
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 494

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Towards Constructive Cost Analysis for demand

based Reusable Domain Specific Components

1N Md Jubair Basha, 2Dr. Gopinath Ganapathy, 3Dr. Mohammed Moulana
1Research Scholar, Department of Computer Science & Engineeirng,

Bharathidasan University, Tiruchirapalli, TN, INDIA.

 e-mail: jubairbasha@gmail.com
2Senior Professor, Department of Computer Science & Engineeirng,

Bharathidasan University, Tiruchirapalli, TN, INDIA.

 e-mail: gganapathy@gmail.com
3Professor, Department of Computer Science & Engineeirng,

Koneru Lakhsmiah Educational Foundation, Vaddeswaram, AP, INDIA.

 e-mail: moulanaphd@gmail.com

Abstract— The prevailing software development methodology embraced by a majority of organisations is characterised by its agility. The

neglect of normal analysis and design procedures is a consequence of the significant pressures associated with designing a product within

specified time and budget constraints. This phenomenon could potentially result in a death of software of superior quality, while simultaneously

impeding the constructive reuse of components. In the majority of component approaches, the demand of domain specific sofwatre components

occurs during the later stages. In this paper, various components can be identified as demand based reusbale domain specific software

components, which might also help in reusing these components in the subsequent increments. The strategy for extraction of components &

procedure for reusing the existing components is described and a sample case to realize the same is presented.Still there is a dire need to early

identify the demand based domain specific sofwatre components and perform the constructive cost analysis for the reusable domain specific

software components. The issues related to the estimation of cost reuse measures are still challenging. This paper presents the constructuve cost

analysis for the demand based reusable domain specific sofwtare components and proposes reuse measures for the family of applications with

the quantized values. By analyzing these cost measures, the budget and effort in the development can be reduced. The results are estimated from

the HR Portal domain specific softwrae application as a case study and its respective scenario has been explored in a better manner.

Keywords-Estimation, Component Extraction, Reusability, demand based domain specific scomponent, cost concern matrix, victim components

I. INTRODUCTION

Software reuse refers to the activity of implementing or
modifying software systems by utilizing pre-existing software
assets [2]. The concept of software reuse has garnered
significant attention among the software community due to its
perceived advantages, such as enhanced product quality and
reduced product cost and schedule. The objective is to establish
and sustain a collection of reusable components that serve as a
foundation for future products within a specific functional
domain.

The utilization of reusable components is progressively

supplanting the utilization of monolithic and proprietary
technology [1]. The rationale behind this transition is driven by
the imperative to minimize life cycle expenses, improve
software excellence, and optimize the resources required for
system development and testing.

An effective software reuse process enables enhanced

productivity, quality, and reliability, while simultaneously
reducing costs and implementation time. The initiation of a
software reuse process necessitates an initial investment,
which, however, proves to be cost-effective within a limited
number of reuses. In summary, the establishment of a reuse
process and repository generates a knowledge foundation that
progressively enhances in quality with each instance of reuse.
This, in turn, diminishes the extent of development efforts

necessary for forthcoming projects and ultimately mitigates the
risk associated with new projects that rely on repository
knowledge.

There are several significant benefits associated with the

utilization of domain-specific components.

The utilization of component reuse results in cost and

schedule reductions, as it eliminates the requirement for
developing the component from scratch. If deemed necessary,
the component has the potential to undergo modifications.

The term "reduced" refers to a state or condition in which

something is diminished or the allocation of resources to testing
activities accounts for a significant portion, specifically more
than 60%, of the overall effort expended in software
development. The utilization of domain-specific components
leads to a reduction in testing effort.

The certification process for the developed component has
already been finished. The component is expected to exhibit
high quality.

Numerous organizations have devised domain-specific

components that serve as valuable resources, enabling their
future reuse. Although the component may not be utilized again
as a mirror component, it has the potential to undergo
modifications. The level of effort needed to modify a

http://www.ijritcc.org/
mailto:gganapathy@gmail.com
mailto:moulanaphd@gmail.com

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 495

IJRITCC | September 2023, Available @ http://www.ijritcc.org

component is lower in comparison to that necessary for
developing it from the beginning. Nevertheless, it is imperative
to establish a methodology for the identification and cultivation
of domain-specific components.

The subsequent section of this paper is structured in the
following manner. Section 2 delineates the pertinent literature
in the field, whereas section 3 elucidates the incorporation of
software reuse. Section 4 provides an overview of the domain
engineering process. Section 5 contains a detailed analysis of
the HR Portal application. Section 6 focuses on the assessment
of cost metrics associated with the reuse of resources. Section 7
provides a detailed analysis of a hypothetical scenario that aims
to demonstrate the financial implications associated with the
acquisition and implementation of domain-specific
components. The paper is concluded in Section 8.

II. RELATED WORK

In the context of reuse-driven development, the reusability
of software assets becomes feasible when organizations possess
a substantial number of applications and the development team
possesses a comprehensive understanding of the value inherent
in rendering these artifacts reusable. Moreover, the existing
patterns that commonly address a shared problem fail to
consider the extraction of reusable components from the
requirements statements. The presentation focused on platform-
specific patterns, such as Java design patterns and J2EE
patterns. The subsequent methodologies are now employed in
the field of re-engineering to facilitate the design and
development of component-based systems.

A. CORUM II

The CORUM II framework organizes the requirements

from several perspectives in order to facilitate the integration of
architecture-based reengineering tools with code-based
reengineering tools. Nevertheless, this approach fails to provide
the necessary workflow for the implementation of a
reengineering project.

B. MORALE

Mission Oriented Architecture (MOA) is a conceptual
framework that emphasizes the alignment of an organization's
architecture with its mission objectives. MOA is a strategic
approach that aims the concept of Legacy Evolution pertains to
the challenge of developing and adapting intricate software
systems. The objectives of this system are as follows: purpose-
driven: The process of enhancing the legacy system should be
guided by the purpose to be achieved, rather than solely relying
on technical criteria. The adjustments to software that have the
greatest impact in terms of time and cost are those that
significantly modify the design, structure, and behavior of the
system.

C. L2CBD

The Legacy to Component Based Development (L2CBD)

methodology offers the capability to convert existing legacy
systems into modern component-based systems, resulting in
enhanced software architecture. The characteristics that are
supported by L2CBD are as follows:

This paper proposes an architectural methodology for
developing novel application structures.

This approach involves utilizing reverse engineering
methods to derive architectural information from both the
source code and domain knowledge.

• The proposed methodology for generating component
systems allows for the reuse of architectural components in
subsequent iterations.

D. CBD96

The CBD96 methodology employs a business component

identification approach that organizes objects that are closely
connected into groups. The approach employed fails to
consider the incorporation of reusable system components and
is afflicted by dependence concerns.

E. Cheesman and Daniels (2001)

The approach being referred to is an expanded iteration of

the CBD96 method. The proposed approach encompasses a
methodology for discerning constituent elements through the
utilization of use cases and business type models. In this
methodology, the authors employ inter-class relationships as
the primary criterion for finding components. The central
element of each clustering is represented by the core class, and
the process is guided by the responsibility obtained from use
cases.

F. S. D. Kim & S. H. Chang (Kim, 2004)

The methodology titled "A Systematic Method to Identify

Software Components" places emphasis on the principles of
strong cohesion and low coupling during the process of
discovering reusable software components. This methodology
employs clustering algorithms, measurements, decision rules,
and a collection of heuristics. This approach presupposes the
presence of an object-oriented model for a certain domain,
encompassing a use case model, object model, and dynamic
model. By leveraging these artifacts, the method seamlessly
converts them into components. This strategy primarily
emphasizes use case dependency rather than focusing on the
structural links between classes and their message call
information.

The concept of reusability metrics encompasses a

methodology for quantitatively evaluating the effectiveness of
reusable components. Numerous metrics pertaining to
reusability have been proposed in academic literature, with a
notable focus on qualitative rather than quantitative measures.
The metrics for measuring reusability, as discussed in reference
[19], are founded on four key attributes: self-descriptiveness,
modularity, portability, and platform independence. However,
the weights assigned to them are dependent on subjective
assumptions, which are qualitative in nature. A collection of
metrics pertaining to reusability is proposed in reference [20].
While this strategy is more efficient compared to non-
automatable techniques, the objective is solely to reuse the
interfaces of the components. The current technique does not
incorporate measures for reusability throughout the design
phase. In their study, Wang et al. [21] put out the proposition
that it is necessary to redesign components that are not suited
for reuse due to their shortcomings. Nevertheless, a

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 496

IJRITCC | September 2023, Available @ http://www.ijritcc.org

comprehensive strategy for the entire system is not provided.
The proposed study by [22] focuses solely on measuring the
impact on victim components, while neglecting to present any
measures for the broader family of applications. The concept of
reusability encompasses not only the reuse of code, but also the
reuse of various parts throughout the software development
process [23].There is an urgent requirement to evaluate a
comprehensive cost analysis approach for domain-specific
reusable software components.

III. SOFTWARE REUSE

Software reuse refers to the technique of utilizing

existing software components or leveraging software expertise

to develop novel software solutions. Reusable assets

encompass two main categories: reusable software and

software knowledge. The concept of reusability pertains to the

likelihood of a software asset being reused [3]. Software reuse

refers to the practice of utilizing pre-existing software

components, known as "designed software for reuse," several

times throughout the development process [4]. The practice of

software reuse offers several benefits to organizations,

including the effective management of software development

complexity, enhanced product quality, and improved

production efficiency. In contemporary times, there has been a

surge in the use of design reuse practices, particularly in

relation to object-oriented class libraries, application

frameworks, design patterns, and accompanying source code

[5]. Jianli et al. introduced a pair of complimentary approaches

aimed at the reuse of pre-existing components. One of the

features enables the evolution of components themselves,

which is accomplished by binary class level inheritance across

modules of components. One approach involves organizing

the entities based on their semantic definitions, allowing for

their compilation-time assembly or runtime binding.

Component containment remains the primary technique for

achieving software product line development [6]. In order to

facilitate the retrieval of components, a substantial amount of

information must be gathered, preserved, and analyzed.

Maurizio has developed an approach for the automated

construction of a software catalogue, which includes tools for

preserving and retrieving information [7]. Software reuse can

be categorized into two main divisions, namely product reuse

and process reuse. Product reuse encompasses the practice of

reusing a software component, whereby a new component is

generated through the integration and assembly of modules.

The concept of process reuse refers to the practice of reusing

old components obtained from a repository. These components

have the potential to be reused either in their current form or

with slight modifications. The archival of the updated software

component can be achieved by the process of versioning these

components. The classification and selection of these

components can then be based on the specific domain

requirements [8].

The structure of a component plays a crucial role in

determining its functionality and usability. The occurrence of

reuse is not incidental. In order to ensure the feasibility of

reuse, it is imperative to undertake specification, building, and

testing processes. The development of new software is

rendered more costly, perhaps by a factor of up to ten, as a

result of this factor.

Numerous distinct criteria have been proposed for

evaluating the quality of a component. The aforementioned

conditions can be succinctly summarized as follows:

The component ought to embody an abstraction. The software

system should exhibit a high level of cohesion and provide

only the necessary operations required to ensure its use in an

effective manner. The software should provide a clearly

delineated interface, encompassing both syntactic and

semantic aspects. In the event that two operations within

distinct components possess identical names, it is expected

that they exhibit comparable behavior. However, it is crucial

that their writing style bears resemblance to academic

discourse in order to enhance comprehension.

The component should possess independence from its

surrounding entities, exhibiting loose connections and thereby

maintaining low coupling with other components. The

adoption of an object-oriented mindset promotes individual

autonomy. The component should possess a general

abstraction that may be effectively applied across multiple

applications, hence minimizing the need for additional

modifications.

The concept of understandability encompasses both

internal and exterior dimensions. Due to their extended

lifespan, high-quality components are likely to undergo

prolonged maintenance. The component system encompasses

the processes of selecting, classifying, and managing the

components contained inside the repository, as well as the

creation of novel components. It is recommended that the

component repository be distributed across the development

organization to ensure accessibility of the components. It is

preferable for the component repository to be shared

throughout multiple distinct products. This implies that the

component system should be capable of supporting multiple

projects simultaneously. In the event that new projects are to

be undertaken, it is imperative to acquire the necessary

components that are vital to the development process. The

project proposals ought to undergo evaluation by a committee

comprising seasoned designers as well as a representative

from the component department, thereby establishing a

software component committee. The evaluation of whether the

proposed components should be developed or not should be

conducted. Once the decision to proceed with the building of

the component has been made, it is then forwarded to the

component construction phase, with a specified date. Once

prepared, the component is incorporated into the repository,

resulting in an updated version state as depicted in Figure 1.

The analysis of the value of the software component group

should be conducted as the component is being utilized.

Which component is utilized most frequently? Which items

are completely unused? What is the extent of the benefits

derived from the components? This analysis facilitates the

advancement of the component system.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 497

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Figure 1: Organization for Component Management

Component-Based Development (CBD) encompasses

similar characteristics as the Spiral Model. The software

components, referred to as Classes, that are collected as

applications can be characterized as a paradigm of Component

Based Development (CBD) [9].

The construction of the component model begins by

placing emphasis on the potential components. This objective

can be accomplished by applying appropriate algorithms and

programmes to manipulate the data. The components required

for the software projects are stored within the repository. After

identifying the candidate components, the repository is

examined to determine if the necessary components are there.

If appropriate components are identified, they are dug and then

repurposed. If the component is not discovered in the

repository, it may be created first using the object-oriented

methodology. The initial repeat of the application is to build a

level-headed of components mined from the repository and

new components to locate the creative demand of the unique

application. The Process Flow is integrated into the spiral

model and serves to extend the component assembly curves as

the component life cycle progresses in subsequent iterations.

Software reusability can be achieved through the utilization of

the Component Based Development Model, which has proven

to be highly advantageous for software engineers.

The study conducted by Yourdon.E. [10] presents findings

on the successful implementation of software reusability by

QSM Associates Inc. The research highlights the

advancements in component assembly, resulting in a

significant reduction in the development life cycle. Notably,

the study reports an impressive 84% decrease in project cost

and a productivity index of 26.2, surpassing the industry

median of 16.9. The aforementioned findings indicate that the

incorporation of roughness in the component repository and

CBD Model yields numerous advantages for software

engineers.

In their study, Singh et al. [11] examined the many

implications of reusability in the context of a component-

based approach, as well as the metrics and models associated

with software reuse. This paper is a study that examines the

empirical validation of the metrics given for component-based

systems.

Figure 2: Component Based Development Model [9]

Component interface metrics possess the potential to

enhance the reusability aspect of components. The eminence

of these entities arises from the fact that alternative sources of

information pertaining to reusability are often utilized in the

form of third-party components, which tend to be opaque in

nature. Furthermore, the utilization of automation by these

entities facilitates a more impartial, meticulous, and proficient

analysis of component reusability. The set of interface metrics

introduced in this study has demonstrated that measuring

component interfaces can provide more accurate and relevant

information for analyzing component reusability. Metrics have

the capacity to provide a significant amount of valuable

information via interfaces, surpassing the effectiveness of non-

automatable methodologies. These metrics provide a deeper

comprehension of the assets associated with the interfaces of

components. The lesson pertaining to metrics involved doing a

reusability analysis on the tested components, which relied on

expert knowledge of these components. The present analysis

pertains to the utilization of reusability analysis in relation to

components, the understanding of which remains elusive to

metrics practitioners. The user's text does not contain any

information to rewrite [12]. AlOmara, Eman Abdullah, et al.

[25] presented insights regarding how developers discuss

software reuse by analyzing Stack Overflow. These findings

can be used to guide future research and to assess the

relevancy of software reuse nowadays.

IV. DOMAIN ENGINEERING

Domain Engineering (DE) is an essential process

wherein reusable components are created and effectively

managed to ensure that the architectural design adequately

meets the specific needs of the designated domain [13]. The

term "domain" pertains to the functional regions encompassed

by a collection of application systems that share comparable

software needs [14].

The process of Domain Engineering [15] is depicted

in Figure 3. Domain engineering (DE) encompasses several

essential aspects, namely domain analysis, domain design, and

domain implementation. The DARE-COTS tool, which is

referenced as [16], is utilized for the purpose of Domain

Analysis. To achieve the generic variable qualities of a group

of systems, it is necessary to have a relevant domain in the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 498

IJRITCC | September 2023, Available @ http://www.ijritcc.org

pre-phase. A domain analysis model can be constructed by

concealing the properties. Based on this framework, the

software architecture specific to the domain can be devised,

followed by the creation and management of reusable

components.

When embarking on the development of a novel system in an

unexplored domain, it becomes imperative to accurately

capture the system's needs and specifications in accordance

with the domain model. Subsequently, the design of the new

system should be refined in alignment with the principles of

Domain Specific Software Architecture (DSSA). Finally, the

appropriate components should be selected and organized to

effectively govern and administer the newly developed

system. The term "Application Engineering" refers to the

process of designing and creating a distinctive system for

applications.

The process of domain engineering, as described in

reference [15], provides a comprehensive overview of the

Decision Support System for Product Quality Tracking

System. This analysis elucidates the process of creating a

product quality tracking system that is both open and reusable,

based on the principles of domain engineering. The research

reported in this article highlights the importance of reusing the

primary functionality of a system when developing an

application in the same domain or when the necessary

components are readily available. There is still a significant

amount of work that has to be undertaken in order to develop a

comprehensive product quality tracking system utilizing

assertive techniques and establishing a robust repository. In

their study, Massimo et al. [17] conducted an evaluation of the

use of domain analysis in the field of production management.

They measured the outcomes and identified areas for

improvement by grouping the domain analysis approach inside

the approved development process.

Figure 3: Process of Domain Engineering [15]

A. DOMAIN SPECIFIC COMPONENT FRAMEWORKS

Given the significant progress in software system development

across several domains, there arises an imperative requirement

for the creation and advancement of Domain Specific

Component Frameworks (DCSF). Many software

development techniques incorporate agile principles in their

development methodologies. The evolution of Domain

Specific Component Frameworks has been seen through the

identification of patterns. In their study, Frederic et al. (2018)

introduced the concept of Domain Components and conducted

an analysis of patterns to create a comprehensive framework.

This framework offers a unified way to implementing the

semantics of Domain Components by examining the Domain

Specific services. The research offered by the authors [18]

examines many case studies that span across multiple areas.

The architectural patterns suggested in this study will be

integrated with the utilized generative programming

techniques, which encompass the challenges associated with

implementing domain-specific considerations. The article

discusses a research problem that pertains to the creation of

containers. Specifically, it focuses on the need for a symmetric

approach that involves the establishment of policies to

effectively manage a wide range of domain-specific services.

V. ANALYSIS OF HR PORTAL APPLICATION

The HR Portal Application is a software system designed to

facilitate human resources management within an

organization.

The system has been developed to facilitate client

interaction with both the web tier and business tier, as well as

establish a connection to the Data Access Object (DAO)

component. The web-tier component is comprised of Java

Server Pages (JSPs) and Servlets.The Business tier

encompasses the Enterprise JavaBeans (EJBs).The DAO's

composition comprises. The classes interact with their

respective objects in order to establish communication with

the database. The web-tier components consist of the

HttpServlet, HRProcessServlet, Login Servlet,

InterviewResultServlet, and RegistrationServlet classes.The

three stateless bean classes in the Business-tier components

are EmployeeBean, InterviewResultsBean, and

HRProcessBean.The components of the DAO (Data Access

Object) include the BaseDAO, EmployeeDAO,

InterviewDAO, HRDAO, and ProcessDAO classes.

Figure 4: Components of HR Portal Domain Application System

Many of the systems that prioritize reuse typically

include the establishment and maintenance of a repository

containing reusable components. However, it is necessary to

HR Portal

Web

HR Portal

Business Tier

DAO

Web

Client

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 499

IJRITCC | September 2023, Available @ http://www.ijritcc.org

develop a methodology for identifying components that are

reused or have potentially been utilized extensively. These

components are commonly referred to as Non-Victim

components.

If the designer wishes to determine whether element

of the system is not being effectively reused at a given

moment, they must conduct a lookup on the component

management relation. A centralized repository is responsible

for maintaining a table that facilitates the management of

component reuse. The table is comprised of two distinct fields.

The nomenclature of a particular component is indicated by its

name, while the count denotes the frequency with which the

component has been utilized across multiple systems.

Table 1 presents a comprehensive inventory of the

components of the HR portal system that were utilized in

several applications. Components that are not utilized

regularly are referred to as victim components. Given that the

Businesstier component has been utilized a mere 10 times, it

can be considered a potential candidate for the victim

component. In order to enhance the potential for future reuse,

it is necessary to re-organize the victim component by

separating it into many segments.

Table 1. Component Management Relation

Component Count of Reuse

DAO 36

Web tier 10

Business tier 24

The act of achieving the count of reuse is

accomplished by putting the HR Portal application onto the

Net Beans Integrated Development Environment (IDE). The

Netbeans Profile feature enables the tracking of the frequency

at which a component is invoked. The application provides

information on the number of times the components are

triggered. Based on the data shown in Figure 5, it is possible to

determine the measures of reuse cost.

Figure 5.Invocations occurred for different components of HR Portal

Application

VI. ESTIMATION OF REUSE COST MEASURES

Each identified concern necessitates an assessment of the

associated cost and a specific plan for its implementation.

The concern cost matrix undergoes periodic updates to

incorporate new components or modifications to current
components. Additional concerns are incorporated into the
repository through the process of entering data into the concern
cost matrix (CCM), which adheres to the prescribed structure
outlined below.

Concern Cost Matrix

 C1 C2 … Cm

Cost

For (i=1 to n do)
 Begin
 For (j=1 to m do)
 Begin
 If (RMF[i][j] = 0) then
 Cnt=Cnt+1;
 End;
 CSV[i]= cnt*CCM[i];
 End;
The Vector CSV[i] indicates the cost saved in

implementation of concern Ci. The idea is if the concern is
already implemented (i.e RMF[i][j]=1), The cost associated
with the implementation of the aforementioned concern,
denoted as CCM[i][j], is conserved due to the reuse of the
identical component. If a component is modified (say
comp1.0), its alteration may produce another component (say
comp 1.1), this will also be recorded in repository and the cost
of maintenance is retained in CCM. In a similar vein, the
calculation of schedule utilization can also be undertaken.

VII. A SCENARIO

Let us examine a specific scenario pertaining to a
Distribution Processing System. Within this operational
framework, the customer initiates an order placement,
subsequently followed by the storekeeper's assessment of the
condition of the items. Ultimately, the accountant assumes the
responsibility of generating an invoice.

The use case diagram is constructed to represent any

interdependencies that exist between use cases.

The use case diagram pertaining to a certain iteration of the

system is presented below.

Figure 6. Use case diagram for Distribution Processing System

Customer

Place Order

Prepare Invoice

Accountant

Store Keeper

Track Damage Goods

<<include>> <<include>>

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 500

IJRITCC | September 2023, Available @ http://www.ijritcc.org

The Trace Damage Goods use case and Prepare Invoice use
case can’t be realized till the Place Order use case is realizes
successfully as shown in the Figure 6.

As per the proposed component identification strategy,

since place order behavior becomes the mandatory pre-
condition of other use cases, it is a candidate for a component.
The Place order use case is realized and then stored in the
repository with the initial version number. The effort &
schedule required to implement the place order use cases was
evaluated and stored in the repository. This parameter helps in
knowing the trade off benefits of the reusability.

In the above scenario it was assumed that the component

repository doesn’t contain any of the above identified behavior
components.

Considering another inventory system, that needs the

similar functionality to be implemented as described by Place
order use case. The proposed strategy mines the components
for realization of the identified behavior.

If the place order component provides the similar

functionality it can be directly re-used. If some modification to
the place order use case is needed, it is modified. The effort &
schedule is evaluated and the same is stored along with new
version number in the repository.

COCOMO model was used to estimate the effort and

schedule for the realization of the use cases initially. However
for the modified component, maintenance effort was evaluated
using two parameters i.e. requirements added and requirements
modified.

In order to estimate the reuse cost measure, it is necessary

to know about the number of components available in the

related application. The HR Portal application consists of four

components as described in Section IV. Initially, the cost of a

developing typical system without reuse is considered. It can

be represented as follows.

Cno-reuse=Cost of developing typical system without reuse

Whenever the reuse is applied to some portion of the system it

can be designated as R, the software from a set of component

systems.

The Reuse level ‘R’ can be estimated by considering the

number of reused components to the total number of

components in the system.

Number of reused components

Reuse level, R=

 Total Number of components in the system

 = 2/4 =0.5

= 50%

The Reuse level ‘R’ usually costs less than developing the

whole system from the scratch.

After analyzing the percentage level of reuse components in

the system the relative cost to reuse a component has to be

defined,

Fuse= Relative cost to reuse a component

Let us assume that the relative cost to reuse a component is 0.2

as default.

With R=50% and Fuse=0.2, the cost to develop with reuse is

60% of the cost of developing an application without reuse.

The cost to develop an application system with reuse has two

parts. One is the (1-R) part, developed without reuse at the

normal cost. The other is the R part, developed with reuse, at a

lower cost. In order to do this, it is necessary to estimate the

costs separately and add.

Cpart-with-reuse=Cno-reuse * (R * Fuse)

Cpart-with-no-reuse=Cno-reuse * (1-R)

Cwith-reuse =Cpart-with-reuse + Cpart-with-no-reuse

Cwith-reuse = Cno-reuse * (R * Fuse (1-R))

The cost saved due to reuse

Csaved = Cno-reuse * Cwith-reuse

 = Cno-reuse * (1- (R * Fuse (1-R)))

= Cno-reuse * R *(1- Fuse)

The relative development cost-benefit (ROI) is due to reuse of

components is then estimated to be

 Csaved

ROIsaved=

 Cno-reuse

 =R * (1- Fuse)

The relative development cost-benefit(ROI) is 40%

When R=50% and Fuse =0.2 , ROIsaved is 40%

It is intended to know how much cost is necessary to know

about for creating a new reusable component and manage it.

So, this can be denoted as Fcreate.

Fcreate = Relative cost to create and manage a reusable

component system.

Here all the developed component systems are used to reuse

part, R percent, of any application system.

Then the cost to develop the component system for R percent

is designated as follows.

 Ccomponent-systems=R * Fcreate * Cno-reuse

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 501

IJRITCC | September 2023, Available @ http://www.ijritcc.org

Since Fcreate is much greater than Fuse, it is necessary to reuse

each component and component system several times in

several application systems, to make this worthwhile from a

cost perspective. It has proved from the literature that the

different ranges for Fcreate and Fuse values depends upon the

specific languages, complexity of the problem area and the

relevant process followed.

Polin J.S. [24] had suggested the default values of Fcreate and

Fuse are 1.5 and 0.2.

If there are ‘n’ application systems in the family, then the cost

saving for the application system family is:

Cfamily-saved = n * Csaved – Ccomponent-systems

 = Cno-reuse * (n * R*(1- Fuse)- R * Fcreate)

Finally the return on investment in creating the set of

components can be considered as follows.

 Cfamily-saved

ROI =

 Ccomponent-systems

 (n * R*(1- Fuse)- R * Fcreate)

ROI =

 R * Fcreate

 (n * (1- Fuse)- R * Fcreate)

ROI =

 Fcreate

When Fuse= 0.2 and Fcreate= 1.5 then

(n * 0.8 – 1.5)

ROI=

 1.5

With breakeven point of minimum value i.e. n > 2.

Hence, with the above analysis, the productivity in the

organization can be easily improved by increasing the number

of the application components which are much reusable.

VIII. CONCLUSION

The reusability of components contributes to the
development of high-quality products, since it ensures that
components stored in the repository have undergone successful
testing. The majority of reusability measures discussed in
academic literature are either qualitative in nature or focus
solely on interface reusability measurements. This work
endeavours to present a proposal for the utilization of reusable
domain specific software components with its quantitative
measures. Whenever a new application has to be developed its
Concern Cost Matrix is maintained not only to identify the

existing components but also to identify the effort saved. The
constructive cost for the reusable demand based components
and non reused components has been quantified. The measures
for the family of applications are also estimated. With these
constructive cost measure analysis, the budget and effort in the
development will get reduced. In future, strategies to measure
the generic domain specific software components may be
quantified.

REFERENCES

[1] H.K.Kim, Y.K.Chung, “Transforming a Legacy System into

Components”, Springer-Verlag Berlin Heidelberg, 2006.

[2] S. Mahmood, R.Lai and Y.S. Kim, “Survey of Component-

based software development”, IET Softw, Vol. 1, No. 2,

April 2007.

[3] William B. Frakes, Kyo Kang: Software Reuse and

Research: Status and Future, IEEE Transactions on

Software Engineering”, Vol. 31, No. 7, July 2005

[4] Xichen Wang, Luzi Wang: Software Reuse and Distributed

Object Technology, IEEE Transactions on Software

Engineering, 2011.

[5] Sametinger: Software Engineering with Reusable

Components, Springer-Verlag, ISBN 3- 540-62695-6, 1997.

[6] Jianli He, Rong Chen, Weinan Gu: A New Method for

Component Reuse, IEEE Transactions on Software

Engineering, 2009.

[7] Maurizio Pighin: A New Methodology for Component

Reuse and Maintenance, IEEE Transactions on Softwrae

Engineering, 2001.

[8] Yong-liu, Aiguang-Yang: Research and Application of

Software Reuse, ACIS International Conference on

Software Engineeing, Artificial Intelligence, IEEE, 2007.

[9] Roger S. Pressman, “Software Engineering: A Practitioner’s

 Approach”, 5th Edition, McGraw Hill, 2001.

[10] Yourdon, E,”Software Reuse”, Application Development

Strategies,vol. 6, no.12, Dec 1994, pp.1-16.

[11] Sarbjeet Singh, Manjit Thapa, Sukhvinder Singh, Gurpeet

Singh, ”Software Engineering – Survey of Reusability

Based on SoftwareComponent “, International Journal of

Computer Applications (0975- 8887) Volume 8- No.12,

October 2010.

[12] Marcus A.S. Boxall, Saeed Araban,”Interface Metrics for

Reusability Analysis of Components”, IEEE,ASWEC ‘04.

[13] N Md Jubair Basha, Salman Abdul Moiz, A.A Moiz Qyser,

“Performance Analysis of HR Portal Domain Components

Extraction ”, International Journal of Computer Science &

Information Technologies (IJCSIT), Vol2 (5), 2011, 2326-

2331.

[14] Fuqing Yang, Bing Zhu, Hong Mei: “Reuse Oriented

Requirements Modeling”, Tsinghua University Press,

Beijing, 2008.

[15] Youxin Meng, Xinli Wu, Yuzhong Ding,” Research and

Design on Product Quality Tracking System Based on

Domain Engineering”, IEEE, 2010.

[16] William Fakes, Ruben Prieto- Diaz, Christopher Fox,

“DARE- COTS:A Domain Analysis Support Tool”,

IEEE, USA, 1997.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 502

IJRITCC | September 2023, Available @ http://www.ijritcc.org

[17] Massimo Fenarlio, Andrea Valerio, “Standardizing Domain-

Specific Components: A Case Study”, ACM, Vol. 5, No.2,

June, 1997

[18] Frederic Loiret, Ales Plesk, Phillipe Merle, Lionel

Seinturier, Michl Malohlava, “Constructing Domain

Specific Component Frameworks through Architecture

Refinement”, 35th Euromicro Conference on Software

Engineering and Advanced Applications”, IEEE, 2009.

[19] James F Peters, Witold Pedrycz, “ Software Engineering,

An Engineering Approach”, Wiley India Private Limited,

2007.

[20] Marcus A.S.Boxall, Saeed Araban,” Interface Metrics for

Reusability Analysis of Components”, Proceedings of 2004

IEEE Australian Software Engineering Conference

(ASWEC’ 04).

[21] Zhongjie Wang et.al, “ A Survey of Business Component

Methods and Related Technique”, World Academy of

Science, Engineering and Technology, pp.191-200, 2006.

[22] N Md Jubair Basha, Salman Abdul Moiz, “ A Methodolgy

to manage victim components using CBO measure ”, IJSEA

Vol.3(2) 2012, pp.87-96,2012.

[23] AlOmara, E. A., Peruma, A., Mkaouer, M. W., Newman,

C., & Ouni, A. (2023). How is Software Reuse Discussed in

Stack Overflow?. arXiv preprint arXiv:2311.00256.

[24] Poulin, Jeffrey S. Measuring software reuse: principles,

practices, and economic models. Addison-Wesley Longman

Publishing Co., Inc., 1996.

[25] AlOmara, Eman Abdullah, et al. "How is Software Reuse

Discussed in Stack Overflow?." arXiv preprint

arXiv:2311.00256 (2023).

http://www.ijritcc.org/

