTE data. In contrast, in the 
CICIDS-2017 dataset LSTM, GRU, and DT algorithms had 
limited impact. Whereas, SVM showed an improvement of 4% 
on original dataset.  

 
 

 

TABLE IV.  TABLE 4: RESULTS OF VARIOUS DML METHODS ON MULTI CLASSIFICATION FOR CIC-IDS 2017 DATASETS. 

  

Attack 

Type 

Original SMOTE GAN Bi-GAN WGAN 

SVM 

(%) 

LSTM 

(%) 

GRU 

(%) 

SVM 

(%) 

LSTM 

(%) 

GRU 

(%) 

SVM 

(%) 

LSTM 

(%) 

GRU 

(%) 

SVM 

(%) 

LSTM 

(%) 

GRU 

(%) 

SVM 

(%) 

LSTM 

(%) 

GRU 

(%) 

Bot 76 92 84 80 91 85 95 74 82 73 82 74 82 20 87 

Brute force 93 85 65 94 85 72 75 66 100 95 95 96 95 96 96 

DDoS 94 95 95 93 92 95 68 92 95 95 98 92 96 99 96 

DoS 

GoldenEye 0 0 96 0 0 0 98 92 95 0 0 0 0 45 0 

DoS hulk 99 99 90 97 99 99 96 78 88 99 99 98 99 100 100 

DoS 

slowhttptest 90 72 94 95 76 94 95 92 94 92 92 98 86 94 89 

DoS 

slowloris 0 0 90 0 0 0 94 86 92 0 0 0 100 89 0 

FTP 

Patator 88 77 98 90 95 96 92 99 99 96 96 78 96 98 89 

Heartbleed 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 

Infiltration 98 98 25 98 95 26 26 0.9 0 99 99 99 99 99 99 

PortScan 54 62 98 66 72 96 99 99 98 68 68 62 68 68 68 

SSH 

Patator 95 87 98 96 91 98 99 99 99 93 94 76 95 96 94 

Sql 

injection 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

XSS 0 0 0 0 0 0 0 0 0 98 99 \97 99 99 100 

CNN, GRU, SVM showed limited improvement, DT, RF, 
and LSTM algorithms showed an improvement of 2% on 
SMOTE data, suggesting that GANs could learn from specific 
attack distributions. 

The study also investigates the model performance in multi-
class classification, as shown in Tables 2 and 4. In the NSL-KDD 
dataset (Table 2), ML algorithms demonstrated similar behavior, 
with exceptional performance for Probe, R2L, and U2R 
categories. In the CICIDS-2017 dataset (Table 4), the model 
performance in multi-class classification outperformed binary 
classification, particularly for Bot, SSH Patator, and FTP Patator 
attacks, which had a larger number of samples. However, certain 
attacks with fewer than 25 samples, such as SQL Injection, 
Infiltration, and Heartbleed, remained undetected. 

To address stability issues and mode collapse observed in 
GANs, a second experiment using the BiGAN model was 
conducted in the research. This demonstrates the exploration of 
alternative generative models to improve attack generation and 
subsequent IDS performance. 

2) Expermiment with BiGAN 
This experiment was conducted to assess the impact of the 

Bidirectional Generative Adversarial Network (BiGAN) model 
on the performance of DDoS attack Detection Systems. The goal 
was to evaluate whether the addition of an encoder component 
in the BiGAN architecture enhances the detection of attacks 
across different datasets and classification types. The BiGAN 
model was constructed and fine-tuned for generating high-
quality attacks. When measuring cosine similarity, the model 
achieved a similarity of 16.5455 for the NSL-KDD dataset and 
3.2155 for the CICIDS-2017 dataset. 

Comparing the BiGAN model to the GANs model, the 
cosine similarity values were generally higher for BiGAN, 
indicating better quality in the generated attacks. However, this 
metric alone may not reflect the result of the model based on the 
BiGAN model at the attack level. Therefore, the model based on 
BiGAN was evaluated for both datasets in binary classification, 
as shown in Table 3. 

The results exposed that the model performance in the NSL-
KDD dataset saw a slight enhancement in the accuracy 
compared with the GANs model. However, the performance of 
the model based on BiGAN for DT and RF algorithms was 
poorer, leading to negative impacts. For the CICIDS-2017 
dataset, the model using DL algorithms generally showed 
positive impacts, except for the LSTM algorithm. Further 
investigation was conducted to assess BiGAN's impact on the 
model through multi-class classification, presented in Tables 2 
and 4 for NSL-KDD and CICIDS-2017 datasets, respectively. 

In the NSL-KDD dataset, the model performance based on 
GANs was slightly better than that of the BiGAN model. In the 
CICIDS-2017 dataset, BiGAN's main contribution was in 
detecting Brute Force and DDoS attacks, which were not 
detected by GANs. Moreover, negative impacts on Infiltration, 
DoS Slowhttptes, and DoS Hulk attacks were reduced compared 
to AIDS based on the GANs model. However, the detection of 
DoS Slowhttptest and GoldenEye attacks was negatively 
affected by BiGAN, likely due to the limited number of samples 
for these attacks. In summary, the model performance in 
detecting attacks varied between GANs and BiGAN models, 
with some attacks being detected by GANs and others 
exclusively by the BiGAN model. Accordingly, we perform 
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additional investigations using the Wasserstein Generative 
Adversarial Network (WGAN) model, which employs a 

different loss function, and we expect that it will detect a broader 
range of attacks compared to other generative models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Results of various DML methods on Multi classification for NSL-KDD datasets

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 6: Results of various DML methods on Multi classification for CIC-IDS 2017 datasets. 

 
3) Experiment with WGAN 

This section assesses the model's effectiveness on WGAN 
and other generative models and investigates the deviations 

between these models in detecting attacks. To assess the quality 
of the generated attacks produced by WGAN, cosine similarity 
metrics were calculated to compare the distributions of original 
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and generated attack traffic across all three generative models 
(GANs, BiGAN, and WGAN). For the NSL-KDD dataset, the 
absolute cosine distance was 19.2529 for WGAN, 20.3715 for 
GANs, and 21.9501 for BiGAN. In the CICIDS-2017 dataset, 
the individual values were 3.2244 for WGAN, 4.6028 for GANs, 
and 4.7007 for BiGAN. These results indicate that WGAN 
produces attack traffic closer to the original attacks than GANs 
and BiGAN in both datasets. 

Table 3 presents the performance of the models in binary 
classification for NSL-KDD and CICIDS-2017 datasets using 
WGAN. Notably, WGAN consistently improves the models 
performance for most approaches (ML and DL) in both datasets, 
except for some exceptions like GRU in NSL-KDD and RF in 
CICIDS-2017. The CNN algorithm achieved the highest 
accuracy in NSL-KDD, while the DT and LSTM algorithms 
were less effective for CICIDS-2017. 
The model based on WGAN demonstrated enhanced 
performance in both binary and multi-class classification and 
across both datasets. The results show that WGAN outperformed 
BiGAN and performed equally to GANs for rare attack 
categories (R2L and U2R) in the NSL-KDD dataset. Tables 2 
and 4 provide detailed results for the model based on the WGAN 
model using NSL-KDD and CICIDS-2017, respectively. 

In the CICIDS-2017 dataset (Table 4), WGAN detected nine 
attacks, compared to five attacks by GANs and six by BiGAN 
using the LSTM algorithm. This indicates that WGAN detected 
more attacks and achieved enhancements in the detection of 
specific attacks, such as Brute Force, DDoS, DoS Slowhttptest, 
DoS slowloris, FTP Patator, and Heartbleed, compared to GANs 
and BiGAN models. Figure 5 and 6 illustrates the Results of 
various DML methods on Multi classification for NSL-KDD 
and CIC-IDS 2017 datasets. 

When comparing the findings of this study to our prior 
research efforts [9] and [10], we observe notable differences in 
approach and outcomes. In [10], we utilized the SMOTE 
technique to address the challenges associated with imbalanced 
datasets, while in [9], we employed a Weighted Support Vector 
Machine to mitigate class imbalances by assigning greater 
weights to the minority class, thereby emphasizing its 
significance during training and reducing bias. This research 
reveals that the application of Generative Adversarial Networks 
has resulted in a more comprehensive detection of attacks and 
noteworthy improvements in identifying specific attack types. 

VI. CONCLUSION 

This research underscores the significant impact of 
imbalanced data on DDoS attack detection model performance, 
particularly for rare attacks. Generative adversarial models have 
been employed to address this issue by generating additional 
samples for these rare attacks. However, the influence of such 
generative models on DDoS attack detection model performance 
can vary, with some attacks benefiting while others are 
negatively affected. For example, DoS slowloris and PortScan 
exhibited improved performance, while DoS Hulk and SSH 
Patator suffered from decreased performance. Furthermore, the 
type of classification, binary or multi-class, displayed differing 
performances across models. Therefore, both classification types 
were applied to both datasets to evaluate their impacts on model 
performance. Feature selection, when coupled with adequate 
training data, can significantly enhance model performance, 
especially when the selected features are relevant to the target 
class. After pre-processing both datasets, the Mutual 

Information and Random Forest Feature Importance techniques 
were used for feature selection. However, the limited sample size 
for some rare attacks may pose challenges for generative models 
in generating similar adversarial samples for these attacks. In 
summary, this research conducted an extensive evaluation of 
SMOTE, GAN, BiGAN, and WGAN on various datasets, 
classification types, and classifiers. The results highlight that 
WGAN outperforms GAN, BiGAN, and SMOTE models in 
detecting a broad spectrum of attacks, following optimization of 
several classifiers and feature selection. 
Future research directions could involve the development of new 
generative models based on GANs, BiGAN, and WGAN in the 
context of DDoS attack detection, particularly for combating 
complex and adversarial attacks. Additionally, these models 
could be optimized for malware analysis by gaining insights into 
malware behavior at an early stage. The WGAN, with its 
significant performance in detecting a wide range of attacks 
across popular datasets, holds promise for applications in the 
cybersecurity field. 
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