
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 09 October 2023 Accepted: 27 October 2023

 1601
IJRITCC | October 2023, Available @ http://www.ijritcc.org

A Structured Cloud-Based Software Testing Model

with a Case Study Implementation

Santhosh S1*, Narayanaswamy Ramaiah2
1Computer Science and Engineering

Faculty of Engineering and Technology, Jain (Deemed-to-be University)

Bangalore, India

Santhu87@ymail.com
2Computer Science and Engineering

Faculty of Engineering and Technology, Jain (Deemed-to-be University)

Bangalore, India

Dr.narayanaswamyramaiah@gmail.com

Abstract— Cloud-based testing methodologies were gaining significant popularity and adoption in the software testing industry. Cloud-

based testing offers several advantages, such as scalability, flexibility, cost-effectiveness, and the ability to access a wide range of testing tools

and environments without the need for extensive infrastructure setup. Cloud testing methods are having challenges with respect to testing

priority, practical use cases, performance, lengthy test time, integrating and streamlining, data security, etc. since they are addressing specific

purposes. To address these challenges, there is a need for a structured testing model with respect to the cloud environment. This article proposes

a new structured cloud-based testing model for enhancing the testing service in the cloud environment. The proposed model addresses the order

of testing and the priority, data security, and performance by using Smoke and Sanity testing methods.

Keywords- Cloud-Based Testing, Cloud-based SDLC, Structured Testing, Smoke Testing, Sanity Testing, Software Engineering.

I. INTRODUCTION

Many businesses spend around 40% of their resources on

software testing, which results in higher costs. Software testing

is an important component of the Software Development

Lifecycle. Because of the resource availability and the varieties

of cloud services, testing software that runs in the cloud is more

simple as well as more challenging. Performance, security,

workload, and adaptability tests are all part of cloud-based

testing, and several tools and techniques have been created to

test cloud systems. Test cases and test scripts are used for testing

to validate the requirements. The various cloud-based testing

methods available in the current industry are as follows:

➢ Cloud-Based Test Execution: In this approach,

testing is performed on virtual machines or containers

hosted in the cloud. Testers can execute test scripts and

test scenarios on various configurations, operating

systems, and browsers without setting up physical

hardware. Cloud-based test execution provides rapid

scalability, allowing teams to run tests concurrently on

multiple virtual machines, thus reducing testing time.

➢ Cloud-Based Test Environments: Instead of

maintaining on-premises testing environments, teams

leverage cloud infrastructure to set up and manage test

environments. These environments can be quickly

provisioned and de-provisioned, which is especially

useful for parallel testing or simulating real-world

scenarios with varying system configurations.

➢ Device Cloud Testing: For mobile and cross-browser

testing, device cloud testing services offer a wide

range of real devices hosted in the cloud. Testers can

perform compatibility testing across different devices

and operating system versions without having physical

access to each device.

➢ Cloud-Based Test Data Management: Cloud-based

test data management solutions provide secure and

scalable storage for test data. This ensures that test data

is easily accessible to the testing team while

maintaining data privacy and compliance.

➢ Cloud-Based Performance Testing: Cloud platforms

offer the ability to conduct load and performance

testing by simulating a large number of virtual users

from various geographic locations. Cloud-based

performance testing allows for stress testing of

applications without putting a strain on internal

infrastructure.

➢ Cloud-Based Security Testing: Security testing in the

cloud can involve using cloud-based security scanning

tools and services to perform vulnerability

assessments, penetration testing, and security code

reviews on the application under test.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 09 October 2023 Accepted: 27 October 2023

 1602
IJRITCC | October 2023, Available @ http://www.ijritcc.org

➢ Continuous Integration and Continuous Testing

(CI/CT) with Cloud: Teams leverage cloud-based

Continuous Integration (CI) and Continuous Testing

(CT) pipelines to automate the build, deployment, and

testing processes. Cloud-based CI/CT enables faster

feedback loops and supports Agile and DevOps

practices.

➢ Smoke Testing: Performing smoke testing on every

build is essential to identify defects in the early stages.

It serves as the final check before the software build is

deployed to the system stage. Smoke tests are a

mandatory step for each build that undergoes testing,

including new developments and major or minor

system releases. To initiate smoke testing, the QA

team needs to verify the correct build version of the

application being tested. This straightforward process

efficiently assesses the application's stability in a short

amount of time. By incorporating smoke tests, testing

efforts can be minimized, ultimately leading to

improved application quality. [13].

Figure. 1: Smoke Testing Lifecycle [13]

• Sanity Testing: Sanity testing, also referred to as

surface-level testing, is a technique used to

evaluate whether newly added features or

functionality in software applications have

successfully addressed any related bugs [14]. This

approach serves as a fundamental and preliminary

test to determine the correct functioning of a

software application or its specific components. It

is essential to perform sanity testing in various

scenarios, including:

• When minor changes are made to the application's

code.

• After adding new features that are ready to be

integrated into the software application.

• Following a series of regression tests and the

generation of a new build.

• After applying bug fixes.

• Prior to the production deployment of the

application.

Before integrating features into the software application.

II. LITERATURE REVIEW

According to authors [1], Cloud testing presents unique

challenges that need to be acknowledged and addressed to fully

realize the benefits it can offer to the testing process. The

complexity and various dimensions involved require a deep

understanding of testing priorities, enabling clarity and

confidence when operating in cloud environments. While on-

premise testing practices still have their relevance, they must be

reassessed and aligned with the cloud testing strategy since

legacy approaches may not be suitable in the cloud context.

Testing within Continuous Integration/Continuous Deployment

(CI/CD) pipelines can significantly enhance efficiency, but

certain testing aspects like Security, Accessibility, and

Exploratory testing may still require manual efforts. Quality is

a collective responsibility, and cloud environments offer

opportunities for increased collaboration and instilling quality

as a core behavior. To maintain credibility and value in the

cloud landscape, quality engineering skills must expand to

encompass proficiency in multiple coding languages,

architectural awareness, and a comprehensive understanding of

cloud principles. Understanding and safeguarding critical

business processes and underlying technologies are crucial for

ensuring business continuity in case of failures. Although cloud

platforms promise many advantages over traditional systems,

realizing those benefits requires careful consideration of

numerous factors, with quality assurance playing a vital role in

the process.

[2] A novel cloud-based development and testing framework is

being introduced, leveraging the advantages offered by various

cloud computing models and technologies. The main goal of

this framework is to seamlessly integrate and offer relevant

tools that streamline software development and testing

activities. Moving forward, the framework prototype will be

meticulously designed and developed, with a focus on

implementation. Additional scenarios will be explored to

thoroughly assess the feasibility and advantages of the cloud-

based development and testing framework. These scenarios will

serve as practical use cases to gauge the framework's

performance and capabilities.

[3] The article explores the domain of automated testing in

cloud environments. After analyzing existing automated cloud

test technologies, the authors propose a novel automation

software test technology that utilizes a virtualization test

environment. They emphasize that automated function testing

and performance testing are particularly well-suited for cloud

environments. The flexible and virtualized nature of the

environment allows for concurrent test execution, efficient

cross-platform testing, and seamless integration with automated

testing tools. The paper outlines the entire test process and

provides guidance on developing and executing test scripts. As

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 09 October 2023 Accepted: 27 October 2023

 1603
IJRITCC | October 2023, Available @ http://www.ijritcc.org

cloud computing technology continues to evolve, the demand

for cloud testing providers is increasing. However, the paper

also points out certain challenges. These challenges include the

need to address concerns related to mechanics, data security,

and other security issues that could impact both the actual

environment and the virtual environment used for testing.

[4] The primary objective of the proposed study is to develop a

technology acceptance model that applies an expert system

based on the codified knowledge of experts using artificial

intelligence techniques. This model aims to facilitate decision-

making processes related to cloud adoption specifically for

software testing purposes. By leveraging artificial intelligence

techniques, the expert system will be able to offer decision

support to software development organizations (SDOs). The

support will come in the form of various predictors and

determinants that will guide SDOs toward making informed

decisions about whether to adopt cloud-based solutions for their

software testing needs. Ultimately, the proposed model seeks to

provide valuable insights and guidance to SDOs, helping them

navigate the complexities of cloud adoption and optimize their

software testing processes.

[5] In this paper, the authors present a multi-layer model for a

cloud-based online software testing platform to address the

challenges of high costs, lengthy test times, and complex test

implementations in traditional software testing. The proposed

model leverages cloud computing to provide a more efficient

and user-friendly testing solution. The multi-layer model

encompasses various components, including an Infrastructure

as a Service (IaaS) platform, a Software as a Service (SaaS)

platform, a self-help service portal for users, and an operation

maintenance portal for administrators. Through these integrated

components, the platform offers the automatic creation of

virtual machines (VMs), remote access to test tools, and online

quality assurance services, catering to the fundamental testing

needs of users. They implemented a real software online testing

platform based on this model. The platform has been tested to

assess the scale of VMs it can support. The results indicate that

the average provisioning time of a virtual machine generally

increases as the number of VM requests grows. While the

concurrent startup of VMs affects compute and controller

nodes, the network node remains relatively unaffected. They

have also successfully applied this model to several actual

projects for customers, validating its applicability and stability.

By adopting this cloud-based testing platform or its specific

techniques, they have effectively addressed the challenges of

traditional software testing and achieved more efficient and

reliable testing processes.

[6] Cloud testing is a rapidly growing field within cloud

computing. This article presents a comprehensive review of

different testing methods that are applicable and beneficial in a

cloud environment. Additionally, the paper provides a detailed

description of the steps to be followed in the testing process,

offering insights into various testing scenarios. Furthermore, the

paper offers an overview of various testing tools available in the

market. Depending on the specific requirements of end-users,

they can choose from a range of tools suited for testing in a

cloud computing environment.

[7] Author discusses various cloud testing techniques and

examines commercial testing tools available in the market.

Despite being in the early stages of cloud testing, the paper

identifies some of the challenges associated with this domain

through an analysis of research papers. Building on the insights

gained from the challenges, the authors plan to develop a new

testing framework. This framework aims to address the unique

requirements and complexities of cloud testing, thereby

enhancing the quality and reliability of cloud-based

applications. By continuously improving testing methodologies

and tools for cloud environments, organizations can maximize

the benefits of cloud computing while ensuring robust and

thoroughly tested applications.

[8] The article introduces a novel approach for test case

selection and prioritization in a distributed cloud environment,

based on multi-objective optimization. The proposed

Resemblance-Based Cluster Head (RBCH) algorithm is utilized

to select the Cluster Head (CH) by considering the overall

similarity between test cases. Furthermore, the Distance-Based

Transposition (DBT) technique is proposed to prioritize the

optimal test case clusters in the distributed environment. This

approach efficiently reduces time consumption during the

testing process by minimizing the number of iterations in the

test case search. Also demonstrates the effectiveness of the

proposed approach, showcases higher fault detection rates,

prioritization accuracy, and lower execution times compared to

existing prioritization techniques.

[9] The study examines existing research on cloud-based

performance testing and highlights the strengths and

weaknesses of current approaches. The paper also compares P-

TaaS with traditional performance testing methodologies.

Overall, the paper sheds light on the importance and potential

of P-TaaS in enhancing the efficiency and effectiveness of

performance testing in cloud computing environments.

[10] In this article, the authors explored the various strategies

for software testing and the diverse approaches to artificial

intelligence in the testing domain. Highlighted the primary

benefits that arise from incorporating artificial intelligence into

the software testing process. It also showcased a few examples

of artificial intelligence-driven tools that have been

purposefully designed for software testing. In essence, this

article aims to provide insights into the significance of software

testing in the digital era and how the integration of artificial

intelligence can enhance testing efficiency and effectiveness,

thereby ensuring the robustness and reliability of digital

products and applications.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 09 October 2023 Accepted: 27 October 2023

 1604
IJRITCC | October 2023, Available @ http://www.ijritcc.org

A structured process model, such as the CSLCP model,

discussed in the article [11] may assist SMEs in producing

affordable cloud-based software of a high caliber. A case study

was used as evidence to fully describe and show the actions

involved in the software life cycle. Training various team

members on the CSLCP model may enhance software

dependability, save costs, and shorten the time needed to deploy

software in SMEs when team members work on several projects

and perform diverse roles. Moreover, since the CSLCP model

is compatible with CMMI levels two and three, it improves the

quality, cost, and schedule of development processes, thereby

raising the maturity level of SMEs.

For developing and building cloud computing systems from the

viewpoints of both vendors and customers, a model known as

the Cloud Computing Development Life Cycle (CCDLC) has

been introduced. The conventional software engineering

process models' limitations and restrictions are addressed by the

CCDLC paradigm [12]. The conventional SDLC process as

well as other significant processes are modified.

Challenges:

The existing solutions study provides insight that the Cloud

testing methods are having challenges with respect to testing

priority, practical use cases, performance, lengthy test time,

integrating and streamlining, data security, etc. since they are

addressing specific purposes. So there is a need for a structured

software testing model for the cloud environment to perform the

testing activities simply and smoothly.

III. PROPOSED METHOD

The proposed Structured Cloud-Based testing model is shown

in Figure. 2. It contains nine phases of testing with respect to

infrastructure, continuous integration, repository, security,

other vulnerability assessment, and performance. After all the

testing, the reporting will be done with the remediation plan for

the failed test cases. Then the remediation process takes place

by the developers in consultation with the testing team. Finally,

the deployment testing will be conducted to confirm the

completion of testing and approval.

Phase 1 (Cloud-Based Infrastructure): The security testing

process begins within the cloud-based infrastructure, where

various testing components are provisioned and configured.

This infrastructure could include virtual machines, containers,

and cloud services required for security testing activities.

Phase 2 (CI/CT Environment): Within the cloud environment,

Continuous Integration and Continuous Testing (CI/CT)

pipelines are set up. These pipelines are responsible for

automating security testing processes, including running

security tests at various stages of the software development

lifecycle.

Phase 3 (Source Code Repository): The application's source

code is stored in a cloud-based repository, such as GitHub or

GitLab. The code repository serves as the central location for

the application's codebase and allows seamless integration with

the CI/CT pipeline.

Phase 4 (Cloud-Based Security Scans): As part of the CI/CT

process, the application's source code and artifacts undergo

security scanning using cloud-based security testing tools.

These tools perform various security assessments, such as Static

Application Security Testing (SAST), Dynamic Application

Security Testing (DAST), and Software Composition Analysis

(SCA).

Phase 5 (Vulnerability Assessment): The security scanning

tools identify potential vulnerabilities, weaknesses, and security

issues within the application's code and dependencies. These

vulnerabilities are categorized based on severity and potential

impact.

Phase 6 (Performance Testing): A testing practice performed to

determine how a system performs in terms of responsiveness

and stability under a particular workload.

Figure. 2: The Structured Cloud-Based Testing Model.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 09 October 2023 Accepted: 27 October 2023

 1605
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Phase 7 (Reporting & Remediation): The CI/CT pipeline

generates comprehensive security reports that outline the

identified vulnerabilities and their associated risks. The

development and security teams use these reports to prioritize

and address security issues.

Phase 8 (Remediation Process): The development team

addresses the security vulnerabilities by implementing

necessary fixes and improvements. The fixes may involve code

changes, updates to dependencies, or configuration changes.

Phase 9 (Final Deployment): Once the security issues are

addressed, the application is retested to ensure the effectiveness

of the remediation efforts. The application, now with improved

security, can be deployed to the target environment(s) with

confidence.

IV. CASE STUDY

The case study "Howsort-Algorithm Visualizer Application”

has its main objective to create a tool to facilitate the flow of

learning much easier and reduce the time spent on

understanding through smaller logical chunks that amount to

the complete complex algorithmic logic. This application aims

its users to be ones that getting started with learning the popular

sorting algorithms out there for upgrading themselves.

A. Cloud Requirement Analysis and SLA

As per the Software requirements specification, the services

required to develop the application are as follows:

1. Infrastructure:

a. EC2 instance m4.xlarge (16GiB RAM, 4

vCPUs, 750MBPS bandwidth,

0.394USD/Hour)

b. S3 storage (10GB)

c. Elastic Beanstalk service

2. Monitoring and Management service

a. AWS Cloud watch service

b. AWS Cloud Trail service

3. Development tools and application services

a. AWS command line

b. AWS API gateway

c. AWS CodeBuild

d. AWS CodeDeploy

e. AWS CodeCommit

4. Other requirements

a. Android studio

b. Draw.io web tool

c. Figma and Balsamiq tools

B. Design

Figure. 3 represents the architecture and the flow diagram of the

application. It describes how the user navigates through the app

and it describes each functionality like where the user has to

give the inputs and on the execution of those inputs where the

outputs are to be displayed. The architecture also describes the

screens, animation section, and control that are designed in the

app and shows all the features and functionality that are there in

the application.

Figure. 3: Architecture and flow diagram

C. Implementation

Figure 4 is the sign-up or the registration screen where the user

creates an account for the first time and these details are stored

in the authentication and real-time database of Firebase.

Figure 5 screenshot of the application has theory screen

showing one of the sorting algorithms – bubble sort. The

contents of the theory screen have been gathered and optimized

to make users easily understand what an algorithm is all about.

It consists of definition section where, a brief explanation about

the algorithm such as what does it do, what approach does it

follow, where it is used, what mechanism and technique that it

uses, and more.

Finally, the code section displays and helps in seeing all the

conditional statements being displayed on the visualizer screen

(Figure 6). Code is shown in three different languages, C for

more traditional way of code, Java for better performant code,

and python for most easier and less code.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 09 October 2023 Accepted: 27 October 2023

 1606
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Figure 4: Application register (sign-

up) screen

Figure 5: Theoretical explanation of an

Algorithm

Figure 6: Application Visualizer

D. Testing

The case study application was tested using the structured

Cloud-Based Software Testing model to provide a simple and

smooth testing activity. The smoke testing and Sanity Testing

methods were adopted for deriving the test cases for the

application testing in the cloud environment.

i. Continuous Integration (CI) and Continuous Testing

(CT) with Cloud involve automating the build, testing,

and deployment processes using cloud-based resources.

The below table [Table 1] provides sample test cases for

Continuous Integration and Continuous Testing with

Cloud:

Table 1: Test cases derived for CI/CT testing.

Test Case #1: CI/CT Environment Setup

Objective: To ensure the CI/CT environment is properly configured and ready for automated testing.

Test ID Description Test Steps Expected Result Pass/Fail

TC-CI/CT-

001

CI/CT

Environment

Setup

1. Verify that the cloud-based CI/CT

infrastructure is provisioned with the

necessary resources and tools.

The CI/CT environment should be ready for

test execution with appropriate build

agents, testing tools, and testing

frameworks installed.

 Pass

 2. Validate that the source code

repository is correctly integrated with

the CI/CT pipeline.

The CI/CT pipeline should be triggered

automatically whenever code changes are

pushed to the repository.

 Pass

 3. Check if the CI/CT environment is

capable of building the application from

the source code.

The CI/CT environment should be able to

build the application successfully without

any build errors.
 Pass

 4. Verify that the environment allows

parallel execution of test cases across

multiple configurations or devices (if

applicable).

The CI/CT environment should support

concurrent test execution, allowing for

faster feedback on test results.
 Fail

 5. Ensure that proper access controls are

implemented to protect sensitive data

and configurations in the cloud-based

CI/CT environment.

Access to the CI/CT environment should be

restricted to authorized personnel only.
 Pass

Test Case #2: Automated Test Execution

Objective: To verify that automated tests are executed successfully in the CI/CT environment.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 09 October 2023 Accepted: 27 October 2023

 1607
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Test ID Description Test Steps Expected Result Pass/Fail

TC-CI/CT-

002

Automated

Test

Execution

1. Trigger the CI/CT pipeline by

committing code changes to the source

code repository.

The CI/CT pipeline should automatically

start the build and testing process upon

detecting code changes.
 Pass

 2. Verify that the build process is

successful without any errors or

warnings.

The build should complete successfully,

generating a deployable artifact. Pass

 3. Confirm that the automated tests,

including unit tests, integration tests,

and acceptance tests, are executed as

part of the CI/CT process.

All automated tests should be executed

without any failures, providing

comprehensive test coverage.
 Pass

 4. Check that test execution results are

recorded and stored for future

reference.

Test results, including pass/fail status and

detailed logs, should be stored for analysis

and review.
 Pass

 5. Validate that the CI/CT pipeline can

handle concurrent test execution and

manage test environments effectively

(if applicable).

The CI/CT environment should efficiently

handle multiple test executions and manage

test environments efficiently to avoid

conflicts.

 Pass

 6. Ensure that any notifications or alerts

are generated and sent in case of test

failures or issues.

The CI/CT pipeline should send

notifications to relevant stakeholders when

tests fail or when issues occur during the

CI/CT process.

 Pass

Test Case #3: Continuous Deployment

Objective: To ensure the successful deployment of the application using the CI/CT pipeline.

Test ID Description Test Steps Expected Result Pass/Fail

TC-CI/CT-

003

Continuous

Deployment

1. Verify that the CI/CT pipeline is

configured to automatically deploy the

application to the target environment

after successful testing.

The application should be deployed to the

target environment automatically without

manual intervention once all tests pass.
 Pass

 2. Check that the deployment process is

repeatable, consistent, and can be rolled

back if needed.

The CI/CT pipeline should ensure

consistent and reliable deployments,

allowing rollbacks in case of any issues

with the new version.

 Pass

 3. Validate that proper versioning and

tagging mechanisms are in place for the

deployed artifacts.

Deployed artifacts should be accurately

versioned and tagged to track changes and

facilitate traceability.

 Pass

 4. Ensure that the application is

successfully deployed in the target

environment(s) specified in the CI/CT

pipeline configuration.

The application should be accessible and

functional in the specified target

environment(s) after the deployment is

completed.

 Pass

 5. Verify that any necessary database

migrations or data changes are applied

during the deployment process.

Database schema changes and data

migrations should be executed seamlessly

during the deployment process, ensuring

data consistency.

 Pass

 6. Check that the CI/CT pipeline reports

the status of the deployment process,

including success or failure.

The CI/CT pipeline should provide clear

and accurate information about the status of

the deployment process, helping identify

any deployment issues.

 Pass

ii. Security testing is a critical aspect of software testing, and it

involves evaluating a system to identify potential vulnerabilities

and weaknesses. The following are some of the examples:

➢ SQL Injection: Test to check if the application is

vulnerable to SQL injection attacks by attempting to

input malicious SQL statements in input fields. For

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 09 October 2023 Accepted: 27 October 2023

 1608
IJRITCC | October 2023, Available @ http://www.ijritcc.org

example, entering ' OR 1=1; -- in a login form to

bypass authentication.

➢ Cross-Site Scripting (XSS): Test to verify if the

application can protect against XSS attacks. Input

various scripts, such as <script>alert('XSS');</script>,

in different input fields to see if the application

properly sanitizes and escapes user inputs.

➢ Password Strength: Test to ensure that the system

enforces strong password policies, such as minimum

length, complexity, and expiration, to prevent easy

password guessing or cracking.

➢ Session Management: Test to check the security of

session management, ensuring that session tokens are

random, not exposed in URLs, and invalidated after

logout or inactivity.

➢ Authentication Bypass: Attempt to bypass the

authentication mechanism by using common default

usernames/passwords, blank passwords, or by

manipulating cookies or hidden fields.

➢ File Uploads: Check if the application restricts the

types of files that can be uploaded and verifies file

contents to prevent malicious files (e.g., malware,

scripts) from being uploaded.

➢ Error Handling and Information Leakage: Test to

ensure that the system does not reveal sensitive

information in error messages or stack traces that could

be exploited by attackers.

➢ Access Control Testing: Test to verify if users have

appropriate permissions and access levels and ensure

they cannot access unauthorized areas or perform

actions outside their privilege scope.

➢ Encryption and Data Protection: Verify that sensitive

data like passwords, credit card details, etc., are stored

securely using strong encryption algorithms.

➢ Denial of Service (DoS) and Distributed Denial of

Service (DDoS) Attacks: Test to check if the

application can withstand DoS and DDoS attacks by

simulating high loads and excessive requests.

➢ Business Logic Vulnerabilities: Analyze the

application's business logic to identify any flaws that

could be exploited, such as unauthorized transactions

or privilege escalations.

➢ Third-Party Component Security: Assess the security

of third-party libraries and components used in the

application to ensure they are free from known

vulnerabilities.

➢ Mobile Application-Specific Security Tests: For

mobile apps, test for jailbreak/root detection, insecure

data storage, and insecure communication.

➢ Input Validation: Verify that all user inputs are

properly validated to prevent malicious data from

being processed.

➢ API Security Testing: Test the security of APIs to

ensure they are protected against unauthorized access

and data manipulation.

Table 2: Test cases derived for security testing.

Test Case #1: SQL Injection

Objective: To verify that the application is protected against SQL injection attacks.

Test ID Description Test Steps Expected Result Pass/Fail

TC-Sec-

001

SQL Injection

Prevention

1. Navigate to the input field

susceptible to SQL injection.

The input field is accessible and ready to receive

user input.
 Pass

 2. Enter the following SQL injection

attempt: ' OR 1=1; --

The application should not execute the injected SQL

statement and should respond appropriately, such as

denying access or providing an error message.

 Pass

 3. Observe the application's

response.

The application should handle the input properly,

without executing the malicious SQL code. There

should be no SQL-related errors or leakage of

sensitive information.

 Pass

 4. Repeat steps 2 and 3 for other

input fields vulnerable to SQL

injection.

The application should protect against SQL injection

attacks consistently across all vulnerable input fields. Pass

 5. Attempt SQL injection using

other SQL injection techniques (e.g.,

UNION-based, time-based, etc.) if

applicable.

The application should detect and prevent various

SQL injection techniques, demonstrating robust

security against such attacks.
 Pass

 6. Verify logs and error messages (if

any) to ensure no sensitive

information is exposed.

Error messages or logs should not reveal any

database-related information or other sensitive

details that could aid attackers in their exploits.

 Pass

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 09 October 2023 Accepted: 27 October 2023

 1609
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Test Case #2: Cross-Site Scripting (XSS)

Objective: To verify that the application is protected against Cross-Site Scripting (XSS) attacks.

Test ID Description Test Steps Expected Result Pass

TC-Sec-

002

XSS Prevention 1. Navigate to the input field or page

susceptible to XSS attacks.

The input field or page is accessible, and it should be

ready to receive user input without rendering any

injected scripts.

 Pass

 2. Enter the following XSS script:

<script>alert('XSS');</script>

The application should handle user input properly

and prevent the execution of the script. It should

either display the input as plain text or sanitize the

input by converting special characters to their

HTML entities.

 Pass

 3. Observe the application's

response.

The application should not execute the injected

script but should handle the input safely.
 Pass

 4. Repeat step 2 and 3 for other

input fields or pages vulnerable to

XSS attacks.

The application should protect against XSS attacks

consistently across all vulnerable input fields or

pages.

 Pass

 5. Attempt different types of XSS

attacks, such as reflected, stored,

and DOM-based XSS (if

applicable).

The application should prevent various XSS

techniques, ensuring users cannot execute malicious

scripts on other users' browsers or steal their cookies

or session information.

 Pass

 6. Verify logs and error messages (if

any) to ensure no sensitive

information is exposed.

Error messages or logs should not reveal any

security-related details or sensitive information that

could aid attackers in their exploits.

 Pass

Test Case #3: Password Strength

Objective: To verify that the application enforces strong password policies.

Test ID Description Test Steps Expected Result Pass

TC-Sec-

003

Password

Strength Policy

1. Access the user registration or

password change form.

The registration or password change form is

accessible.
 Pass

 2. Attempt to set a new password

with a weak password (e.g.,

"password" or "123456").

The application should validate the password against

the password policy and inform the user that a

stronger password is required.

 Pass

 3. Attempt to set a new password

that meets the minimum length

requirement but lacks complexity

(e.g., "abcde").

The application should validate the password against

the password policy and inform the user that a

stronger password with a combination of uppercase,

lowercase letters, numbers, and special characters is

required.

 Pass

 4. Set a password that meets all the

password policy requirements (e.g.,

"P@ssw0rd123").

The application should accept the strong password

and store it securely. Pass

 5. Verify that password complexity

and length requirements are

enforced during password change as

well.

The application should consistently enforce

password policies during both registration and

password change processes.
 Pass

Test Case #4: Session Management

Objective: To verify the security of the application's session management mechanism.

Test ID Description Test Steps Expected Result Pass

TC-Sec-

004

Session Token

Generation

1. Log in to the application with

valid credentials.

The application should generate a secure session

token for the user's session.
 Pass

 2. Observe the session token details. The session token should be random, long enough,

and should not contain any predictable patterns.
 Pass

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 09 October 2023 Accepted: 27 October 2023

 1610
IJRITCC | October 2023, Available @ http://www.ijritcc.org

 3. Attempt to manipulate the session

token manually or via script.

The application should detect any unauthorized

tampering with the session token and should

invalidate the session, forcing the user to log in

again.

 Pass

 4. Log in with invalid credentials or

without authentication.

The application should not generate a session token

for unauthorized access attempts.
 Pass

 5. Verify the session expiration time

and activity timeout.

The application should invalidate the session and log

out the user automatically after a certain period of

inactivity or upon reaching the session expiration

time.

 Pass

 6. Check for session fixation

vulnerabilities by attempting to set a

user's session ID manually and then

log in using that session ID.

The application should generate a new session ID

upon successful authentication, preventing session

fixation attacks.
 Pass

 7. Logout from the application. The application should invalidate the session and

remove any associated session token, ensuring that

the user is logged out securely.

 Pass

 8. Verify if "Remember Me"

functionality, if available, uses a

secure method of storing persistent

session information.

The "Remember Me" functionality should store

persistent session information securely, using

techniques like secure cookies or long-lived tokens.
 Pass

Test Case #5: API Security Testing

Objective: To verify the security of the application's APIs.

Test ID Description Test Steps Expected Result Pass

TC-Sec-

005

API

Authentication

1. Identify the APIs that require

authentication (e.g., OAuth, API

keys, JWT, etc.).

The application should have proper authentication

mechanisms in place for all sensitive APIs. Pass

 2. Attempt to access authenticated

APIs without proper authentication

credentials.

The application should deny access to unauthorized

users and respond with an appropriate error message,

such as a 401 Unauthorized status code.

 Pass

 3. Test the validity of authentication

tokens or keys used in API requests.

The application should verify the authenticity of the

provided authentication tokens or keys, and reject

any invalid or expired ones.

 Pass

 4. Test the usage of HTTPS for

secure communication.

Sensitive data transmitted through APIs should be

encrypted using HTTPS to prevent eavesdropping

and man-in-the-middle attacks.

 Pass

 5. Verify if sensitive data is being

exposed in API responses or logs.

API responses and logs should not contain any

sensitive information that could be exploited by

attackers.

 Pass

 6. Test for potential API

vulnerabilities, such as SQL

injection, XSS, and CSRF

vulnerabilities, by passing

manipulated input to the APIs.

The application's APIs should be protected against

common security vulnerabilities, and input

validation should be in place to prevent malicious

data from being processed.

 Pass

 7. Check for API rate limiting and

usage quotas, if applicable.

The application should enforce rate limiting and

usage quotas on APIs to prevent abuse and potential

DoS attacks.

 Pass

 8. Test the API for CORS (Cross-

Origin Resource Sharing)

misconfigurations.

The application should have proper CORS

configurations to restrict cross-origin requests and

prevent unauthorized access from other domains.

 Pass

 9. Verify if APIs return appropriate

error responses for different

scenarios (e.g., 400 Bad Request,

403 Forbidden, 500 Internal Server

Error).

The application should provide meaningful and

consistent error responses to help users and

developers identify and handle issues effectively. Pass

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 09 October 2023 Accepted: 27 October 2023

 1611
IJRITCC | October 2023, Available @ http://www.ijritcc.org

iii. Performance testing

Performance testing in the cloud involves evaluating the performance characteristics of an application or system under varying

workloads using cloud-based resources.

Table 3: Test cases for performance testing

Test Case #1: Load Testing

Objective: To evaluate the application's performance under different load levels.

Test ID Description Test Steps Expected Result Pass/Fail

TC-PT-

001

Load Testing 1. Identify target scenarios

representing peak, normal, and low

load conditions.

The scenarios should be representative of real-world

usage patterns. Pass

 2. Set up cloud-based load testing tools

or services to simulate virtual users

generating traffic as per the defined

scenarios.

The load testing tools should be able to simulate the

desired number of virtual users concurrently

accessing the application.
 Pass

 3. Run the load tests and monitor key

performance metrics such as response

time, throughput, and server resource

utilization.

The application's response time should remain

within acceptable thresholds under various load

conditions.
 Fail

 4. Gradually increase the load to reach

peak levels and observe how the

application behaves under stress.

The application should be able to handle peak loads

without significant degradation in performance. Pass

 5. Analyze test results to identify

performance bottlenecks, if any, and

capture data on resource utilization,

database queries, and other resources.

Performance bottlenecks, if present, should be

identified and documented with possible remediation

steps.
 Pass

 6. Determine if the application's

performance meets the predefined

performance objectives and Service

Level Agreements (SLAs).

The application should meet the performance

objectives, and SLAs related to response times and

other critical performance metrics should be

achieved.

 Pass

 7. Repeat load tests with different user

scenarios and workloads to validate the

application's scalability and ensure that

performance remains consistent under

varying loads.

The application should demonstrate scalability, with

consistent performance across different user

scenarios and workloads. Pass

Test Case #2: Stress Testing

Objective: To assess the application's stability and responsiveness under extreme load conditions.

Test ID Description Test Steps Expected Result Pass/Fail

TC-PT-

002

Stress Testing 1. Identify scenarios to simulate heavy

user loads, beyond the system's

intended capacity.

The scenarios should stress the system to observe its

behavior under extreme load conditions. Pass

 2. Configure cloud-based stress testing

tools to apply load beyond the system's

capacity, gradually increasing the

number of virtual users.

The stress testing tools should be able to generate

heavy loads and simulate concurrent virtual users.
 Pass

 3. Run the stress tests and monitor the

application's behavior, including

response time, errors, and resource

usage during tests.

The application should remain stable, and critical

errors should be captured and analyzed.
 Pass

 4. Analyze the performance data to

identify potential points of failure and

areas of improvement.

Points of failure and areas for improvement should

be identified, and appropriate actions should be

recommended to enhance stability.

 Pass

 5. Validate that the application's

response time remains acceptable even

The application's response time should not exceed

defined thresholds, and essential functionality should

remain operational.

 Pass

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 09 October 2023 Accepted: 27 October 2023

 1612
IJRITCC | October 2023, Available @ http://www.ijritcc.org

under extreme stress, and critical

operations remain functional.

 6. Conduct post-stress testing analysis

to identify potential performance

degradation, memory leaks, or system

instability issues.

The post-stress analysis should highlight any

performance degradation, memory leaks, or system

instability that occurred during the stress tests.
 Pass

Test Case #3: Endurance Testing

Objective: To evaluate the application's performance under a sustained load over an extended period.

Test ID Description Test Steps Expected Result Pass/Fail

TC-PT-

003

Endurance

Testing

1. Identify workloads and user

scenarios that represent a continuous

load on the system.

The workloads should simulate continuous and

sustained user activity. Pass

 2. Set up cloud-based endurance

testing tools or services to run tests for

an extended duration, ensuring

constant load on the application.

The endurance testing tools should be capable of

running tests continuously without interruptions.
Fail

 3. Execute the endurance tests focusing

on resource consumption, response

time, and error rates over the extended

duration.

The application's performance should remain stable,

with no significant degradation observed over time.
Pass

 4. Analyze the performance data to

identify any potential memory leaks or

resource exhaustion issues that may

occur over time.

Memory leaks or resource exhaustion issues should

be identified, and recommendations for mitigating

them should be provided.
Pass

 5. Verify if the application can sustain

the load for the defined duration

without any significant performance

degradation or system instability.

The application should demonstrate stability and

responsiveness over the extended testing period.
Pass

 6. Assess the application's ability to

recover from any potential issues or

resource exhaustion during the

endurance tests.

The application should be able to recover gracefully

from any issues encountered during the extended

testing period.
Pass

 7. Check for any long-term memory

growth or other performance trends

that may impact the application's

ability to handle sustained workloads

over time.

The application's performance should not deteriorate

over time, and memory usage should not experience

significant long-term growth. Pass

V. CONCLUSION

The need for structured Cloud-Based software testing to address

the challenges identified through the literature review has been

proposed. The new model streamlines the testing activities in

the cloud environment and simplifies the testing. A case study

implementation with the test cases designed for CI/CT testing,

security testing, and performance testing using smoke testing

and sanity testing methods are discussed. Each testing method

used in this work provided test cases for various scenarios to

ensure the maximum coverage of test conditions. All the test

cases derived are executed, verified and reported as per the

software requirements.

VI. FUTURE SCOPE

The cloud-based testing model can be automated to derive test

cases and their execution so that the time and cost will be

reduced. Also, increase the number of test conditions to widen

the scope of testing to identify more bugs in the early stage to

reduce the overall cost of testing.

REFERENCES

[1] Daryl Elfield, Mark Corns, and Priya Raju, (2020), “Software

testing in the cloud”,

https://assets.kpmg.com/content/dam/kpmg/uk/pdf/2020/11/so

ftware-testing-in-the-cloud.pdf.

[2] C. H. Kao, S. T. Liu and C. C. Lin, "Toward a Cloud Based

Framework for Facilitating Software Development and Testing

Tasks," 2014 IEEE/ACM 7th International Conference on

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 10

Article Received: 26 August 2023 Revised: 09 October 2023 Accepted: 27 October 2023

 1613
IJRITCC | October 2023, Available @ http://www.ijritcc.org

Utility and Cloud Computing, London, UK, 2014, pp. 491-492,

doi: 10.1109/UCC.2014.66.

[3] Liu, Zhenyu & Chen, Mingang & Cai, Lizhi. (2014). A Novel

Automated Software Test Technology with Cloud Technology.

712-716. 10.1109/UIC-ATC-ScalCom.2014.63.

[4] S. Ali and H. Li, "Moving Software Testing to the Cloud: An

Adoption Assessment Model Based on Fuzzy Multi-Attribute

Decision Making Algorithm," 2019 IEEE 6th International

Conference on Industrial Engineering and Applications

(ICIEA), Tokyo, Japan, 2019, pp. 382-386, doi:

10.1109/IEA.2019.8714986.

[5] J. Chen, C. Wang, F. Liu and Y. Wang, "Research and

Implementation of a Software Online Testing Platform Model

Based on Cloud Computing," 2017 Fifth International

Conference on Advanced Cloud and Big Data (CBD),

Shanghai, China, 2017, pp. 87-93, doi: 10.1109/CBD.2017.23.

[6] Reshma D. Abhang, Prof. B. B. Gite, 2014, Testing Methods

and Tools in a Cloud Computing Environment,

INTERNATIONAL JOURNAL OF ENGINEERING

RESEARCH & TECHNOLOGY (IJERT) Volume 03, Issue 11

(November 2014).

[7] S. Nachiyappan, S. Justus, Cloud Testing Tools and its

Challenges: A Comparative Study, Procedia Computer

Science, Volume 50, 2015, Pages 482-489, ISSN 1877-0509,

https://doi.org/10.1016/j.procs.2015.04.018.

[8] N. Gokilavani, B. Bharathi, Multi-Objective based test case

selection and prioritization for distributed cloud environment,

Microprocessors and Microsystems, Volume 82, 2021,

103964, ISSN 0141-9331,

https://doi.org/10.1016/j.micpro.2021.103964.

[9] Amira Ali, Huda Amin Maghawry, Nagwa Badr, 2022,

“Performance testing as a service using cloud computing

environment: A survey”, Journal of Software: Evolution and

Process, Volume 34, Issue 12,

https://doi.org/10.1002/smr.2492.

[10] Krichen, M. (2023). How Artificial Intelligence Can

Revolutionize Software Testing Techniques. In: Abraham, A.,

Bajaj, A., Gandhi, N., Madureira, A.M., Kahraman, C. (eds)

Innovations in Bio-Inspired Computing and Applications.

IBICA 2022. Lecture Notes in Networks and Systems, vol 649.

Springer, Cham. https://doi.org/10.1007/978-3-031-27499-

2_18.

[11] Muhammad Babar, Ata Rahman, Fahim Arif, 2017, “Cloud

Computing Development Life Cycle Model (CCDLC)”,

FUTURE 5V, Springer, DOI: 10.1007/978-3-319-51207-5_19.

[12] Alshazly, A.A., ElNainay, M., El-Zoghabi, A.A., &

Abougabal, M.S. (2020). A cloud software life cycle process

(CSLCP) model. Ain Shams Engineering Journal.

[13] Thomas Hamilton, 2023, Smoke testing,

https://www.guru99.com/smoke-testing.html

[14] Nazneen Ahmad, 2023, Sanity Testing Tutorial: A

Comprehensive Guide With Examples And Best Practices

https://www.lambdatest.com/learning-hub/sanity-testing.

http://www.ijritcc.org/

